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Abstract

We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular em-

phasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the

atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the

significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and

evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.
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1. Introduction

In our solar system, four planets stand out for their sheer mass and size. Jupiter, Saturn, Uranus, and Neptune

indeed qualify as “giant planets” because they are larger than any terrestrial planet and much more massive than all

other objects in the solar system, except the Sun, put together (Figure 1). Because of their gravitational might, they

have played a key role in the formation of the solar system, tossing around many objects in the system, preventing

the formation of a planet in what is now the asteroid belt, and directly leading to the formation of the Kuiper Belt and

Oort Cloud. They also retain some of the gas (in particular hydrogen and helium) that was present when the Sun and

its planets formed and are thus key witnesses in the search for our origins.

Figure 1. An inventory of hydrogen and helium and all other elements (“heavy elements”) in the Solar System excluding the Sun (the Sun has a

total mass of 332, 960 M⊕, including about 5000 M⊕ in heavy elements, 1 M⊕ being the mass of the Earth). The precise amount of heavy elements

in Jupiter (10 − 40 M⊕) and Saturn (20 − 30 M⊕) is uncertain (see § 4.1).

Because of a massive envelope mostly made of hydrogen helium, these planets are fluid, with no solid or liquid

surface. In terms of structure and composition, they lie in between stars (gaseous and mostly made of hydrogen and

helium) and smaller terrestrial planets (solid and liquid and mostly made of heavy elements), with Jupiter and Saturn

being closer to the former and Uranus and Neptune to the latter (see fig. 1).

The discovery of many extrasolar planets of masses from a few thousands down to a few Earth masses and the

possibility to characterize them by the measurement of their mass and size prompts a more general definition of giant

planets. For this review, we will adopt the following: “a giant planet is a planet mostly made of hydrogen and helium

and too light to ignite deuterium fusion.” This is purposely relatively vague – depending on whether the inventory is

performed by mass or by atom or molecule, Uranus and Neptune may be included or left out of the category. Note that

Uranus and Neptune are indeed relatively different in structure than Jupiter and Saturn and are generally referred to as

“ice giants”, due to an interior structure that is consistent with the presence of mostly “ices” (a mixture formed from

the condensation in the protoplanetary disk of low- refractivity materials such as H2O, CH4 and NH3, and brought to

the high-pressure conditions of planetary interiors – see below).

Globally, this definition encompasses a class of objects that have similar properties (in particular, a low viscosity

and a non-negligible compressibility) and inherited part of their material directly from the same reservoir as their

parent star. These objects can thus be largely studied with the same tools, and their formation is linked to that of their

parent star and the fate of the circumstellar gaseous disk present around the young star.

We will hereafter present some of the key data concerning giant planets in the solar system and outside. We will

then present the theoretical basis for the study of their structure and evolution. On this basis, the constraints on their

composition will be discussed and analyzed in terms of consequences for planet formation models.
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2. Observations and global properties

2.1. Visual appearances

Figure 2. Photomontage from images of Voyager 2 (Jupiter, Uranus, and Neptune) and Cassini (Saturn). The planets are shown to scale, with their

respective axial inclinations.

In spite of its smallness, the sample of four giant planets in our solar system exhibits a large variety of appearances,

shapes, colors, variability, etc. As shown in Figure 2, all four giant planets are flattened by rotation and exhibit a more

or less clear zonal wind pattern, but the color of their visible atmosphere is very different (this is due mostly to

minor species in the high planetary atmosphere), their clouds have different compositions (ammonia for Jupiter and

Saturn, methane for Uranus and Neptune) and depths, and their global meteorology (number of vortexes, long-lived

anticyclones such as Jupiter’s Great Red Spot, presence of planetary-scale storms, convective activity) is different

from one planet to the next.

We can presently only wonder about what is in store for us with extrasolar giant planets since we cannot image

and resolve them. But with orbital distances from as close as 0.01 AU to 100 AU and more, a variety of masses, sizes,

and parent stars, we should expect to be surprised!

