
HAL Id: hal-00991376
https://hal.science/hal-00991376v1

Submitted on 15 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

OverStar: An Open Approach to End-to-End
Middleware Services in Systems of Systems

Paul Grace, Yérom-David Bromberg, Laurent Réveillère, Gordon Blair

To cite this version:
Paul Grace, Yérom-David Bromberg, Laurent Réveillère, Gordon Blair. OverStar: An Open Approach
to End-to-End Middleware Services in Systems of Systems. 13th International Middleware Conference
(MIDDLEWARE), Dec 2012, Montreal, QC, Canada. pp.229-248, �10.1007/978-3-642-35170-9_12�.
�hal-00991376�

https://hal.science/hal-00991376v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


OverStar: an open approach to end-to-end

middleware services in systems of systems
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Abstract. The increasing complexity of distributed systems, where het-
erogeneous systems are composed to form systems of systems, pose new
development challenges. How can core middleware services, e.g. event
communication, resource discovery, etc. be deployed and optimised in an
end-to-end manner? Further, how can important properties such as inter-
operability be managed? In this paper we propose OverStar a framework
that generates overlay network based solutions from high-level specifica-
tions in order to answer these questions. A middleware service is specified
as a self-managing overlay network across heterogeneous systems; timed
automata specify how the topology of the network is constructed and the
data is exchanged. The key contribution is the open access to individual
overlay nodes in order to specify additional flow logic, e.g. the transla-
tion of messages to support end-to-end interoperability or the filtering
of heterogeneous messages to optimise event dissemination. We evaluate
OverStar using service discovery and event communication case studies;
these demonstrate the ability to compose heterogeneous systems, achieve
end-to-end interoperability and simplify the developer’s task. Further, a
performance evaluation highlights optimisations that can be achieved.

1 Introduction

Overlay networks are increasingly important in underpinning key middleware
functions (e,g. service discovery, multicast, and P2P in various disguises). In-
deed they are becoming a pervasive feature of middleware technologies, and
their management and co-ordination will be a key requirement in future com-
plex systems. Many different types of overlay networks have been developed
to provide virtualised network services for particular environments and require-
ments, e.g, large-scale resource discovery [22] or multicast [23] in high-churn
networks. In addition, software frameworks for overlays: P2 [16], Macedon [21],
and OpenOverlays [9] provide tools to rapidly create a tailored overlay network,
or incorporate an overlay network as an explicit architectural element of mid-
dleware. This work is promising but it falls down in underpinning middleware
functions in complex distributed systems-of-systems where there are high levels
of heterogeneity and dynamic behaviour, especially in terms of the middleware
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protocols used by end systems that need to be composed dynamically. These end
systems may utilise heterogeneous middleware services, i.e., different event com-
munication middleware (e.g. STOMP 3 or OpenWire 4) and different resource
discovery protocols (e.g. SLP or Bonjour). Hence, there is a need to manage this
heterogeneity, especially with respect to interoperability and optimisation.:

– End-to-end interoperability. Heterogeneous local middleware services must
interoperate when composed together in order to realise the global function-
ality of a middleware service.

– End system optimisations. It should be possible to apply service optimisa-
tions at the end systems despite the heterogeneous technologies, e.g. apply-
ing global message filters locally to reduce both network traffic and protocol
message translations.

In this paper, we look at an approach to address these heterogeneity chal-
lenges. The OverStar software framework supports the generation of overlay-
based middleware services from high-level declarative specifications; in particu-
lar it concentrates on supporting the specifications that achieve interoperability
and optimisation of heterogeneous systems. For this purpose two separate model
specifications are provided:

– Overlay specification. Each heterogeneous middleware service is underpinned
by a tailored overlay network. Timed automata are used to specify two as-
pects of the overlay’s behaviour. First, how the overlay topology should best
be constructed to integrate the individual end systems (e.g. a tree, ring, etc.).
Second, timed automata are also used to model the communication of data
in the overlay network, e.g., multicast, anycast, etc.

– Node behaviour specification. Each overlay node acts as a gateway to the
behaviour of the heterogeneous protocols in the local end systems. Protocol
transparent middleware behaviour is then specified at each node to achieve
interoperability and/or optimise service functionality. Such behaviour is spec-
ified using a timed automaton and can contain operations including: message
translation, and message filtering.

We evaluate OverStar using a case study based method involving two mid-
dleware services in given areas of application: resource discovery and an event
service. We show that these services can be specified and optimised in the face of
heterogeneous protocols across the end-systems; interoperability can be achieved;
and node behaviour specification supports the optimisations of deployments de-
spite the encountered heterogeneity.

