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Abstract

This paper deals with the problem of contact atititerface of steel-concrete composite
beams. The F.E. modePbntmixté&, able to study continuous composite beams atseake,
was based on a finite element of composite bearshwtonsiders only 4 degrees of freedom
per node: both longitudinal displacements of tlaé sind the steel beam and common vertical
displacement and rotation of the whole compositssisection. This assumption did not
allow any uplift at the interface between both mats. A “new finite element is proposed in
this work with 6 degrees of freedom per node inaime to include a contact algorithm in the
model. The originality of the method is to use swgmented Lagrangian Method to solve the
contact problem at the steel-concrete interfacéudicg a new concept so-called:”Flying
Node Concept”. This concept solves the problemcohtinuous contact at the interface that
could sometimes occur along the beam especiallyhén case of distributed loads. The
influence on the loading capacity of the beam dsd the influence on some design variables
are highlighted.

Key words. Flying Node Concept, Augmented Lagrangian Meth@antact, F.E.M.,
Composite beams.

1. INTRODUCTION

In the past few years, several finite element nod@ve been proposed for the analysis of
composite steel-concrete beams; most of them aedban one-dimensional beam elements
with embedded interlayer slipPtntmixté [1] is one of the most innovative programs alde t
study composite continuous beams at real scalengakio numerical integrations - the first
on the height of the cross-section and the sectomyahe longitudinal axis of the beam -.
Nevertheless, the first version of this model assdithat there is no uplift between the
concrete slab and the steel beam. The whole coteposbss-section had same vertical
displacement and same rotation. This assumptiovepts the prediction of possible uplift
which could occur in particular loading cases fontnuous beams and especially on both
sides of the intermediate supports.

Huanget al. [2, 3], proposed a non-linear layered finite elat@rocedure for predicting the
structural response of reinforced concrete slaligested to fire. The proposed procedure
based on Mindlin/Reissner (thick plate) theory ulds both geometric and material non-
linearities. In this study a total Lagrangian agmio was adopted in which displacements are
referred to the original configuration and smathsts were assumed. In the case of beams
subjected to fire, contact problem needs a spattahtion.



Amilton et al. [4], presented a family of zero-thickness integfatements developed for the
simulation of composite beams with horizontal defable connection, or interlayer slip. The
proposed elements include formulations to be engalayith Euler-Bernoulli as well as with
Timoshenko beam theories, combined to displaceia&sdd beam elements sharing the same
degrees of freedom. The elements that can be eeplwy the simulation of steel-concrete
composite beams, was computed more recently bytBati al. [5] combining with the plate
formulation of Huang. The proposed model used tdyaracomposite floor that includes
interface elements appeared able to give the velatongitudinal and transversal
displacements between the slab and the steel beamelhas the relative vertical
displacements in the transverse plane.

Recently, Qureshet al. [6], studied the effect of shear connector spaeing layout on the
shear connector capacity in composite beams. Agsexp 3D model (Plan dimensions: 1500
mm %1500 mm), is loaded as a horizontal push T8t model developed with ABAQUS,
includes profiled sheeting and the interfaces corexk by the contact algorithm are: (top
profile sheeting — bottom of the concrete slab) gt of the headed studs — surrounding
concrete). Running time and convergence difficidgd to consider 3D models inappropriate
to study a continuous bridge beam at real scale.

Due to the non-linear nature of contact mecharsosh problems in the past were often
approximated by special assumptions within the gtesprocess. Due to the rapid
improvement of modern computer technology, onetoday apply the tools of computational
mechanics to simulate applications which include@cimechanisms numerically [7].

The model proposed herein takes into account ipeasd lengthening-shortening nonlinear
behaviours of the connection. Whatever the zonerevhige contact occurs after uplift, the
relative vertical displacements along the longmadliiaxis of the beam is obtained without
interpenetration between materials.

Different methods exist to solve the contact probl8]. For example, in penalty method,
increasing the penalty factor to infinity would detp the exact solution, but in computational
application it is not possible to use very highadgnfactors because of ill-conditioning of the
system. The Lagrange multiplier method fulfill tbentact constraints exactly by introducing
additional variables; for this reason the Lagrangdtiplier generate an increment in the
system-matrix size. A combination of the penaltytmd and the Lagrangian multiplier
method leads to the so-called Augmented Lagrangfietnod ALM). With this method, the
penalty factor does not need to reach a high veduget the convergence of the iterative
process. This method will be used in the proposedeito solve the contact problem at the
interface between the concrete slab and the steeh Iseibjected to the inequality constraint
corresponding to the non-penetrability between Inoditerials.