2.2. Gravity fields

The mass of our giant planets can be obtained with great accuracy from the observation of the motions of their

natural satellites: 317.834, 95.161, 14.538 and 17.148 times the mass of the Earth (1 M⊕ = 5.97369 × 1027 g) for

Jupiter, Saturn, Uranus and Neptune, respectively. More precise measurements of their gravity field can be obtained

through the analysis of the trajectories of a spacecraft during flyby, especially when they come close to the planet and

preferably in a near-polar orbit. The gravitational field thus measured departs from a purely spherical function due to

the planets’ rapid rotation. The measurements are generally expressed by expanding the components of the gravity

field in Legendre polynomials Pi of progressively higher orders:

Vext(r, θ) = −
GM

r















1 −

∞
∑

i=1

(

Req

r

)i

JiPi(cos θ)















, (1)

where Vext(r, θ) is the gravity field evaluated outside the planet at a distance r and colatitude θ, Req is the equatorial

radius, and Ji are the gravitational moments. Because the giant planets are very close to hydrostatic equilibrium the

coefficients of even order are the only ones that are not negligible. We will see how these gravitational moments, as

listed in table 1, help us constrain the planets’ interior density profiles.

Table 1 also indicates the radii obtained with the greatest accuracy by radio-occultation experiments. An important

consequence obtained is the fact that these planets have low densities, from 0.688 g cm−3 for Saturn to 1.64 g cm−3 for

Neptune, to be compared with densities of 3.9 to 5.5 g cm−3 for the terrestrial planets in the solar system. Considering

the compression that strongly increases with mass, one is led naturally to the conclusion that these planets contain

an important proportion of light materials including hydrogen and helium. It also implies that Uranus and Neptune

4



T. Guillot & D. Gautier / Treatise on Geophysics, 2nd Edition 00 (2014) 1–41 5

Table 1. Characteristics of the gravity fields and radii

Jupiter Saturn Uranus Neptune

M × 10−26 [kg] 18.986112(15)a 5.68463036(16)b 0.8683205(34)c 1.0243547861(15)d

Req × 10−7 [m] 7.1492(4)e 6.0268(4)f 2.5559(4)g 2.4766(15)g

Rpol × 10−7 [m] 6.6854(10)e 5.4364(10)f 2.4973(20)g 2.4342(30)g

R × 10−7 [m] 6.9894(6)h 5.8210(6)i 2.5364(10)i 2.4625(20)i

ρ × 10−3 [kg m−3] 1.3275(4) 0.6880(2) 1.2704(15) 1.6377(40)

Rref × 10−7 [m] 7.1398a 6.0330b 2.5559 2.5225d

J2 × 102 1.4736(1)a 1.629071(27)b 0.35160(32)c 0.34084(45) d

J4 × 104 −5.87(5)a −9.358(28)b −0.354(41)c −0.334(29)d

J6 × 104 0.31(20)a 0.861(96)b . . . . . .

Pω × 10−4 [s] 3.57297(41)j 3.83624(47) ?j,k 6.206(4)l 5.800(20)m

q 0.08923(5) 0.15491(10) 0.02951(5) 0.02609(23)

C/MR2
eq 0.258 0.220 0.230 0.241

The numbers in parentheses are the uncertainty in the last digits of the given value. The value of the

gravitational constant used to calculate the masses of Jupiter and Saturn is G = 6.67259 × 10−11 N m2 kg−2

(Cohen and Taylor, 1987). The values of the radii and density correspond to the one bar pressure level

(1 bar= 105 Pa). Gravitational moments are normalized at the reference radius Rref. Only values published

in refereed journals are considered.
a Campbell and Synnott (1985)
b Jacobson et al. (2006)
c Anderson et al. (1987)
d Jacobson (2009)
e Lindal et al. (1981); Helled and Guillot (2013) derive slightly different values.
f Lindal et al. (1985)
g Lindal (1992a); Helled et al. (2010) derive slightly different values.
h From 4th order figure theory
i (2Req + Rpol)/3 (Clairaut’s approximation)
j Davies et al. (1986)
k This measurement from the Voyager era is now in question and values down to 37955 s have been proposed

(see § 2.3)
l Warwick et al. (1986). See however Helled et al. (2010).
m Warwick et al. (1989). See however Helled et al. (2010).

which are less massive must contain a relatively larger proportion of heavy elements than Jupiter and Saturn. This

may lead to a sub-classification between the hydrogen-helium giant planets Jupiter and Saturn, and the “ice giants” or

“sub giants” Uranus and Neptune.