The paper is structured as follows. In section 2 we introduce the OverStar
approach and associated software framework. In section 3 we then define the
formal models that underpin the solution, and in 4 we describe the implemen-
tation of the OverStar framework. The evaluation results are given in section 5.
In section 6, we analyse the work with respect to the state of the art. Finally,
we draw conclusions in Section 7.
3 http://stomp.github.com/
4 http://activemq.apache.org/openwire.html
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2 The OverStar approach

2.1 Motivation

We use a simple example to motivate the OverStar approach. Fig. 1 illustrates a
set of end-systems that employ heterogeneous protocols to provide middleware
services in their local domains. Multiple discovery protocols are shown in use:
SLP, Bonjour, UPnP and Ariadne [11]. Similarly multiple event communication
middleware: Active MQ brokers, XMPP XEP-0060 5 and a publish-subscribe
sensor middleware [24]. These can be viewed as isolated islands of interoperability
that must be carefully integrated to create resource discovery and event services
respectively. Further, in dynamic systems it is unrealistic to predict which end-
systems protocols will be employed.

Fig. 1. Heterogeneous middleware services in systems-of-systems

Building global, optimised middleware services across heterogeneous end sys-
tems requires a substantial understanding of: distributed algorithms, different
communication patterns, interoperability challenges and low-level network pro-
gramming. Furthermore, different strategies are required for different contexts
(e.g. the solution for resource discovery is different from an event service solu-
tion). The potential heterogeneity means that the solution space may rapidly
grow, such that a single middleware solution is not sufficient. Hence, we argue
that it should be possible to specify the middleware service optimised for the
given context and then use this to generate the deployable middleware software.

2.2 The OverStar Middleware Framework

OverStar is a software framework that composes middleware services across het-
erogeneous end systems as illustrated in Fig. 2. OverStar node instances are
deployed in multiple domains to communicate with heterogeneous end systems
in order to underpin higher-level middleware services. A node instance is made
up of two component types. First, the OverStar nodes must be globally con-
nected in order to facilitate the optimised communication between heteroge-
neous domains. Overlay networks offer a well established solution for building

5 http://xmpp.org/extensions/xep-0060.html
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such virtualised services. However, a single overlay network is not sufficient; for
instance, the overlay behaviour required to underpin a resource discovery ser-
vice may differ from one to underpin publish-subscribe. Hence, the Overlay Node
component allows different implementations of self-managing overlay behaviour
to be created and deployed, e.g., a multicast tree or a DHT ring. Second, service
implementation behaviour must be layered atop this overlay; this should connect
the legacy systems in such a way that end-to-end interoperability is achieved.
Further the service behaviour should be tailored for optimisations, i.e., adding
specific service optimisation in spite of the heterogeneity, e.g. applying global
publish subscribe filters in the end-system domains. The Service Node compo-
nent allows different behaviours for specific middleware service implementations
to be deployed. Finally, each node performs network communication with legacy
middleware systems using data ports, and with the overlay via the overlay port.

Fig. 2. An overview of the OverStar approach

In order to support the development of services and promote software reuse,
the service and overlay node component’s behaviour is specified through the use
of timed automata (rather than hand-coded), which are finite state automata
with a set of clocks, clock constraints, abstract messages, message constraints,
queues and actions. We introduce the formal definition of these timed automata
in Section 3.1, which are then applied to Overlay Node specifications in 3.2 and
Service Node specifications in 3.3. We argue that the use of timed automata
fits well with the requirements of global middleware services due to time con-
strained behaviour, e.g. in the self management of both overlay topologies and
the middleware service logic.

The OverStar framework executes on each host and acts as an execution
environment for the OverStar node instances. The elements of this framework
(illustrated in Fig. 2) behave as follows:

– The Service Flow Interpreter interprets the internal model of a Service Node
component to achieve the middleware service behaviour, e.g. supporting in-
teroperability. Based upon the timed automata specification the interpreter:
i) communicates with end system nodes using their legacy protocols, ii) com-
municates with other OverStar nodes using an Overlay Node component, and
iii) performs middleware logic on the messages received from both.
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– The Overlay Interpreter interprets the behavior specification of the Overlay
Node component and performs the required local node behaviour to con-
struct and maintain the overlay topology, and provide data communication
services. That is, react to: join, leave, fail, and data events.

– The Network Engine performs two roles to support the two port types.
Firstly, it sends the overlay specific messages between nodes in the overlay,
i.e., these messages contain the overlay action messages, or forwarded data
messages. Secondly, it communicates directly with legacy systems, sending
and receiving messages using the required legacy protocol, e.g., it can send
and receive SLP messages on the IP multicast channel of SLP.

3 Definition of Models to Specify Component Behaviour

Here we first present the formal definition of the timed automata used in Over-
Star. We then present the timed automata models for the Overlay node compo-
nent specifications, followed by the Service node component specifications.

