E Koorambas 
email: elias.koor@gmail.com
  
Random numbers generated by orbifold fixed points

Keywords: number(s):11.25.Mj, 03.65.Ta Compactification and four-dimensional models, Random number generators High Energy and Particle Physics

Taking an orbifold with one compact extra dimension as a starting point, we show that random numbers are generated by recurrence modulo 2 over the Galois field of orbifold fixed points.

Our suggestion may open a window for extra dimensions predicted by experiments.

Introduction

Orbifolds, originally introduced as "V -manifolds" by Satake in the 1950s [START_REF] Chirτ Satake | On a generalization of the notion of manifold[END_REF], and named by Thurston in the 1970s [START_REF] Thurston | The Geometry and Topology of Three-Manifolds[END_REF], [START_REF] Thurston | Three-dimensional manifolds, Chelonian groups and hyperbolic geometry[END_REF], are useful generalizations of manifolds: locally they look like the quotient of Euclidean space by the action of a finite group. The concept of orbifolds has gained increasing popularity recently due to its application in many questions of theoretical physics such as [4], [5], [6], [7].

''In various fields of interest, situations often arise in which the mathematical model utilizes a random sequence of numbers, events, or both. In many of these applications it is often advantageous to generate, by some deterministic means, a sequence which appears to be random, even if, upon closer and longer observation, certain regularities become evident.

Monte Carlo experiments, for instance, have benefited greatly from computer programs for generating random numbers [START_REF]Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two Mathematics of Computation[END_REF].''

This paper describes random numbers generated by recurrence modulo2 over the Galois field of orbifold fixed points. Random numbers are generated by modulo 2 linear recurrence techniques, long used to generate binary codes for communications [8], [7], [START_REF] Golomb | Linear recurring sequences[END_REF], [START_REF] Baumert | Coding theory and its Applications to Communications Systems[END_REF], [START_REF] Titisworth | Modulation by Random and Pseudo-Random Sequences[END_REF]. The idea of using finite fields in quantum theory has been discussed by several authors (see e.g., References [START_REF] Coish | Elementary particles in a finite world geometry[END_REF][START_REF] Shapiro | Weak interactions in the theory of elementary particles with finite space[END_REF][START_REF] Nambu | Field Theory of Galois Fields[END_REF][START_REF] Vourdas | Quantum systems with finite Hilbert space[END_REF][START_REF] Vourdas | Symplectic transformations and quantum tomography in finite quantum systems[END_REF][START_REF] Felix | Lev Introduction to a Quantum Theory over A Galois Field Symmetry[END_REF]).

Random numbers generated by the orbifold fixed points

In the 1 2 / S  orbifold, we compactify one extra dimension on a circle 1 S , and we identify points under a 2  group action generated by : g a a 

(1)

The emerging fundamental domain of the 1 2 / S  orbifold is a 3 space bounded by the orbifold"s fixed points, i.e. the two points that are invariant under the orbifold action:

1 2 0, a a L    ( 2 
)
where L is the extra dimension radius. The orbifold 1 2 / S  , depicted in Figure1, is topologically the unit interval [0, 1] with the two fixed points corresponding to the endpoints of the interval. [START_REF] Thurston | Three-dimensional manifolds, Chelonian groups and hyperbolic geometry[END_REF] Furthermore, let 1 S be the manifold with the action of the finite group 2  . The Eulercharacteristic of the quotient space 11 2 / OS  can be computed by the Lefshetz formula [START_REF] Bryan | Fulman Orbiflod Euler-characteristic and Number of Commuting m-tuple in symmetric group Anneal of Combinatories[END_REF]:

2 1 2 1 ( ) ( ) || g g O a      (3) 
where 11 2 / OS  the quotient space and g a the fixed point set of g . Here, we define an Euler-characteristic for the finite group 2

Z

acting on the assembly of 

O O O a a a Z      , (4) 
where ( 11

1 1 2 / O S Z  … 11 2 / nn O S Z 
) the sequence of the quotient space and 12 ( , , ..., )

gg g n a a a
the fixed point n -tuple [1] .

Random numbers can be generated by recurrence modulo two over the Galois field of orbifold fixed points elements. This is achieved in the following steps.

First, starting with the Galois Field of two orbifold fixed points elements GF ( 2) is the smallest finite field. The two orbifold fixed points are 0, 1 being the addition and multiplication identities respectively. The field"s addition operation is given by the Table .1

Table.1 Addition + 0 1 0 0 1 1 1 0
and the multiplication operation by the following Table .2 [1] Note: By following [START_REF]Rotiman Introduction to modern set theory[END_REF] the orbifold fixed point n-tuple is defined as follows: a) Any n-tupe 0 1 ( ,...., )

n xx  orbifold fixed point is a function f with {0,...., 1} dom f n   and () i x f i  b) The Cartesian product of the orbifold 0 1 1 .... n O O O  
is the set of all n-tuples f such that () As a consequence of modular arithmetic which forms the basis of finite fields, these two orbifold fixed points elements and these operations constitute a system with many of important properties of familiar number system: additional and multiplication are commutative and associative, multiplication is distributive over addition, addition has an identity element (0) and an inverse element for every element. Multiplication has an identity element (1) and an inverse for every element but (0).

i f i O  ,for 0 1 in    .
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The addition and multiplication operation in GF (2) are also bitwise operators XOR and AND respectively.