The planets are also relatively fast rotators, with periods of ∼ 10 hours for Jupiter and Saturn, and ∼ 17 hours

for Uranus and Neptune. The fact that this fast rotation visibly affects the figure (shape) of these planets is seen by

the significant difference between the polar and equatorial radii. It also leads to gravitational moments that differ

significantly from a null value. However, it is important to stress that there is no unique rotation frame for these

fluid planets: atmospheric zonal winds imply that different latitudes rotate at different velocities (see § 2.4), and the

magnetic field provides another rotation period. Because the latter is tied to the deeper levels of the planet, it is

believed to be more relevant when interpreting the gravitational moments. The rotation periods listed in Table 1 hence

correspond to that of the magnetic field. The case of Saturn is complex and to be discussed in the next section.

2.3. Magnetic fields

As the Earth, the Sun and Mercury, our four giant planets possess their own magnetic fields. These magnetic fields

B may be expressed in form of a development in spherical harmonics of the scalar potential W, such that B = −∇W:

W = a

∞
∑

n=1

(

a

r

)n+1 n
∑

m=0

{

gm
n cos(mφ) + hm

n sin(mφ)
}

Pm
n (cos θ). (2)
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r is the distance to the planet’s center, a its radius, θ the colatitude, φ the longitude and Pm
n the associated Legendre

polynomials. The coefficients gm
n and hm

n are the magnetic moments that characterize the field. They are expressed in

magnetic field units.

One can show that the first coefficients of relation (2) (for n = 0 and n = 1) correspond to the potential of a

magnetic dipole such that W =M · r/r3 of moment:

M = a3
{

(

g0
1

)2
+

(

g1
1

)2
+

(

h1
1

)2
}1/2

. (3)

As shown by the Voyager 2 measurements, Jupiter and Saturn have magnetic fields of essentially dipolar nature, of

axis close to the rotation axis (g0
1

is much larger than the other harmonics); Uranus and Neptune have magnetic fields

that are intrinsically much more complex. To provide an idea of the intensity of the magnetic fields, the value of the

dipolar moments for the four planets are 4.27 Gauss R3
J
, 0.21 Gauss R3

S
, 0.23 Gauss R3

U
, 0.133 Gauss R3

N
, respectively

(Connerney et al., 1982; Acuna et al., 1983; Ness et al., 1986, 1989, see also chapter by Connerney).

A true surprise from Voyager that has been confirmed by the Cassini-Huygens mission is that Saturn’s magnetic

field is axisymetric to the limit of the measurement accuracy: Saturn’s magnetic and rotation axes are perfectly aligned

(e.g., Russell and Dougherty, 2010). Voyager measurements indicated nevertheless a clear signature in the radio signal

at 10h39m22.4s believed to be a consequence of the rotation of the magnetic field. New measurements of a slower spin

period of 10h47m6s by Cassini (Gurnett et al., 2005; Giampieri et al., 2006) have shown that the kilometric radiation

was not directly tied to the period of the magnetic field but resulted from a complex interplay between the spin of

the planetary magnetic field and the solar wind (e.g. Cecconi and Zarka, 2005). New periods have been proposed:

10h32m35s based on a minimization of the zonal differential rotation (Anderson and Schubert, 2007) and 10h33m13s

based on the latitudinal distribution of potential vorticity (Read et al., 2009). The problem still stands out.

These magnetic fields must be generated in the conductive parts of the interiors, i.e., in metallic hydrogen at radii

which are about 80% and 60% of the planetary radius for Jupiter and Saturn respectively (see sections 3.2, 4.1 and e.g.,

Stanley and Glatzmaier (2010)). Recent models that consistently join the slowly convecting metallic interior with the

non-conducting outer molecular envelope dominated by zonal flows result in a mainly dipolar magnetic field similar

to the observations and further show that Jupiter’s stronger magnetic field and Saturn’s broader equatorial jet (see next

section) can be interpreted as resulting from the deeper location of the transition region in Saturn (Heimpel and Gómez

Pérez, 2011). These explanations remain largely qualitative rather than quantitative and are further complicated by a

necessary overforcing of the simulations (see Showman et al., 2011, and next section). The question of why Saturn’s

magnetic field is much more axisymmetric than Jupiter’s remains. Dipolar fields are obtained relatively naturally

through the forcing of zonal jets extending down to the conducting region (Guervilly et al., 2012) but why Jupiter

differs is unexplained. A possibility is that both fields are non-axisymmetric at deep levels but that Saturn’s is filtered

by a more extended helium sedimentation region (Stevenson, 1983), but in practice, a realistic solution yielding

Saturn’s measured field has not been found (Stanley and Glatzmaier, 2010, and references therein).

