
HAL Id: hal-00991335
https://hal.science/hal-00991335v1

Submitted on 15 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

EZ: Towards Efficient Asynchronous Protocol Gateway
Construction

Yérom-David Bromberg, Floréal Morandat, Laurent Réveillère, Gaël Thomas

To cite this version:
Yérom-David Bromberg, Floréal Morandat, Laurent Réveillère, Gaël Thomas. EZ: Towards Effi-
cient Asynchronous Protocol Gateway Construction. 13th International Conference on Distributed
Applications and Interoperable Systems (DAIS), Jun 2013, Florence, Italy. pp.169-174, �10.1007/978-
3-642-38541-4_13�. �hal-00991335�

https://hal.science/hal-00991335v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

EZ: towards efficient asynchronous protocol

gateway construction

Yérom-David Bromberg1, Floréal Morandat1, Laurent Réveillère1, and Gaël
Thomas2

1 LaBRI University of Bordeaux, France
2 LIP6-INRIA University of Pierre et Marie Curie

Abstract. Over the past decade, we have witnessed the emergence of a
bulk set of devices, from very different application domains interconnected
via Internet to form what is commonly named Internet of Things (IoT).
The IoT vision is grounded in the belief that all devices are able to interact
seamlessly with each other anytime, anyplace, anywhere. However, devices
communicate via a multitude of incompatible protocols, and consequently
drastically slow down the IoT vision adoption. Gateways, that are able
to translate one protocol to another, appear to be a key enabler of the
future of IoT but present a cumbersome challenge for many developers.
In this paper, we are providing a framework called EZ that enables to
generate gateways for either C or Java platform without requiring from
developers any substantial understanding of either relevant protocols or
low-level network programming.

1 Introduction

In the new era of the Internet Of Thing (IoT), interoperability is a key chal-
lenge. Over the last years, a promising solution that gained success to address
interoperability issues is to use gateways that translate back and forth messages
among heterogeneous protocols [1–5]. The design of such gateways [1–5] does
not take as a first class priority the specific needs of the IoT context. First,
gateways must scale in the large, i.e., they must efficiently manage both bulk sets
of messages and simultaneous message translation processes. Second, gateways
need to be as pervasive as possible: they must run on highly heterogeneous
software environments. Current gateways only target low-level C code and are
not adequate in the IoT context where Java is also a mainstream language.

In this paper, we propose EZ a new gateway compiler for the z2z language [2]
that relies on the event paradigm. We choose the z2z language as it has already
proven to be adequate to describe gateways. To solve performance issues EZ

defines a workflow of handlers, which communicate with events. Further, to take
into account software heterogeneity, EZ is able to compile the z2z language to
both C and Java code, ready to be plugged into respective runtimes.

The remainder of this paper is structured as follows. Section 2 introduces our
approach to generate from high level specifications our next generation gateways
for either C or Java environment. Section 2.2 is focused on the internal design of

our next generation gateways. In particular, it presents our new asynchronous
runtime system for building scalable gateways in either C or Java along with
EZ. Section 3 presents the performance evaluation of our asynchronous gateways.
Finally, Section 4 reviews related research works and Section 5 concludes the
paper with a discussion of future research directions.

2 EZ approach

In a way similar to z2z, zebu [2,6], our approach is based on generative program-
ming. More specifically, EZ reuses the z2z domain specific language to specify
generated gateways (Figure 1, ❶). However, EZ introduces a new compiler en-
abling the generation of asynchronous code in either C or Java to be linked into
an adequate and efficient event-based oriented runtime system (Figure 1, ❷, ❸)
that fulfills the requirements of IoT. In other terms, developers only have to
replace the z2z compiler by the EZ one to generate event-based gateways. These
gateways use exclusively non-blocking system calls to perform asynchronous I/O
network operations.

z2z

spec

EZ compiler

.C

#include<stdio.h>

void main(int argc,
char** argv){

}

.java

Developer

C EZ-gateway over libasync

Java EZ-gateway over JVM

C asynchronous runtime

Message

Extraction

(Protocol A)
Message

Processing

Message

Generation

(Protocol B)

Message

Extraction

(Protocol B)

Message

Generation

(Protocol A)

Java asynchronous runtime

Message

Extraction

(Protocol A)
Message

Processing

Message

Generation

(Protocol B)

Message

Extraction

(Protocol B)

Message

Generation

(Protocol A)

1 2

3

Fig. 1. EZ approach to generate asynchronous multi-platform gateway.

2.1 Z2z domain specific language

Our EZ approach has been design especially to be fully compliant with the z2z
language that has been proved to be adequate to describe gateways in high level
manner by hiding to developers low-level network and system codes.