For special loading cases, it could happen thattimeact at the interface is not only “node-to
node” and concerns a part of the finite elemengtlenThe “Flying Node ConcepERNC)” is a
new method proposed in this work to make the appatgadjustments to the final solution of
the problem.

Practically, the connection design leads to a nurobstuds which are distributed uniformly
along the continuous beam or by portions of it (fEode recommendations for studs’ design).
This uniform distribution is generally validated models that use a node-based connection.
In order to take into account the actual continuoargtact by using a node-based connection,
the FNC algorithm is proposed. The main objective is t@mpmse a longitudinal stud
distribution that could be as realistic as posdilyi¢aking into account the continuous contact.



The first mesh of the beam (same as studs’ locati@gins uniform and at the end of
calculation, a new stud location is proposed. B #®tuds’ distribution does not change
significantly from the beginning until the end oélculation; this means that tHeNC
algorithm was not activated significantly and so, eamtinuous contact zones have been
occurred.

2. THE “NODE-TO-NODE” CONTACT
2.1 Uplift tests

Before solving the contact problem at some compasgibss-sections along the beam during
the loading history, other cross-sections whereublét could occur or the contact without
penetration between both materials is satisfied Ishbe located. With the indefs) for the
slab andg) for the steel beam, the following notation is used:

d®: Distance between the interface and the centrtidecslab cross-section,
d9: Distance between the interface and the centrilideosteel beam cross-section,
- Stud slip at the node

(uﬁs’ v Hj(s)): Horizontal displacement, vertical displacement aoightion of the slab
cross-section at the nogle

(uﬁg’ v 671.(9)): Horizontal displacement, vertical displacemend astation of the steel
beam cross-section at the ngde

The following tests must be activated dependinghersign of the variabler; = v{*) —v(?):

e Case 1the contact without penetration is satisfiechathodg - the stud is only subjected
to a slip (Fig. 1).

e Case 2the uplift of the concrete slab with the bendaighe steel bear» the contact does
not exist at the node j and the bolt is subjeateoioth slip and lengthening (Fig. 2).

e Case 3the uplift of the concrete slab greater (in absolalue) then the uplift of the steel
beam—-> the contact does not exist at the npdend the stud is subjected to both slip and
lengthening (Fig. 3).
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Figure 1 — Contact at the noge Slip only.



U +dg
. 0 7 3
(1) (1)
—aa | A Q (s)
5 NG VY
Q Slab """""""""""""""" ] — Vo VAR
d®
k
Q R . | w d(9)
""" R S R >
—&l j Yy vﬁg)
d 1 ul®) +d(0g®

Figure 2 — Contact at the noge Slip and (slab uplift + steel beam lowering).
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Figure 3 — Contact at the noge Slip and (slab uplift + steel beam uplift).

2.2 “Node-to-node” contact solution
2.2.1 Equilibrium equations

Augmented Lagrangian Method is used to solve thedé-to-nodeé contact problem. For
elastic deformation in solid mechanics, the kinecadlyy admitted displacements that satisfy a
stable equilibrium state are those whom minimize ttital potential energy — this is the
kinematic approach —. In our problem, the totakptal energy is:

V=lAKa-4F (1)
2

with: A=¥{d,} , K=%[K,] and F=%{ f}
where:{d,} is the finite element displacement vecti,| is its stiffness matrix anfif.} is
its load vector.
The minimization of Eq. (1) corresponds to:
KA-F =0 2)
The problem of partial derivative equations is agpld by a linear system of equations and the
minimal value otV in classical finite element approach of unconstdiproblem is:

MinV = —%At F 3)

2.2.2 Application of ALM to total potential energy



The constrained problem to solve at each naden be written as follows:
MinV
sujected tar; = |

(4)

The problem can be solved as a series of unconstraninimization problems. It is pointed
out that the contact depends on the behaviour ofdheectors. Even if the shear failure of a
connector (for example) corresponds@anmslip, all along the beam its maximum slip
remains aroun@ mm (always in elastic range) in serviceability linstiate. Similar remark
could be done for the tension of a connector. Tée af Minimum Potential Energy in this
case is then justified.