3.1 Timed automata specifications

Modeling time dependent behavior. Constraints on clock variables are used to
model time dependent behavior. Local clocks are initialized to zero when a node
starts and then increase synchronously with the same rate. Clocks associated
to transitions act as clock guards that restrict the behavior of the automaton.
Transitions from one state to another may not be taken according to time con-
straints, i.e. if a clock guard is not evaluated to true. Clocks may be reset to zero
when a transition is taken. Further, to enforce progress properties, i.e. to ensure
that nodes do not stay in a state forever, a state may be also associated with
a clock constraint, called thereafter, a local invariant. For instance, as depicted
in Fig. 3,❷, the local invariant (x < 20) associated to state s1 ensures that the
transition from state s1 to s5 is only taken if clock x has elapsed (i.e. is evaluated
to more than 20 time units). In other terms, a local invariant determines how
long an automaton can wait in a particular state for an event to be triggered. If
the time expires and there is no transition satisfying the guards, then a violation
of the constraints of the system occurs. More precisely, it means that there is a
fault in either the specification of guards or invariants in the model; this is what
is usually called a timelock. Such locks in OverStar specifications can be avoided
thanks to the use of a timelock checker provided by timed automaton analysis
tools. Additionally, a state is urgent when it has an invariant x < 0, with all its
incoming transitions resetting x to zero. Hence, in an urgent state, the outgoing
transition must be taken immediately (See Fig. 3,❸,❹,❺).

Abstract messages. Triggered events are messages received or sent from either
i) the global overlay network referred to as an overlay port, or ii) end systems
within a local domain, referred to as one or more data ports; these utilise legacy
protocols e.g. SLP, XMPP, etc. for communication. Syntactical description of
message data fields, including their data types are formalized through the use
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Fig. 3. Timed automaton specifying the self-organizing behavior of an overlay

of abstract messages [4]. An abstract message consists of a set of fields, either
primitive or structured. The former is composed of: (i) a label naming the field,
(ii) a type describing the type of the data content, (iii) a length defining the
length in bits of the field, and (iv) the value, i.e., the content of the field. A
structured field is composed of multiple primitive fields. We note msg⊲field the
operation that selects the field from the abstract message msg. This abstract
representation supports the application of additional message logic (e.g. message
filtering) irrespective of the concrete packet format of a message.

Message guards. Transitions may also be labeled with a message guard that
specifies a set of conjunctions of constraints on triggered events that has the
following form: (msg ⊲ field) ∼ rvalue with ∼∈ {<,≤,=,≥, >} to evaluate
adequately the message field field. As a result, a transition from one state to
another can be taken only if both its clock and message guards evaluate to true.

Global variables and queues. Message guards may be combined with con-
straints on either global variables and queues. Both of them are accessible what-
ever the current state of a timed automaton. Global variables are variables pre-
fixed with the ’$’ sign whereas queues are variables prefixed with the ’:’ sign.
The term global refers to the states on one node, variables are not global to
the distributed system. At any time, a timed automaton is able to store both
incoming or outgoing messages to further get them back later.

Actions.When a state is left, actions may be triggered according to the transi-
tion to be taken. Available actions are described in Fig. 4 and include forwarding,
multicasting, translating, filtering and queuing messages. We are providing a set
of key actions to build overlay-based middleware services and provide end-to-end
interoperability; however, the set of actions is extensible according to the needs
of additional middleware functionality.

Formally, a timed automaton is defined as follows.

Definition 1. A timed automaton T A is a tuple (Q,M, q0,A, Evt, C, Act,V,F ,→
, I), where Q is a finite set of states, M is a finite set of abstract messages,
q0 ∈ Q is the starting state and A ⊂ Q is a set of accepting states. Evt is
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Actions

δm Translate message m to f(m)

Filter(m, fr1...fr2) Filter message m according to the field content filters fr1...fr2
∝ m Multicast to the overlay network nodes m

≻ $root Bootstrap procedure

: q :: m Queue message m in queue q

#(m,id1...id2) Forward message m to overlay nodes id1...id2
λm Multicast message m to the local environment

Fig. 4. Available actions in the model

a set of event types such that Evt = {?, !,≫,≪} where ? (resp. !) denotes a
received (resp. sent) event from a data port, whereas ≫ (resp. ≪) denotes a
received (resp. sent) event from an overlay port. C is a finite set of non nega-
tive real valued clocks and B(C) is the set of all clock constraints on C. Act is
the set of actions performed when a transition is taken. nil ∈ Act is an empty
action. The set of global variables and queues is respectively V and F . Addition-
ally, B(M,V,F) is the set of constraint conjunctions on M , V and F . Further,
→⊆ Q×Evt×M×B(M,V,F)×Act×B(C)×Q is the set of transitions. Finally,
I : Q → B(C) assigns local invariants to states.

Concretely, transitions have the following form s1
L
−→ s2 and changes the

state of timed automaton from s1 to s2 once the label L is evaluated to true.
The transition label L is defined such as L ⊆ Evt×M×B(M,V,F)×Act×B(C),
and has the following format:

L = Event|Msg|Data guard|Actions|Clock guards

Correspondingly, four different transitions can be triggered according to events
that can occur and are noted as follow (without considering guards and action

for the sake of clarity): (i) s1
?m
−−→ s2 (resp. s1

!m
−−→ s2) if a message m has

been received (resp. sent) from a local legacy system, (ii) s1
≫m
−−−→ s2 (resp.

s1
≪(id,m)
−−−−−→ s2) if a message m has been received (resp. sent to id node) from the

underlying overlay network. Further, our model also supports epsilon transitions.
However, to avoid non-deterministic timed automata, such transitions must be
combined with guards to avoid undeterminism (See for instance Fig. 3, ❸, ❹,
❺). It is important to note that epsilon transitions are only triggered when either
timeout occurs or the current state is an urgent state.