Z2z language. The z2z language provides facilities for defining three types of
modules: the Protocol Specification (PS) modules used to describe the network
protocol behaviors, the Message Specification (MS) modules used to describe
message structures, and the Message Translation (MT) modules used to describe

the message translation logic. More precisely, a PS module provides information
about various properties of the interaction with the network, such as the transport
protocol used, whether requests are sent in unicast or multicast, and whether
responses are received synchronously or asynchronously. It also specifies how to
dispatch a received request to a specific handler for processing. A MS module
defines the useful information to be extracted from incoming messages, i.e.,
message views. It also defines the structure of new messages to be created, i.e.,
message templates. A template contains a message view that describes “holes”
to be filled by the translation logic when creating a new message. Finally, a
MT module is specified using a dedicated C-like syntax and consists of a set of
handlers, one for each kind of relevant incoming requests, as indicated by the
protocol specification. It provides domain-specific operators for manipulating
and constructing messages, for sending requests and returning responses, and for
managing session state across requests.

Z2z front-end compiler. Our new EZ compiler reuses the z2z front-end that deals
with the scanning and the parsing of the language and performs consistency
checks across the PS, MS and MT modules. For instance, the front-end checks
that the MT module defines a handler for each kind of message that should
be handled by the gateway and that each handler has an appropriate return
type according to the PS module. It guaranties that all fields and values have
been appropriately initialized and used across the different modules. Further,
the front-end compiler performs as well a data-flow analysis of the message
translation code to detect erroneous specifications and ensure the generation of
safe code.

2.2 Asynchronous EZ runtime

One key contribution of the EZ approach is to be able to generate in a transparent
manner either C or Java gateways. Specifically, both C and Java based gateways
use runtimes implemented with an event-based programming paradigm built on
top of the libasync [7] event-driven library for the C version and the new NIO.2
API provided by the JDK7 for the Java version.

Message

Generation

(Protocol A)

Message

Processing

Message

Extraction

(Protocol B)

Message

Extraction

(Protocol A)

Message

Generation

(Protocol B)

Event bus

Main thread loop

1 2 3 21

Fig. 2. Event-based processing chain

Gateways are decomposed into key functional building blocks, such as message
extraction, processing, and generation. Each of these building blocks registers

their interests into network I/O events (See Figure 2,❶,❷,❸). Further, each
building block may additionally interact with each other via the use of events
that they can generate by themselves. For instance, events for either notifying the
arrival of a recognized and fully parsed message, for indicating that no data can
be read anymore, or for notifying network I/O error, are asynchronously dispatch
to the building blocks that have declared their interest in these events. Incoming
messages that traverse the event-based processing chain are then decomposed
into multiple events that are serially dispatched one at a time by a main thread
loop. As a consequence, the pipeline, contrary to our previous work [1–5], is not
anymore shared among a pool of threads avoiding so mutex lock contentions and
increasing inherently performances.

Event-based message processing. As opposed to z2z for instance, EZ treats each
operation performed by the translation logic, that leads to an I/O access, as an
asynchronous call and thus is compiled by the EZ compiler so as to produce a
continuation. When the operation is completed, an event is generated and caught
by the runtime system that resumes the associated continuation to resume the
processing. This strategy results in the creation of many continuations for a
handler.

Event-based message extraction. In contrast to the thread model that accumulate
data to reconstruct the corresponding message before processing it, EZ processes
messages even if there are not yet fully parsed. When no more data can be read,
because of message fragmentation for example, the parser is paused, the current
state is saved and a callback is attached to the availability of new data. When
the associated event occurs, the callback is invoked and execution continues in
the previously saved state. A soon as a fragment or a message field is recognized
by the parser an event is immediately triggered. This event is then stored in the
message view to be processed by the other building blocks such as the message
processing one. With EZ, message parsing drastically limits memory consumption
because a message does not need to be entirely saved in memory before starting
its parsing. Instead, in C based version of the runtime, two contiguous memory
pages are used as a circular buffer, accounting for about 8KB of memory, whereas
in the Java version of the runtime two buffers are used and flipped when the first
one is exhausted. This only works thanks to the scattered read facility of Java
network API. In the either C or Java runtimes, dynamic memory allocation is
only required for filling values of the message view when fields are recognized.

Event based error management. When an event occurs, the associated callback
function is executed by the runtime system. However, events corresponding to
I/O operations may never occur if the underlying operation fails to complete,
leading thus to memory leaks difficult to address. To overcome this issue, C
and Java EZ runtimes attach timeout on each event. If the corresponding timer
expires before the occurrence of the event, the runtime frees associated resources
to prevent memory leaks.

3 Evaluation

Number of simultaneous clients

T
im

e
in

 m
s

5 7 9 11 13 15 17 19 21 23 25 27 29

0
20

00
40

00
60

00
80

00
10

00
0

● ● ● ● ● ● ● ● ● ● ● ● ●

●EZ−C EZ−Java z2z direct

Fig. 3. Time to send 1000 message of 10kB
by N clients.