The penalty method approach gives:

— p 2
[T =V +_z a’
2 : (5)

After each iteration : updating

At iteration (), penalty method solves this problem, then atiten (+1) it re-solves the
problem using a largest value of the penalty faptosing the old solution as the initial guess.

The ALM combines the penalty method with the Lagrangiantipligrs method. TheéALM
uses the following constrained objective:

_ Ps 2
=V+=Xa.->Aa.
2 Z ] Z ] ] (6)
After each iteration :updating p and replacing by A, - @,

The advantage of th&LM is that unlike the penalty method, it is not nseeg thatp have a
very large value in order to solve the original stoained problem. Instead, because of the
presence of the Lagrangian multipligyp can stay much smaller.

According to Eq. (6), the modifications that hawgebe done to the assembled stiffness matrix
and to the corresponding loading vector, at eaclepare:

(s) (s)
u; Nj
*+p] *—pJ _1 VES) TJ(S)'l'plO'J
3(5) M ()
J
INON N )
J ]
* =P, T+, +1 VJ(g) TJ(g)—pJaj
g9 | M (@
J ! J
T
-1 +17 —F /‘l —-a,
J

(7)



It is easy to verify that the equilibrium is sasf in Eq. (7). The stiffness matrix remains
symmetric and there is one line and one columndudéateeach node being in contact.

In practice, it is easier to add the supplemenggryations corresponding to the nodes being in
contact, at the end of the initial system as showkq. (8). The system of equations to be
solved has finally a “variable” dimension betweaxrf) and 2nx2n) maximum depending
on the number of nodes being in contagt, @2, 03, ...). In Eq. (8), each value of the
Lagrangian multiplierly; corresponds to a nodg being in contact. A penalty factpg will

be adjusted for each nodg its initial value is equal td and it increases during iterations
(multiplying by 10 at each iteration). During the material nonlingarative process, the
number of nodes being in contact could change.
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2.3 “Continuous” contact solution

During the loading history, it is possible to has@me zones subjected to a contact that
concerns a part of the element-length and not dalyodes. This could occur in case of
distributed load more than in case of concentrédeds. In order to take into account this
actual phenomenon, one proposes an approach sd @lying Node ConceptFNC)”. This
method should be included in the iterative prodbsé solves the contact problem at the
interface previously described.

The FNC adapts the longitudinal mesh of the beam durirgitirative process in order to
take into account thecbntinuous contact to a iode-to-nodéconnection. If the initial mesh

of the beam appears unchanged at the end-loadstmyyiit means that all the contacts have
been ‘hode-to-nodé otherwise, the final mesh will inform about tzenes that have been
subjected to a cbntinuou$ contact. It is worth to mention out that these e®rcould
sometimes appear and sometime disappear dependihg toading history of the beam. The
final solution corresponding to the end-loading @aodhe real final mesh depends on all
intermediate calculation steps. If tR&IC leads to major changes to the mesh and thus to the
connection in certain zones of the continuous betma, connection should be correctly
distributed in these zones during the steel beamegation.

One considers two consecutive finite elementd)[ i] and | —j] with respective element
lengthsL,, andL,, atiterationl (Fig. 4.a). One supposes that the test conceensdtiel of



the finite elementi[— j] and using appropriate shape functidds; 4 one calculates the
vertical displacements of both the slab and thel fieam as follows:

{V‘S)(X)= N (¥ + N (7 + N XY+ N e
VO = NIV + NI+ NP+ ()

The difference between both vertical displacememtsyiously calleda, is easily obtained
with following equation:

a,(x)= N ([ 7 =¥ [+ N ([ 67 -9 [+ (X -V ]+ N kg 4P 0.
or: a (x) =N, (¥ ay+ N (946 + N( 34 y+ N( ka6 (10.)

This function depends only on the longitudirdbcation of the node The objective now is
to calculate, if it exists, the distangegiven bya, (X) =0.

9)

2 3 2 2 3
win 8,()={ -3+ 25| =22 ] ) -2
I‘2,| I_2,| L2 | I‘2,| L2 | I_2,|
[ X X - _—
and N, (x)=| —— +LT , Eq. (10.b) leads to following equation:
2,1 2,1

a;

+x48 +Av (11)
L?é,l 2L§I L;,I 3|‘2I
Finally, the equatior, (>~<) =0 can be easily solved using trigopnometric methacei@ample.