3.2 Overlay Specification: Timed Automata to Construct Overlays

The first step in building a middleware service that integrates multiple legacy
end systems is to construct the overlay topology and communication services
that join them in a manner that the middleware functionality can be layered
atop. Using the timed automaton definition, we are able to specify the algo-
rithm to create such an overlay. To ease its understanding, Fig. 3 illustrates the
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specification of a timed automaton T Atree deployed at each node to create a
self-managing tree overlay.

In particular, T Atree is an instance of a timed automaton with a global
variable $root, two queues named :parents and :siblings, a clock x and three
possible actions: bootstrap, forward and queue (respectively noted ≻, # and
::). An overlay node always starts with a bootstrap action that initializes both
the $root variable and the clock variable x. The former variable is used to know
if an overlay node is or is not the root of the tree based overlay whereas the
latter variable is used to control the time dependent behavior (Fig. 3, vertex
❶). Then, overlay nodes must wait at most 20 time units for receiving either: (i)
a multicasted data message, (ii) a join request, or (iii) a join acknowledgment
(vertex ❷). In the first case, multicasted messages are forwarded to siblings of
the overlay node. In the second case, according to size of the siblings queue, the
node that has sent the join request may be added or not to the siblings queues
of the current overlay node (vertex ❸). If it is added then an acknowledgment
is sent to the requester (vertex ❺), otherwise the join request is forwarded to
the siblings of the current overlay node (vertex ❹). Constraints on the size of
the siblings queue enables avoidance of an unbalanced tree. In the third case,
the node that receives a join acknowledgment adds the ack sender to its parents
queue. To ensure that the overlay being built remains connected, each node must
probe the liveness of its neighbours. Thus, beyond a delay of 20 time units, if no
messages have been received, overlay nodes must poll their parent nodes to check
if they are still alive (vertex ❻). If in less than 5 time units, no acknowledgment
is received, overlay nodes may have been disconnected from the overlay and thus
have to reforward a join request to their parents. Otherwise, if acknowledgments
are received, overlay nodes go back to the listening state s1 to receive messages.

The use of timed automata enables us to specify a fine grained overlay con-
struction algorithm. In particular, it becomes easy to express timed dependent
behaviors to perform overlay maintenance, to manage network errors, or to pe-
riodically check invariants of the overlay.

3.3 Sevice Specification: end-to-end middleware services

Overlay Nodes. At each node in the constructed overlay additional logic is
deployed to perform the required middleware functionality that achieves a par-
ticular service. Specifically, this logic performs actions on messages received from
either the local end systems, or from messages disseminated by the overlay net-
work. As depicted in Fig. 5, all overlay nodes have an overlay port through which
they can send messages to, and receives messages from other nodes in the overlay
(dependent on the network service provided by the overlay, e.g. multicast). Each
node also has a set of N data ports through which the node communicates with
the end systems using the required middleware protocol, e.g. an SLP data port
allows the overlay to communicate with end systems using this protocol.

Middleware functionality is then performed as actions on the messages re-
ceived and exchanged between these ports; examples including message transla-
tion and filtering are defined in Fig. 4). We use simple examples to then illustrate
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Fig. 5. Middleware logic actions applied at end system nodes

this procedure. Fig. 5A shows that a message received as a Protocol P message
from a data port is translated to a Protocol Q message and sent on the corre-
sponding data port (hence in this example the message is not transmitted to
the overlay). Fig. 5B describes similar functionality but this time the message
from the data port is translated before it is sent to the overlay. Finally, Fig. 5C
illustrates the filtering of messages between the data ports and the overlay port.
As previously stated, the approach is extensible to add new message actions to
underpin a wider range of middleware services.

Data Flow Specification. Actions themselves are not enough to achieve
service functionality; control logic is required to define the flow of data at the
individual nodes. Thus, we further employ timed automata to specify the mes-
sage flow across the overlay; a sequence of middleware, translating, multicast
and queuing actions (resp. noted δ, ∝ and ::) are constrained by both time and
message guards. Hence, it is possible to define different service functionality. For
instance, in the case of a global resource discovery overlay integrating heteroge-
neous end system protocols, one solution is to follow a translate and multicast
strategy : each node performs local translations between the disparate protocols
employed in its domain; if there is no local resource match then the overlay node
can pass the request to its neighbours by sending them the received incoming
requests and/or their translated forms to increase chances to get successful an-
swers. Fig. 6, illustrates a specification of a timed automaton T Abonjour1 that
applies the aforementioned strategy to the Bonjour service discovery protocol.
As soon as a message m of type DNS Question is received, it is translated locally
according to the underlaying gateway capabilities, to either SLP, UPnP, or other
service discovery protocols (and noted f(m)) (Fig. 6, ❶). If DNS Response mes-
sages are received locally (i.e. from the local environment) in less than 4 time
units, they are sent to the requester (vertex ❺, ❻). Otherwise, the message m

and its translated form f(m) are queued and multicasted to overlay neighbors
(vertex ❷).