To assess the scalability of z2z and
EZ gateways, we have implemented
the SMTP/HTTP and HTTP/STMP
gateways described previously. Our
performance experiments are carried
out on a Dell Intel R© Xeon R© server
powered by 4 processors of 8 hyper-
threaded cores clocked at 2.2 GHz.
We use the multi-threaded SMTP test
client and server distributed with Post-
fix to stress the generated gateways. C
code is compiled using gcc 4.7.2 and
Java code executes on HotSpot server
1.7. For our experiments, a given number of simultaneous clients (up to 30) send
1000 messages of 10KB in a closed loop1 to a SMTP server through a tunneling
application. Figure 3 shows the response time for each gateway, as well as the
native protocol communication costs (direct). Since gateways are I/O inten-
sive, a certain amount of clients are required to get satisfying throughput. The
event-based gateways (EZ-C and EZ-Java) clearly outperform the thread-based
gateways (z2z).

4 Related Work

There have been a bulk set of different approaches to protocol interoperability,
for instance to name a few, ReMMoC [8], RUNES [9], MUSDAC [10], BASE [11],
INDISS [1], Starlink [3] and Enterprise Service Buses [12]. Compared to EZ, these
approaches have three major weak points: neither they address the difficulty of
gateway development nor they tackle the scalability issue, and nor they target
both C and Java environment. The closest approach to ours is z2z [2], which
constitutes the first generative approach for building gateways. However, z2z
generated gateways exhibit poor scalability in the face of the increasing load
generated by clients and the increasing size of messages. Furthermore, z2z only
targets C environment and is therefore less pervasive than a Java based version.

Scalability has been a major concern in the field of Web servers as these
systems must efficiently operate on thousands of files and connections. However,
Web servers are CPU intensive oriented while gateways are I/O intensive. Thus
experiences on Web server architecture should not be granted for gateways.

1 A client sends a new message only when it receives an acknowledgement from the
server for the reception of the previous message.

5 Conclusion and Future Work

Network protocol gateways are a key enabler of the future of IoT but present a
cumbersome challenge for developers. In particular there are three main challenges
that need to be overcome to build gateways: (i) providing an easy way to build
gateways by hiding to developers intricacies of low-level network and system
code, (ii) tackling the scalability issue,(iii) beeing pervasive, i.e. multi-platform
compliant (i.e. C or Java based). As a future direction, multicore architectures are
today a reality in all kinds of computing systems, ranging from powerful servers
to desktop environments and embedded systems. However current systems and
applications are unable to fully exploit these new architectures. Taking advantage
of multicore hardware is thus today one of the most important scientific challenges
in the systems domain. We are investigating the extension of EZ to support
multicore architectures. Another potential research direction is to raise on our
ongoing research work on hardware accelerated parsers to speed up drastically
messages processing in embedded platforms [13].

References

1. Bromberg, Y.D., Issarny, V.: INDISS: Interoperable discovery system for networked
services. In: Middleware. (2005) 164–183

2. Bromberg, Y.D., Réveillère, L., Lawall, J.L., Muller, G.: Automatic generation of
network protocol gateways. In: Middleware. (2009) 21–41

3. Bromberg, Y.D., Grace, P., Reveillere, L.: Starlink: Runtime interoperability
between heterogeneous middleware protocols. In: ICDCS. (2011) 446–455

4. Issarny, V., Bennaceur, A., Bromberg, Y.D.: Middleware-layer connector synthesis:
Beyond state of the art in middleware interoperability. In: SFM. (2011) 217–255

5. Rodrigues, P., Bromberg, Y.D., Réveillère, L., Negru, D.: Zigzag: A middleware for
service discovery in future internet. In: DAIS. (2012) 208–221

6. Burgy, L., Reveillere, L., Lawall, J., Muller, G.: Zebu: A language-based approach for
network protocol message processing. IEEE Transactions on Software Engineering
37(4) (2011) 575–591

7. Mazières, D.: A toolkit for user-level file systems. In: USENIX-ATC. (2001) 261–274
8. Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and interac-

tion in heterogeneous mobile environments. SIGMOBILE Mob. Comput. Commun.
Rev. 9(1) (2005) 2–14

9. Costa, P., Coulson, G., Mascolo, C., Mottola, L., Picco, G.P., Zachariadis, S.:
Reconfigurable component-based middleware for networked embedded systems. In
International Journal of Wireless Information Networks 14(2) (June 2007) 149–162

10. Raverdy, P.G., Issarny, V., Chibout, R., de La Chapelle, A.: A multi-protocol
approach to service discovery and access in pervasive environments. In: MobiQuitus.
(2006) 1–9

11. Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: Base: A micro-broker-based
middleware for pervasive computing. In: PERCOM. (2003) 443

12. Chappell, D.: Enterprise Service Bus. O’Reilly (2004)
13. Mercadal, J., Réveillère, L., Bromberg, Y.D., Gal, B.L., Bissyandé, T.F., Solanki, J.:

Zebra: Building efficient network message parsers for embedded systems. Embedded
Systems Letters 4(3) (2012) 69–72