Only real solutions are considered and if themase than one solution, the maximum one is
restrained while it remains less than actual fielement length. The beam mesh changes at
considered node for next iteratidre 1) as follows:

Ly =Ly, +X and Ly =L, =X (12)

(x)= 2)(3[(4\4 - v +(A6.’ +46 )] _3%[(41\/ -4y) +( 246 + 46

Only shape functions on the right side of the nodee employed because tRBIC tests all
the nodes from the left side to the right sidehef heamX axis sense); the first node being the
left support which never moves like the other nddeated at each support of the continuous
beam. If the test begins from the second elemethieatodea, appropriate length changes will
concern both elements-f{) —i] and | —j] and so on...

Figure 4 shows how thieNC runs as an adaptive mesh depending on the valilre afistance
X obtained from Eq. (11). In the case whéres too close to the finite element length, from
Eq. (12), one observes thkj,,, could be very low and then the convergence oftdrative

process could be affected. Two methods could bptado

- Method?l Limiting X to an arbitrary value (less than half of the énflement length
for example). This method insures to keep congtamtnumber of finite element, it
remains easy to compute and it gives enough aecteatilts.

- Method2 If L,,,, is too low, actual finite element disappears drertumber of finite
elements changes. In Fig. 4, both finite elemet$)[ ()] and [(), ()] merge and
become only one finite element-[), (j)]. This method is more difficult to compute



because it needs a renumbering of the mesh durengtdrative process. In addition,
the solution could be affected by the final meshsity that is not suitable.
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Figure 4. Adaptive mesh=NC.

In Figure 5, theFNC algorithm is shown with its links to th&LM in order to solve the
contact problem. It is worth to mention out thag¢ thet of values obtained for the penalty
factorp is verified by reconnectingNC to ALM (at same contact iteration). Generally, these
values are still available and the verificationdisectly satisfied; this is due probably to:

a,(X) =0 (Eq.10.b).

Loading iteration loop 4 » <

'

Contact iteration loop k»

'

ALM — test contact at each node
® Contact at a node is solved penalty factor obtainetp = p)
® Contact at a node is not solved y®fpenalty factor increasg®;+1 = 10X p))

'

Contact on the whole beam is solved:
Each node has its own penalty facto|

v

re-mesh the continous be;

A

A 4

re-locate the connectors

'

Continuous contact is included
Load increment: J = J+

FNC—»{

Verification if values o

alwavs availabl

Figure 5 — Contact algorithrALM + FNC).

3. THE COMPOSITE BEAM F.E.
3.1 Nodal variables

The user-friendly softwarePontmixté has been upgraded to a “new” version based cana n
finite element formulation for the composite beatament. Six degrees of freedom are
necessary (instead of four in the preceding vejsiontake into account the contact/uplift at



the interface. The concrete slab as-well-as thel fteam has 3 degrees of freedom at each
node () and {) (Fig. 6). Nodal displacements vector of the cosigdfinite element is:
{d) ={ui(S) v 9® u©® @ 9@ (O O g (o) () e(jg)}t (13)

Using corresponding classical shape functidhsthe displacement at each fiber of the
composite cross-section is then:

{d(x,y}=[ N(x,y) d} (14)
(s) (9)
[N(X'yjz[Nci) NCJZS) Né) N(j()g)} (15)

In EQ. (15),N includes (3x3) matrices.

The stud slip and lengthening (or shortening) alewated considering the translation and
the rotation of each material. Concerning the leeging, the stud will be supposed fixed to
the concrete:

Stud-slip y, =[u® +d©e®]|-[u(® + 4] (16)
Stud-lengtheninga, =v{> - v(?’ (17)
Vi(S) VJ(S) 9(5)
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Figure 6 — Definition of the nodal variables.
3.2 Kinematic relationships

The kinematic variables are respectively the lamiial strain and the curvature of each
material cross-section:

(s) (9)
g :—ag and &9 :_63
X X
aZV(S) aZV(g) (18)
==—— and k¥ =—pr
0x 0X
Kinematic relationship and corresponding straineeare:
{e} =[B]{d} with & =( @ @ «) (19)