Every 5 time units, if a DNS Response message is received it is queued to be
sent later (vertex ❸). Any other messages received are translated to Bonjour

(vertex ❼). If the translation is successful, then it means that a DNS Response

has been received and then is queued. If the translation is not successful, the
message f(m) is either discarded if it has been already seen by the current
node, or multicasted to overlay neighbors otherwise (vertex ❹). Finally, if the
delay of 10 time units has passed without receiving any messages then all previ-
ously queued DNS Response responses are sent to the requester, and the queue
is flushed (vertex ❺, ❻).
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s0
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∅

;

∅
;

y
=

0
;y

:=
0f(

m
);

:q
::
f(

m
) ∧

s4s3s5

(m,f(m))

:q::f(m)∧

∝

:q::m;

!q

:q::

∝

f(m).id = m1 . id|∃m1 . id ∈ q

f(
m
).
id

6=
m

1
.
id
|9
m

1
.
id

2
q

7

y<10

Fig. 6. Translate and forward strategy

From our model it is straightforward to define additional compelling strate-
gies. For instance, in the case where the response time of the global resource
discovery service is important, Fig. 6 can be altered to multicast incoming re-
quest immediately to find corresponding responses in other networked environ-
ment, without waiting for local responses. Further, Fig. 7 shows the node logic for
event filtering in a global event service. Here, subscription requests are multicast
across the network and translated and applied as local filtering rules. Published
events are then translated to an abstract message specification to which the fil-
ters are applied. Published Messages that match the filters are translated to the
legacy end system protocols and multicasted across either the local network or
the overlay according to the messages’ origin. This is a relatively simple publish-
subscribe service that handles protocol heterogeneity; there are many potential
broker strategies, which we believe the overlay and flow specifications are flexible
enough to define.

Reusing overlays for multiple middleware services. The behavior of
an overlay, noted T AO, is modeled through a set of timed automata that are
composed together. In a way similar to process algebras such as CCS [18] and
FSP [17], we introduce the parallel composition operator ‖ to compose timed
automata. Hence, the behavior of T AO consists of individual timed automata
that execute their transitions independently. As in our model, each timed au-
tomaton is independent from each other, compared to traditional process alge-
bras, our composition operator ‖ does not provide any synchronization features
among composed timed automaton. Further clocks are local to each composed
automaton. There are no global or shared clocks variable. So, provisioning n

applications using P1, P2,..., Pn protocols across an overlay O is described by
the following formula: T AO = T Atopology ‖ T AP1

‖ T AP2
‖ T AP3

‖ ... ‖ T APn
.

The timed automaton T Atopology describes the self-organization behavior of the
overlay and T AP1

, ..., T APn
specify the different translation strategy for each

supported middleware service. The strength of our model comes from its flexi-
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Fig. 7. Event translation and filtering strategy

bility. Replacing one strategy by another or taking into account a new service
and/or a new overlay topology is straightforward as the ‖ operator enables a
modularized specification.

4 The OverStar Framework Implementation

Here we describe the further implementation details of the OverStar software
framework. OverStar is implemented in Java and leverages the capabilities of the
Starlink framework [4]. There are two key elements to the implementation: i) the
implementation of reusable building blocks that underpin the action keywords
that are performed during the service flow specification logic (e.g. interoperabil-
ity), and ii) the implementation of the timed automata interpreters.

4.1 Actions: reusable software building blocks

As previously described, Actions are performed to realise the service flow logic
behaviour. These are defined as key words in the timed automaton; and these key
words relate to reusable software building blocks. Hence, the logic is extensible
and adaptable through the creation of new building blocks.

Actions are specified using the Starlink framework. Starlink uses k-colored
automata to capture the properties of a protocol by a color k and ensures that
the messages are sent and received using the appropriate network service. This
supports the parsing of a message into the abstract message format such that
additional logic can be performed on the messages irrespective of the heteroge-
neous protocols. Hence, an action is a k-colored automata with the message logic
relating to the action. When the timed-automata specifies a transition with a
particular keyword action then the corresponding coloured automata is executed.
To illustrate this method, we present one example in Fig. 8; this is a transla-
tion from SLP request messages to UPnP request messages. The original SLP
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request message is translated to a SSDP request that initiates UPnP behaviour.
The bi-coloured state performs the assignment of field data from one message
to another. Other examples are: the translation of STOMP to XMPP messages,
or the parsing of either of these such that they can be filtered by message topic.

?SLP_SrvReq !UPnP_Search
s10 s11s

4
0 s41

Fig. 8. Starlink merged automaton for SLP to UPnP protocol translation

4.2 Timed Automata Interpreters

Both the Overlay and Service flow interpreters dynamically execute timed au-
tomata written in XML (we do not provide a schema here, however, the notation
provided in Section 3 offers a concise representation). To illustrate how OverStar
operates, we now summarise the behaviour that occurs at the two state types.