Within Uranus and Neptune, the magnetic field is believed to be generated within a layer in which water is in an

ionic phase, below about 80% of their total radius (see Redmer et al., 2011, and section 4.2 hereafter). Their complex,

multipolar magnetic fields has been thought to be a consequence of a strong stratification and of a dynamo generated

in a thin shell (Stanley and Bloxham, 2004). However, this point of view is now challenged by new simulations that

generate both planets’ magnetic fields and zonal wind structures through a thick shell dynamo (Soderlund et al., 2013).

Further work however must involve realistic variations of the interior density and conductivity.

2.4. Atmospheric dynamics: winds and weather

The atmospheres of all giant planets are evidently complex and turbulent in nature. This can, for example, be

seen from the mean zonal winds (inferred from cloud tracking), which are very rapidly varying functions of the

latitude (see e.g., Ingersoll et al., 1995): while some of the regions rotate at the same speed as the interior magnetic

field (in the so-called “system III” reference frame), most of the atmospheres do not. Jupiter and Saturn both have

superrotating equators (+100 and +400 m s−1 in system III, for Jupiter and Saturn, respectively), Uranus and Neptune

have subrotating equators, and superrotating high latitude jets. Neptune, which receives the smallest amount of energy

from the Sun has the largest peak-to-peak latitudinal variations in wind velocity: about 600 m s−1. It can be noted that,

contrary to the case of the strongly irradiated planets to be discussed later, the winds of Jupiter, Saturn, Uranus and

6
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Neptune, are significantly slower than the planet itself under its own spin (from 12.2 km s−1 for Jupiter to 2.6 km s−1

for Neptune, at the equator).

It is not yet clear whether the observed winds are driven from the bottom or from the top. The first possibility is

that surface winds are related to motions in the planets’ interiors, which, according to the Taylor-Proudman theorem,

should be confined by the rapid rotation to the plane perpendicular to the axis of rotation (Busse, 1978). This is now

backed by simulations in the anelastic limit (i.e., accounting for compressibility) which show that the outcome strongly

depends on the density stratification in the interior. A small density contrast (as expected in Jupiter and Saturn) leads

to equatorial superrotation whereas for a large one (as expected for Uranus and Neptune), the equatorial jet tends to

subrotate (Glatzmaier et al., 2009; Gastine et al., 2013). However, the application of these numerical results to the

true conditions prevailing in the giant planets requires an extrapolation over at least 6 orders of magnitude (Showman

et al., 2011). The second possibility (not exclusive) is that winds are driven from the top by the injection of turbulence

at the cloud level, which can also lead to the correct winds for the four giant planets (Lian and Showman, 2010; Liu

and Schneider, 2011).

Information on the gravity field of the planets can be used to constrain the interior rotation profile, as in the

case of Uranus and Neptune whose observed jets appear to only extend to the outer 0.15% and 0.20% of the mass

(corresponding to pressures of 2 and 4 kbar) for Uranus and Neptune, respectively (Kaspi et al., 2013). The method is

promising with the perspective of the Juno measurements at Jupiter (Liu et al., 2013).

Our giant planets also exhibit planetary-scale to small-scale storms with very different temporal variations. For

example, Jupiter’s great red spot is a 12000 km-diameter anticyclone found to have lasted for at least 300 years (e.g.

Simon-Miller et al., 2002). Storms developing over the entire planet have even been observed on Saturn (Sanchez-

Lavega et al., 1996). Uranus and Neptune’s storm system has been shown to have been significantly altered since the

Voyager era (Rages et al., 2002; Hammel et al., 2005; de Pater et al., 2011). On Jupiter, small-scale storms related to

cumulus-type cloud systems have been observed (e.g., Gierasch et al., 2000; Hueso et al., 2002), and lightning strikes

have been monitored by Galileo (e.g., Little et al., 1999). These represent only a small arbitrary subset of the work

concerning the complex atmospheres of these planets.

It is tempting to extrapolate these observations to the objects outside our Solar System as well. However, two

features governing the weather in these are not necessarily present for exoplanets (e.g., Guillot, 1999b): their rapid

rotation, and the presence of abundant condensing species and in particular one, water, whose latent heat can fuel

powerful storms. But as we will see briefly in section 2.10 theoretical models for exoplanets are now complemented

by measurements of wind speeds and of global temperature contrasts, offering the perspective of a global approach to

planetary weather and atmospheric dynamics.