The kinematic matrix can be written explicitly adldws:



_ , .
-B, By By 0 0 0 B —Iz?,y(aB——) y 0 0 0
2
0o -B -B 0 0 0 0 B —( @——) 0 o0 0
L
[8] = |0
0O 0 0 -B By By 0 O 0 B —ZBy(gB——) y
L
2
o 0 o0 O0 -B -B 0 0 0 0 B —( 33——)
L L/
. 1 6 X 4 X
with: B =—, B,=—-12—, B, =—-6—
L L L L L

3.3 Stiffness matrix of the composite finite elenten

Paying attention to the kinematic matrix, one obsgrthat it depends on the axxdlocation

of the concerned cross-section and on the depfreach material-fibre at same cross-section.
The composite beam cross-section is then divideml annumber of horizontal fibresn(for
each steel beam flange, fibres for the steel beam web apdfibres for the slab). The
algorithm undertakes firstly a Gauss-Legendre nigakintegration towards the element-
depth with 2 Gauss-points for each fibré {dtegration along y axis — Fig. 7). By summing
different stiffnesses alongaxis, the result (that corresponds to the stifn&fsthe composite
cross-section) is affected to one of the Gausstpamorder to undertake th&®antegration
alongx axis (Fig. 7) that uses also 2 Gauss points.
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Figure 7 — Two numerical integrations (one alongheaxisy andx).

In order to simplify the presentation, the firsimerical integration will not appear explicitly.
One begins by the element stiffness matrix of theonnected [{, (j)] composite beam that
can be easily obtained by:

[KeJ:I[B]t[ D[ § dx 21)

with the behaviour matrikD] in accordance witkq.18
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E: Secant Young's modulug; cross-section area afidquadratic inertia of the cross-section.

A secant algorithm is used to solve nonlinear aqoatdue to nonlinear behaviour of
materials.

In order to include a connector at the nogeof the finite element [}, ()] for example, the
principle of virtual work is applied to set the b&d relationship of the stud behaviour under a
shear loading as-well-as under a tension.

e The internal work of an infinitesimal slip of tkeud at the nodg)(and corresponding nodal
variables are:

w=Qdy =Q(1 d¥ -1 -d){o¢} (23)
t
{5djss} :<5uj(s) 5@(5) di(g) 5@(9} (24)
Q; is the stud shear force ad® andd® are defined in Fig. 5.

Corresponding nodal forces al{é::jss}t:<Nj(5) M N(©@ Mj(g> (25)

e The internal work of an infinitesimal lengthenirgf the stud at the nodq)(and
corresponding nodal variables are:

W =Roa =R(1 -} (26)
{odi} = (o> o) (27)
Corresponding nodal forces are: {Ff‘}t =(T{* 1) (28)
e External works related to the nodal forces givekd. (22) and Eqg. (25) are:
si={od (7Y @9
={od} {7 (30)
e The principle of virtual works leads to:
WP = OWY (31)
W = W, (32)

The stud slip behaviour is defined as the relahgnbetween the force at the stud head and
the slip calculated between its base and the fpaiet application. This stud slip has been
defined previously in Eq. (16) afii®is the stud slip-resistance:

QP =RY, (33)



From Eg. (31), the stud stiffness matvE)KSS] related to its slip-resistance can be easily
obtained:

=qar =r{ag} (1 -1 -0 (1 @ -1 dof

t (34)
={oa} { 7
[F*}=R™(1 d® -1 -d@)'(1 d* -1 -d9) d¥ (35)
The stud stiffness matrix related to its slip-resise is finally:

1 des) -1 —d9e ]

) ) des) (d(s>)2 -4 —gs)g@
[K*]=R 1 —g® 1 e (36)

4@ —geg@ g (d(g))2

Concerning the stud lengthening behaviour, sameepitre then the one developed for the
stud slip-resistance is carried out. The stud tensesistance is calleB™ and the stud
lengthening has been previously defined in Eq.:(17)

F’ft = RStal. (37)
oy =Roa = R{sq} (1 -¥(1-¥ d
c={od}{ A
{F=r(1 -9'(1 -3 ¢} (39)
The stud stiffness matrix related to its lengtheniegjstance is finally:
s _pst| L 71
[K*]=R {_1 J (40)