At a receiving state, the interpreter listens for messages from the overlay
or data port. The receiving state parses the message to determine the automaton
action e.g. translate, filter, etc. Transitions to other states are taken based upon
both action types and guard conditions. For example, where there is a time-guard
on the state a timeout exception is used, i.e. the state listens for new events and
the timeout value is set to the guard value. If no event is received in the time-
frame the exception is caught and the appropriate transition is executed.

At a sending state, the interpreter constructs a new instance of an overlay
message to be forwarded in the overlay. This consists of the original legacy
protocol message with a new OverStar header. The header contains a small
amount of data (17 bytes) capturing the message type (e.g. forward, join in 1
byte), a unique message identifier (8 bytes), message source IP (4 bytes), and
message source port (4 bytes). The sending state can also send concrete protocol
messages to a given legacy end system using the correct protocol behaviour.

5 Evaluation

5.1 Case Study based Methodology

We employ a case-study approach to evaluate the ability of the OverStar frame-
work to achieve its primary contributions. For this we developed two different
but complimentary middleware services to highlight the flexibility of OverStar:

– A resource discovery service that can react to requests from heterogeneous
end system protocols (e.g. SLP, Bonjour and UPnP) and ensure that match-
ing service responses are returned.
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– An event service that joins end systems using heterogeneous publish-subscribe
technologies, e.g., STOMP and XMPP-XE0060 and ensures that events that
match subscriptions are received despite the heterogeneous protocols.

The two services employ very different legacy middleware technologies and pose
different challenges to applicability of OverStar. The resource discovery and
event service solutions were deployed in the emulated complex network environ-
ment as described in Section 5.2. Utilising this experimental setup, we performed
three measures: i) the end-to-end interoperability achieved by OverStar; ii) spe-
cific optimisations within the two services as specified by the service logic; and
iii) the overheads occurred during OverStar’s operation. These results are used
to evaluate the extent to which the primary contributions are achieved.

5.2 Experimental Setup

To evaluate various aspects of OverStar, we have setup a particular network en-
vironment enabling reasonably large scale experiments. We have deployed Over-
Star across heterogeneous domains (e.g. 4, 8, 16) interconnected via a network
backbone. A heterogeneous domain is instantiated as a Virtual Local Area Net-
work (VLAN). A VLAN contains a set of devices that are logically connected
within a single broadcast domain, and located in the same IP subnet. In fact,
a one-to-one mapping between VLANs and IP subnets is applied, according
to the best practices in network design. Devices may host either the OverStar
middleware to act as an OverStar node, or middleware services relying on hetero-
geneous protocols. The key advantage of using VLANs to interconnect devices is
to confine traffic generated by services (e.g. broadcast, multicast and/or unicast)
into one domain without interfering with another, while abstracting the under-
lying physical network topology. Additionally, in our experiments, devices are
emulated via Linux Kernel-based Virtual Machines (KVM) to use real operating
systems and run unmodified both middleware services and OverStar middleware.
The whole setup was conducted on a rack server equipped with 4 AMD opteron
processors at 2 GHz, including 12-core per processor (for a total of 48 cores),
and 32 GB of RAM. The server multiplexes virtual resources such as VLANs,
KVMs on top of physical ones, and enables IP routing between domains.

5.3 Interoperability Experiments

In the emulated environment, we deployed a set of heterogeneous end systems
across different domain configurations, i.e., four domains, eight domains, and
sixteen domains; where in each domain, heterogeneous end systems utilise one
of: SLP, Bonjour and UPnP to request or advertise a resource. We then specified
and deployed an OverStar service solution using a multicast tree overlay timed-
automata to connect the domains (up to sixteen). The service was specified
to immediately multicast received requests from the heterogeneous end-systems
onto the overlay; when received at the domain nodes these are translated to per-
form discovery using the local protocols. We measured the number of successful
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match responses to the requests as the percentage interoperability achieved; this
was compared to: i) no interoperability solution deployed, and ii) local bridges
(i.e. bridges for SLP to UPnP, Bonjour to SLP, etc. deployed in each domain).
The results in Fig. 9 show that local bridges increase the potential interoper-
ability as they reach more services in the local domain, but OverStar achieves
the necessary end-to-end interoperability via the global integrated service (n.b.
across the experiment there is a least one matching service, and in many cases
multiple matches). A similar experiment was performed for heterogeneous end-
system event services (STOMP and XMPP-XE0060). Here the OverStar speci-
fication used a multicast tree with the local filtering only timed-automata (see
Fig. 7). To measure the interoperability percentage in this case we compared the
actual received events as a percentage of the matching events published across
the network. Similarly, OverStar is able to achieve end-to-end interoperability in
the event service case compared to the local domain approaches. Overall, these
results demonstrate that hypothesis one is proven.