Many familiar and powerful tools of mathematics work in GF (2) just as well as integers and real numbers. Since modern computers also represent data in binary code, GF ( 2) is an important tool for studying algorithms on these machines that can be defined by series of bitwise operators.

Next, by following [START_REF]Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two Mathematics of Computation[END_REF], let {} k aa  be the sequence of 0 and Ls orbifold fixed points generated by the linear recurrence relation 

k k k n k n a c a c a c a        (5) 
For any given set of integers ( 1, 2, ..., )

i c i n 
, each having the orbifold fixed points values 0 or 1, we require ( , , ...., )

k k k n a a a   
. Each such ntuple of fixed orbifold points, thus, has a unique successor governed by the recursion formula (5). The period p of a is clearly the same as the recurrence period of an n-tuple of fixed orbifold points. The period p of a linear recurring sequence cannot be greater than 21 n  , for the n-tuple (0, 0, ...., 0 ) is always followed by (0, 0, ...., 0 ) . For .

n f x c x c x x      (6) 
be primitive over GF (2) [8], [START_REF] Golomb | Linear recurring sequences[END_REF].

As the function () fx is a primitive nth degree polynomial over GF (2), the sequence {} k aa  is a maximallength linearly recurring sequence modulo 2. Such sequences have been studied, and used as a code in communications and theoretical information studies [START_REF] Baumert | Coding theory and its Applications to Communications Systems[END_REF],

High Energy and Particle Physics May 15, 2014 E.Koorambas: Random numbers generated by orbifold fixed points [5] [11]. The following properties of sequence ( 5) are of immediate interest to the scope of this paper [8], [START_REF] Golomb | Linear recurring sequences[END_REF].

[1] 1 1 1 2 2 p n k k p a      (7)
[2]For every distinct set of (0, 1) integers 12 , , ...., n s s s not all zero, there exists a unique integer : (0 1) u u p    such that for every k, 1 1 2 2 , , ...., (m od 2)

k k n k n k u s a s a s a a     
. This is often referred to as the "cycle-and add" property [START_REF]Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two Mathematics of Computation[END_REF].

[3] For every non-zero (0, 1), a binary n-vector 12 ( , , ...., ) n e e e occurs exactly once per n consecutive binary digits of a .

Note that properties [START_REF] Chirτ Satake | On a generalization of the notion of manifold[END_REF] and [START_REF] Thurston | The Geometry and Topology of Three-Manifolds[END_REF] flow directly from the fact that each possible non-zero binary n-tuple 

We see that if k a takes on the fixed orbifold point values 0 and 1, then k a  takes the values +1 and -1, respectively. The properties [START_REF] Chirτ Satake | On a generalization of the notion of manifold[END_REF], [START_REF] Thurston | The Geometry and Topology of Three-Manifolds[END_REF] and [START_REF] Thurston | Three-dimensional manifolds, Chelonian groups and hyperbolic geometry[END_REF], then, take the form: Let () gxbe the 1  -valued Boolean function of (0, 1) fixed orbifold point variables 12 , , ...., n x x

[1"] 1 1 p k k a     (9) 
x . For any 12 ( , , ...., )

n s s s s  , 0 i s  or 1, fixed orbifold points define 1 1 2 2 .... /2 ( , ) 2 ( 1) nn s x s x s x n sx        (10) 
This 2 n function of x is the Redemacher-Walsh function [5] from an orthonormal basis for extra-dimensional 2 n -space. From this follows that () gx has components () Gsgiven by /2 ( ) 2 ( ) ( , )

n x G s g x x s     (11) 
That is, () Gs is the projection of 

            (14) 
By property [2"], we now have the fourth property basic on [START_REF]Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two Mathematics of Computation[END_REF]; [4] () 0 (0) ( )

k k u s s G G s a      (15)
where the mapping () us of all binary n-vectors onto  

0,1,..... 1 p  is one-to-one. Let   k aa 
be the (0, 1) orbifold fixed points sequence generated by an nth degree maximallength R linear recurrence modulo 2, as described previously. We define a set of numbers of the form 

where r is a randomly chosen integer, 0 That is, k y is the binary expansion of a number whose representation is R consecutive digits. Successive k y are spaced q digits apart [START_REF]Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two Mathematics of Computation[END_REF]. For reasons essential to the analysis, we restrict qn  and   , 2 1 1 n q  . We can then express k y by

1 2 R t k qk t R t ya      (17)
Such numbers always lie in the interval (0 1) k y  . Because of property [START_REF] Thurston | The Geometry and Topology of Three-Manifolds[END_REF], the randomness of the choice of r is equivalent to the statement that the initial value 0 y is a random choice [START_REF]Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two Mathematics of Computation[END_REF]. It is convenient to work with a transformed set of numbers k w rather than k y . This transformed set of numbers is defined as follows: Let [7] We see that k y and k w are related by

1 2 2 R k k w y     (19) 
there is thus a translation between k w and k y [START_REF]Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two Mathematics of Computation[END_REF].

Conclusion

We conclude that, random numbers can be generated by recurrence modulo 2 over the Galois field of orbifold fixed points GF (2). Since our 3-dimensional space bounded by orbifold"s fixed points, these random numbers can be used to generate binary codes that may correspond to the extra dimensions signature [START_REF] Adelberger | Tests of the Gravitational Inverse-Square Law Ann[END_REF], [START_REF] Hoyle | Sub-millimeter Tests of the Gravitational Inverse-square Law[END_REF], [START_REF] Kapner | Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale[END_REF]. This proposal may open a window for ruled out extra dimensions by experiments.
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