After replacing by the symbol (*) the terms of tt@fness matrix related to an unconnected
composite beam element given in Eqg. (21) conceraimgnconnected composite beam, the
stiffness matrix of the finite element)}((j)] representing a connected composite beam is:

(K] =[ K, J+[ K= ]+[K*] (41)

Respecting the nodal variables organization giverkq. (13), this matrix can be written
explicitly as follows:

(38)



* * * O 0 O * * * 0 O O ]
* * 0 0 0 * * * 0 0 0
* 0O 0 O * * * 0 0 0
% 0 0 0 x * *
X 0 0 0 x x x
i x 0 0 0 * x x
[Ke] :J *4R® * * +d °R” -R* 0 4R |
O * +R" * 0 -R” 0
Symmetry *+( éls’)2 R - ¢ R 0o -4 &R
*+R * * +d “R”
* 4R *
_ oy
(42)

4. NUMERICAL SIMULATION

In order to proof that the use of contact algoritisnmelevent to obtain accurate results, first
numerical inestigation concerns the comparisiowbeh experimental test results and the
ones obtained by theofd” model with 4 degrees of freedom per node on caedhand the
“new model with 6 degrees of freedom per node on seét@md.

Second numerical simulation will concerns an ayion for theFNC considering the same
twin-beam subjected to a distributed load.

4.1.Comparison with an experimental test

The steel-concrete composite twin-beam consideked. 8.a) has been subjected to an

experimental test at Structural Laboratory of INBAnnes. The beam is loaded in accordance
with the following stages:

- Stage 1 The self-weight is taken into accoudt7 kN/mfor sagging zones anti26 kN/m
for hogging ones).

- Stage 2 Concentrated loads 1Pand “P,” are applied at the mid-spans of the beam ungil th
magnitude o650 kNfor each.

- Stage 3The load “B” remains constant and the load,*Rontinue to increase from50 kN
to 850 kN

In Figure 8.b is plotted the loading history cop@sding to the stages 2 and 3, the stage 1 is
not represented because it represents a distridbogetland it is different on hogging and
sagging zones of the continuous beam.

It is assumed that the hogging zone concd®f of the span length on each side of the
intermediate support. For this zone, the thickrdésbe bottom flange is equal i mmand

for other cross-sections (in sagging zones) adlynmis required. The top flange thickness is
equal to the bottom one. Related to mechanical \beta of each material (Fig. 9), the
mechanical properties are summarized in Table 1.
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Table 1 — Numerical values of mechanical charasties.
Material Parameters
m= 36000 MPafy = 40 MPaf.m= 48 MPaf«m= 2 MPa,&,= 0.0022,
Concrete ©
& =0.004
Steel beam | E® = 190000 MPaf,/? = 475 MPaf,® = 620 MPa® = 10,,® = 28
Rebar | E® = 200000 MPaf,® = 443 MPaf,® = 565 MPay,® = 1, 16 = 32
Stud Qu=80000 NC; =0.7,C; = 0.8, Jnax= 6 mm
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Figure 9 — Material mechanical behaviour.

As mentioned previously, with the assumption ofegrees of freedom per node, the contact
at the interface could not be taken into accounveltas possible uplifts along the beam.
With this assumption, the comparison between nwakand experimental results could not
be totally satisfactory. In Fig. 10 obtained froi6], the comparison of the beam deflexion
between numerical and experimental results with ghevious 6ld” model “Pontmixté
shows a significant difference especially over ¢festic range. This result was predictable
because the penetration as-well-as the uplift atntlaterial interface begin to be significant
when the load increases. In this figure, one olesethat the deflexion under "Phas been
underestimated with this numerical model since” “€bntinues to increase ov&50 kN

Unfortunately the measurements under the loadl HRve not been done, but the conclusion
should be similar to “P.
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Figure 10 — Comparison of deflexionseid” model [16].

It is clear that the effect of the interface “beloav’ becomes significant for high load level
and especially under concentrated loads or atnm@diate supports. For this reason, following
numerical simulations, using the proposettW model (6 degrees of freedom per node),
should help to understand how the contact algoritboid give more accurate results.