Fig. 9. Percentage interoperability results

5.4 Optimisation Experiments

For the optimisation experiments we use the same experimental setup as with
the previous experiment. However, this time we apply different timed-automata
strategies for the middleware service specifications. For the resource discovery
case: i) multicast and translate (as used in the interoperability experiment), and
ii) match service requests locally and multicast to the overlay when there isn’t a
response (this specification is captured in Fig. 6). For the event service case: i)
local filtering only (where all publications are multicast on the overlay and local
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filters determine which are translated to the end-systems (see Fig. 7), and ii)
global filtering where subscriptions are multicast to the OverStar nodes to ensure
that only matching publications are sent between domains. The results in Fig. 10
show that for resource discovery, strategy one reduces the maximum response
time from a matched service in the global network, but this approach occurs
significant message overhead especially as the domain configuration grows larger.
Strategy two reduces this number of messages sent in the network, although the
maximum response time is increased. It is interesting to note that the deployment
of local bridges in a domain can create a cycle (i.e. the message is translated from
one protocol using one bridge and then back to the same protocol by a separate
bridge) leading to an infinite number of messages in the domain and across the
network. The use of OverStar is shown to prevent such cycles occurring. Finally,
in the case of the strategies for the event service, it can be seen that strategy two
reduces the overall number of messages in the network compared to strategy one;
hence, this minimises the message translations that take place. Overall, these
results show that OverStar can be flexibly used to optimise for different domain
configurations and requirements and offer initial proof of hypothesis two.

Fig. 10. Comparison of different service strategies

5.5 Resource Overheads Experiments

Finally, we examine the resource overheads of the OverStar implementation. For
this, we measure the time taken to perform three indicative individual actions on
each OverStar node: i) the time to translate from an SLP message to a Bonjour
message, ii) the time to translate from a STOMP message to an XMPP message,
and iii) the time to translate from a STOMP message to an abstract message
and then perform filtering. The results in Table. 1 show that OverStar intro-
duces an expected overhead, however, this does not detract significantly from
the overall performance of the services (e.g. compared to the overall response
time of resource discovery). N.b. the measures are dependent on the protocol
types; STOMP to XMPP involves text to XML message translation and hence
is slower than SLP to Bonjour which is a binary to binary translation.
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Action Time (ms)

SLP to Bonjour 0.28
STOMP to XMPP 0.39
STOMP to filter 0.25

Table 1. Direct bridging deployments only

6 Related Work

6.1 Interoperability Solutions

Interoperability solutions focus on the search for a universal standard; and where
such a standard is agreed and adopted the problem is solved. However, history
has shown this approach to be unsuccessful. Two primary examples: the set of
CORBA standards from the OMG [10] and the set of Web Services standards [3]
from the W3C. However, such one size fits all standards are not suited to the
extreme heterogeneity of systems-of-systems, e.g. from small scale sensor appli-
cations and embedded devices through to large scale Internet applications.

Rather than seek universal standards, alternative approaches either build
direct bridges between systems e.g. the SOAP to CORBA bridge 6, embrace
simplicity (i.e. RESTful solutions) or look for transparency (i.e. Service Buses).
REST presents a simple uniform API atop a global standard protocol (the HTTP
protocol being widely used to connect systems) allowing many interoperability
problems at the communication level to be addressed. However, the Restful ap-
proach leaves interoperability issues arising at the application behaviour and
data level unresolved. For example, a service cannot respond to a GET oper-
ation request composed of an operation name and data parameters that has
different behaviour and syntax to itself. Opposed to standards, transparent so-
lutions mimic the action of a language interpreter, that is they receive commu-
nications from system A and then translate this such that system B can under-
stand and vice versa. Enterprise Service Buses (ESBs) e.g. Artix, INDISS [5],
z2z [6], Janus [1] and uMiddle [19], provide such capabilities between multiple
“languages”. However, transparent solutions are typically restricted to a set of
known middleware types, and the development effort required to extend them
for new protocols is significant. Connect [2] has examined semantics-based
solutions to automate this challenging task, however, the focus is single party
protocols between two systems; within the Connect approach, [13] examines
interoperability between heterogeneous multiparty middleware abstractions, but
does not consider the underlying deployment complexities of achieving end-to-
end interoperability in heterogeneous systems-of-systems.

Analysis. Generally, interoperability has been considered from an enterprise
systems perspective, where interactions are point-to-point, planned and long-
lived. Hence, they remain limited when considering the dynamic composition
of heterogeneous systems, where the knowledge about the services provided by

6 http://soap2corba.sourceforge.net/
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different systems and the protocols they employ are unknown until binding time
and a common translation technology cannot be agreed upon in advance.