2.5. Energy balance and atmospheric temperature profiles

Jupiter, Saturn and Neptune are observed to emit more energy than they receive from the Sun (see Table 2). The

case of Uranus is less clear. Its intrinsic heat flux Fint is significantly smaller than that of the other giant planets.

With this caveat, all four giant planets can be said to emit more energy than they receive from the Sun. Hubbard

(1968) showed in the case of Jupiter that this can be explained simply by the progressive contraction and cooling of

the planets.

Table 2. Energy balance as determined from Voyager IRIS dataa .

Jupiter Saturn Uranus Neptune

Absorbed power [1016 J s−1] 50.14±2.48 11.14±0.50 0.526±0.037 0.204±0.019

Emitted power [1016 J s−1] 83.65±0.84 19.77±0.32 0.560±0.011 0.534±0.029

Intrinsic power [1016 J s−1] 33.5±2.6 8.63±0.60 0.034 +0.038

−0.034
0.330±0.035

Intrinsic flux [J s−1 m−2] 5.44±0.43 2.01±0.14 0.042 +0.047

−0.042
0.433±0.046

Bond albedo [] 0.343±0.032 0.342±0.030 0.300±0.049 0.290±0.067

Effective temperature [K] 124.4±0.3 95.0±0.4 59.1±0.3 59.3±0.8

1-bar temperatureb [K] 165±5 135±5 76±2 72±2
a After Pearl and Conrath (1991)
b Lindal (1992b)

7
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A crucial consequence of the presence of an intrinsic heat flux is that it requires high internal temperatures (∼

10, 000 K or more), and that consequently the giant planets are fluid (not solid) (Hubbard (1968); see also Hubbard

et al. (1995)). Another consequence is that they are essentially convective, and that their interior temperature profile

are close to adiabats. We will come back to this in more detail.

The deep atmospheres (more accurately tropospheres) of the four giant planets are indeed observed to be close

to adiabats, a result first obtained by spectroscopic models (Trafton, 1967), then verified by radio-occultation exper-

iments by the Voyager spacecrafts, and by the in situ measurement from the Galileo probe (fig. 3). The temperature

profiles show a temperature minimum, in a region near 0.2 bar called the tropopause. At higher altitudes, in the

stratosphere, the temperature gradient is negative (increasing with decreasing pressure). In the regions that we will

be mostly concerned with, in the troposphere and in the deeper interior, the temperature always increases with depth.

It can be noticed that the slope of the temperature profile in fig. 3 becomes almost constant when the atmosphere

becomes convective, at pressures of a fraction of a bar, in the four giant planets.

Figure 3. Atmospheric temperatures as a function of pressure for Jupiter, Saturn, Uranus and Neptune, as obtained from Voyager radio-occultation

experiments (see Lindal, 1992b). The dotted line corresponds to the temperature profile retrieved by the Galileo probe, down to 22 bar and a

temperature of 428 K (Seiff et al., 1998).

It should be noted that the 1 bar temperatures listed in table 2 and the profiles shown in fig. 3 are retrieved from

radio-occultation measurements using a helium to hydrogen ratio which, at least in the case of Jupiter and Saturn, was

shown to be incorrect. The new values of Y are found to lead to increased temperatures by ∼ 5 K in Jupiter and ∼ 10 K

in Saturn (see Guillot, 1999a). However, the Galileo probe found a 1 bar temperature of 166 K (Seiff et al., 1998), and

generally a good agreement with the Voyager radio-occultation profile with the wrong He/H2 value.

When studied at low spatial resolution, it is found that all four giant planets, in spite of their inhomogeneous

appearances, have a rather uniform brightness temperature, with pole-to-equator latitudinal variations limited to a few

kelvins (e.g., Ingersoll et al., 1995). However, in the case of Jupiter, some small regions are known to be very different

from the average of the planet. This is the case of hot spots, which cover about 1% of the surface of the planet at any

given time, but contribute to most of the emitted flux at 5 microns, due to their dryness (absence of water vapor) and

their temperature brightness which can, at this wavelength, peak to 260 K.
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2.6. Atmospheric compositions

In fluid planets, the distinction between the atmosphere and the interior is not obvious. We name “atmosphere”

the part of the planet which can directly exchange radiation with the exterior environment. This is also the part which

is accessible by remote sensing. It is important to note that the continuity between the atmosphere and the interior

does not guarantee that compositions measured in the atmosphere can be extrapolated to the deep interior, even in

a fully convective environment: Processes such as phase separations (e.g., Salpeter, 1973; Stevenson and Salpeter,

1977b; Fortney and Hubbard, 2003), phase transitions (e.g., Hubbard, 1989), chemical reactions (e.g., Fegley and

Lodders, 1994) and cloud formation (e.g. Rossow, 1978) can occur and decouple the surface and interior compositions.