For the same twin-beam, are compared in Figuresofrie design variables obtained with the
“new finite element model. The left curves correspdaadhe model without activating the
ALM algorithm and the right ones with activating #heM algorithm. The left curves are
plotted in the aim to identify the critical crosseions along the beam where tAeéM
algorithm should be activated. In Figure 11.a amgufe 11.b are plotted respectively the
comparison of vertical displacements between thle ahd the steel beam and the comparison
of the rotations for the last-step loading. As @sapredicted, the left curves related to the
cross-sections located under the concentrated klams a penetration of the concrete slab in
the steel beam. This penetration is theoretical rastdrealistic and it will be corrected by
activating theALM algorithm (right curves). It is pointed out thaetminimum gap at the
interface is fixed tal0° mmfor these numerical simulations. This value leamseasonable
time computation for convergence of the contactitee process. In Figure 11.c, are plotted
the stud slip curves and the lengthening-shortemings. The penetration and the uplift
observed in the left curves disappear in the ragives; maximum uplift is observed at each
side of the intermediate support. The slip curvesobe more smoothed with th&l M
algorithm especially under the concentrated loads.

One observes that the use of teM algorithmmakes changes in the magnitude of the design
variables and therefore should have a specialtatten

In Figure 12 are plotted similar curves as in Fegi® but for the riew finite element model
activating theALM algorithm. One observes the incidence on the béafexion under the
concentrated load “P, the correlation between numerical and experirakergsults is more
satisfactory in the post-elastic range.
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Figure 11.a — Comparison of the vertical displacg&menew’ model.
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Figure 11.b — Comparison of the cross-sectionimiat “new model.
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Figure 11.c — Comparison of the stud slip and thd Engthening-shortening -Aéw model.
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Figure 12 — Comparison of deflexions — wihM algorithm.

4.2.Influence of the FNC

In order to show howPontmixté solves the problem of thtecontinuou$ contact, precedent
twin-beam is now subjected to a distributed IgadThe calculation is carried out until

reaching elastic hogging bendild_ at intermediate support. Initial mesh of the tweam

contains 10 finite elements per beam; this mesltaited Mesh-0 The results of two
calculations are compared:

- Calculationt Contact solved withLM
- Calculation2 Contact solved withLM + FNC

In the aim to avoid additional differences betwdlea results due to different numbers of
finite elementsMethod1 presented in 2.3 will be used in this exampletidhimesh will
change several times during the loading historthefbeam (Fig. 13). Only the final mesh so
calledMesh-nwill be highlighted because it corresponds tol#st step loadingMlesh-Oand
Mesh-nare presented in Figure 14. One observes thadifference between the finite
element lengths mostly concerns both sides of kermediate support and also the zones
close to the end-supports. These zones corresporitiet ones that are subjected to a
“continuou$ contact and solved by thENC. It is pointed out that the symmetry of the
problem is retained until convergence.



t ; + + + + + + + + t Loading step : 4

Loading step : 3

Loading step : 2

I Loading step : 1

i Initial regular mesh
Loading step : 0

Figure 13 — Successive beam meshes.
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Figure 14 — Comparison between initial and finasime

For CalculationlandCalculation2same stopping criterion is used: reaching eldsigging
bending at intermediate support. F2alculation], elastic hogging bending is reached ffor

280 kN/mand forCalculation2p = 264 kN/m For these both loading levels, the stresses in
the composite cross-sections at mid-span and exhietiate support are given in Figure 15.a
and Figure 15.b.

The hogging bending is obtained when the top bdangé reaches its yield strei;,éa(= 475
MPa). The stress difference observed on hogging bgndetween both calculations is due
only to the precision and it appears neglectablesamde corresponding hogging bending is
M¢ =M =-871 kN/n. Nevertheless, in sagging zone, the stress diféeres greater than
the one on hogging and should not be neglectecCdlculation2 the sagging bending is
greater than irCalculationZ this explains why the elastic hogging bendingeisched faster
(Table 2).