Further, none of the above solutions considers the cases of interoperation be-
tween systems using heterogeneous multi-party communication protocols (e.g.
multi-party discovery, group communication, publish subscribe, etc.), they con-
sider only the case where a single system must interact with another. OSDA [15],
MUSDAC [20] and SeDiM [7] offer bridging solutions between service discovery
domains to provide universal solutions i.e. a service lookup request from one
domain can be answered in another network domain irrespective of the service
discovery protocols employed in that domain. Notably, OSDA uses a peer-to-
peer ring to communicate messages between heterogeneous domains. However,
the weakness of these platforms are threefold: i) they are specific solutions im-
plemented for service discovery and cannot be flexibly applied to other problem
domains e.g. group communication; ii) they employ a transparent intermediary
between domains and hence mappers to and from this intermediary must be
developed by hand for every protocol, and iii) the intermediary is a ‘subset of all
protocols’ and as such this subset may become too small to underpin interoper-
ability in a general fashion, e.g., if service discovery protocols A and B provide
attribute based lookup while protocol C does not then the intermediary cannot
include attribute lookup; this lessens any potential interoperation between A
and B. In comparison, OverStar supports the specification of end-to-end inter-
operability solutions between heterogeneous multi-party middleware protocols
that span heterogeneous network domains.

6.2 Overlay Networks and Middleware

Overlay networks are virtual communications structures that are logically ‘laid
over’ an underlying physical network. They are established solutions for provid-
ing scalable application services across heterogeneous networks, nodes and sys-
tems. For example, publish-subscribe and group interaction can be underpinned
in the Internet by multicast overlays such as SRM [8]. Similarly, DHT-based
peer-to-peer overlays provide reliable resource discovery in large-scale distributed
systems e.g. Pastry [22] and Chord [25]. And publish subscribe services are one
example of middleware services layered atop DHT, e.g., Scribe [23]. These prop-
erties make them suited to connecting heterogeneous systems of systems; yet
the different types of middleware protocols suggests that a single network type
is insufficient and it must be possible to flexibly specify an overlay to underpin
the broad range of potential middleware services.

There exist toolkits that provide principled support for overlay network de-
velopment. JXTA 7 is a framework where p2p applications are developed atop a
resource search abstraction; this supports grouping and contacting nodes. This
abstraction can be implemented using a number of overlay topologies. This ap-
proach involves a full development life-cycle and hence, higher-level declarative

7 http://www.jxta.org
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languages and models have been produced to simplify the complex task of con-
structing new overlays. Macedon [21] is a state machine compiler for overlay
protocol design. Event-driven state machines (EDSMs) have been used over
decades for protocol design and specification. Macedon extends this approach
to an overlay specific, C++ based language from which it generates source code
for overlay maintenance and routing. In the P2/Overlog project [16], applica-
tions use a declarative logic language to specify their requirements of the overlay
network. This is combined with a data flow approach, as opposed to a finite state
machine approach, to maintain the overlay at runtime. Like Macedon, this sim-
plifies the development process of overlays in specific cases. iOverlay [14] provides
a message switch abstraction for the design of the local routing algorithm. The
neighbors of a node are instantiated as local I/O queues between which the user
provided implementation switches messages. This simplifies the design of overlay
algorithms by hiding the lower networking levels.

Analysis. While suited to the construction and maintenance of overlay net-
works, the above are limited with respect to the high-level declaration and de-
ployment of the atop application services. That is, it is not possible to specify
the data-flow behaviour in terms of handling the problem of end-to-end inter-
operability. In comparison, OverStar supports the declarative specification of
middleware services atop overlay networks in order to optimise the flow of mes-
sage data and the necessary dynamic translations between protocols .

7 Concluding Remarks and Future Work

In this paper we have highlighted the importance of integration of end systems
leveraging heterogeneous middleware; and here, end-to-end interoperability is
a key requirement. Indeed, it can no longer be assumed that a single protocol
is used across network and organizational boundaries in order to implement
network services such as service discovery, multicast, group communication and
publish subscribe. Instead, heterogeneous protocols will be employed. In the
face of this heterogeneity, new approaches to build global middleware services
are required that ensure that all services and devices are connected in an efficient
and optimised way in order to effectively coordinate.

For this purpose, we have introduced novel models that specify overlay be-
haviour to support the development of middleware services that achieve end-to-
end interoperability in complex systems-of-systems and an associated software
framework (OverStar). The key contributions of which are the use of timed
automata for: i) the specification of the topology and maintenance of the over-
lay network which interconnects heterogeneous protocols across large-scale net-
works; ii) the specification of the overlay’s application service, in this case the
logic and flow tailored to the particular middleware service type. We evaluated
this framework using both resource discovery and event communication services.
Our initial results from the simple case-studies have shown that the OverStar
solution increases interoperability within the network and reduces the resource
consumption in terms of messages sent compared to bridging solutions.
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There are a number of interesting avenues of future work. The first is to
extend the models in order to capture improved strategies for performing opti-
mised, scaleable, end-to-end interoperability of resource discovery, group com-
munication, and publish subscribe services. In this regard, overlay networks are
well suited to self-organizing behaviour, hence there is the potential for the over-
lay to monitor the environments and protocols in order to better determine how
to optimise the deployed middleware service. The use of interpreted models pro-
vides a mechanism to easily adapt the behaviour of the service by dynamically
changing the model at runtime. Complimentary to this, the use of machine un-
derstandable models, i.e., timed automata, makes machine learning of solutions
an interesting way forward; for example, machine learning protocols have been
used to learn the automata for individual network protocols [12], and there is
the possibility of learning more complex overlay network specifications.
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