“oMPa < > 147MP3

—31/MPa ‘m y 475MPa
5%
216MPa 7\ — 306MPa

Sagaging Hogaging

Mg

Figure 15.a — Stress distribution in sagging anghihmy cross-sections
Calculation1(ALM) —p = 280 kN/m
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Figure 15.b — Stress distribution in sagging anglgtg cross-sections
Calculation2(ALM + FNC) —p = 264 kN/m

One compares now the stress distribution of boltutations for same load leveh & 264

kN/m). Figure 15.b and Figure 16 show thatQalculationlthe stresses are underestimated
and the moments (Table 2) are around 3% less mirsagone and 6% less on hogging zone.
This difference is mostly due to the&dhtinuou$ contact that increases the stud slip in
Calculation2and not inCalculationl In Figure 17 are plotted the stud-slip curvesthase
both calculations, maximum differences are obseméle zones that are mostly subjected to
a “continuous contact (at each side of intermediate support r@eal the end-supports — Fig.

14).
- oMPa < » 13¢MP3
- 29/MPa ——Lﬁ—ﬁ— y 449MPa
Mg & :
204MPa ,\ - 28/MPa
Sagaging Hogging
Figure 16 — Stress distribution in sagging and hogygross-sections
Calculation1(ALM) —p = 264 KN/m
Table 2 — Comparison of bending moments.
Calculation Sagging bending Hogging bending
Calculation1(ALM) . _ M=
0 = 280 KN/M M =570 kN/mr Mz =M =-871kN/n
Calculation2(ALM + FNC) v _ M- —
0 = 264 KN/M M =548 kN/mr Ms=M_ =-871kN/n
Calculation1(ALM)

p = 264 KN/m

M =534 kN/rr

\M;\ =|-821 kN/I‘11<‘ l\/gl‘




3,50

300 4| —eCalculation1(ALM)

2,50 | —@-Calculation2 (ALM+FNC)

2,00
1,50

1,00 -
0,50 -|
0,00

-0,50 -
-1,00 4
-1,50 4
-2,00 A

T T
4740 6320 7p00 9480 11060 12640 20 00

Stud-slip (mm)

Longitudinal X-position (mm)

-2,50 -
-3,00 -

-3,50

Figure 17 — Influence of tHeNC on the stud-slip $ = 264 kN/m

5. CONCLUSION

The finite element model (with 6 degrees of freedmen node) for steel-concrete composite
beams presented in this research has been devetopeder to solve the problem of contact
at the steel-concrete interface using the Augmehgggangian Method. The first numerical

example is provided to assess the accuracy andtm@sssof the proposed formulation by
comparison to experimental test results to conthiereliability of the model. A new concept

(FNC) has been proposed to take into account the cant;haontact that sometimes occurs
for special loading cases. The proposed methodisy &0 compute and to include in the
algorithm of the Augmented Lagrangian Method. Theeosd numerical simulation is

proposed to show the influence of fAC on some design variables.

Main conclusions for the present work could be samred as follows:

e The numerical simulation shows that th@d” model of the program Pontmixté
(with 4 degrees of freedom per node) could not tateaccount the real behaviour at
the steel-concrete interface. Consequently, thepamison with experimental results
was not satisfactory especially for high load lesatl under concentrated loads as-
well-as at intermediate support. The separatiowden the slab and the steel beam
degrees of freedom appears necessary,née ‘model with 6 degrees of freedom per
node is then proposed.

e Contact algorithm based @&LM is well-adapted for composite structures and ajgpea
easy to compute and the convergence is relatiadiy The practical organization of
the system given in EqQ. (8) permits to avoid theenmghumbering of the system. The
comparison between “without” or “withALM algorithm highlights the “critical”
zones in the continuous beam where the unreapstietration of the concrete slab in
the steel beam occurs and then is corrected bygbefALM algorithm. It is pointed
out that the uplift obtained when the calculatiorsioot take into account tiAd-M
algorithm is also unrealistic and is correctedhy tise oALM algorithm.

e The proposed model solves the node-to-node cotiitacts enough accurate in case of
concentrated loads. Nevertheless, for distributeatld, the contact becomes more



continuous and then the model should includeRINE. The example presented in this
work shows that the loading capacity of the bearalccde lower than the one
predicted by a calculation witho&#NC (about 6% in this example). This percentage
even if it remains relatively low, should be taketo account during the design of the
beam because it could be not neglectable for olbading cases (for example
asymmetrical distributed load on the beam). Newetfs, more numerical simulations
and experimental tests should be carried out tolada®n practical purposes.

e Solving contact problem at the steel-concrete fater has an influence on the design
variables especially on the stud slip. It couldriieresting to study its influence on the
degree of connection in order to optimize the cotioe design.
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