Furthermore, imperfect mixing may also occur, depending on the initial conditions (e.g., Stevenson, 1985a).

The conventional wisdom is however that these processes are limited to certain species (e.g. helium) or that they

have a relatively small impact on the global abundances, so that the hydrogen-helium envelopes may be considered

relatively uniform, from the perspective of the global abundance in heavy elements. An important caveat is that

measurements must probe deeper than the condensation altitude for any volatile (e.g. ammonia, water, etc.). We

first discuss measurements made in the atmosphere before inferring interior compositions from interior and evolution

models.

2.6.1. Hydrogen and helium

The most important components of the atmospheres of our giant planets are also among the most difficult to detect:

H2 and He have a zero dipolar moment and hence absorb very inefficiently visible and infrared light. Absorption in

the infrared becomes important only at high pressures as a result of collision-induced absorption (e.g., Borysow et al.,

1997). On the other hand, lines due to electronic transitions correspond to very high altitudes in the atmosphere,

and bear little information on the structure of the deeper levels. The only robust result concerning the abundance

of helium in a giant planet is by in situ measurement by the Galileo probe in the atmosphere of Jupiter (von Zahn

et al., 1998a). The helium mole fraction (i.e., number of helium atoms over the total number of species in a given

volume) is qHe = 0.1359 ± 0.0027. The helium mass mixing ratio Y (i.e., mass of helium atoms over total mass) is

constrained by its ratio over hydrogen, X: Y/(X + Y) = 0.238 ± 0.05. This ratio is by coincidence that found in the

Sun’s atmosphere, but because of helium sedimentation in the Sun’s radiative zone, it was larger in the protosolar

nebula: Yproto = 0.275 ± 0.01 and (X + Y)proto ≈ 0.98 (e.g., Bahcall et al., 1995). Less helium is therefore found in

the atmosphere of Jupiter than inferred to be present when the planet formed. We will discuss the consequences of

this measurement later: let us mention that the explanation invokes helium settling due to a phase separation in the

interiors of massive and cold giant planets.

Helium is also found to be depleted compared to the protosolar value in Saturn’s atmosphere. However, in this case

the analysis is complicated by the fact that Voyager radio occultations combined with the far-IR sounding (to separate

effects of helium from that of temperature) led to a wrong value for Jupiter when compared to the Galileo probe data

and hence are suspect for the other planets. The current adopted value from IR data only is now Y = 0.18 − 0.25

(Conrath and Gautier, 2000), in agreement with values predicted by interior and evolution models (Guillot, 1999b;

Hubbard et al., 1999).

Finally, as shown in table 3 hereafter, Uranus and Neptune are found to have near-protosolar helium mixing ratios,

but with considerable uncertainty.

2.6.2. Heavy elements

The abundance of elements other than hydrogen and helium (that we will call hereafter “heavy elements”) bears

crucial information for the understanding of the processes that led to the formation of these planets. Table 3 sum-

marizes the present situation after in situ measurements in Jupiter by the Galileo probe, as well as spectroscopic

measurements from spacecraft and from the ground for the other planets.

The elemental abundances in the giant planets’ atmospheres are most usefully compared to those in the Sun

since they all originated from the protosolar disk. The solar abundances have seen very significant revisions in the

past decade because it has been realized that convective motions in the Sun’s atmosphere affect spectral lines more

extensively than was previously thought. It is not yet clear at this date whether the solar abundances have converged.

Furthermore, as discussed for helium, heavy elements gradually settle towards the Sun’s interior so that a proper
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Table 3. Elemental abundances measured in the tropospheres of giant planets

Element Carrier Abundance ratio/H† Protosuna Planet
Protosun

Method

Jupiter

He/H He (7.85 ± 0.18) × 10−2 9.69 × 10−2 0.810 ± 0.019 Galileo/GPMS b

C/H CH4 (1.185 ± 0.019) × 10−3 2.75 × 10−4 4.31 ± 0.07 Galileo/GPMSc

N/H NH3 (3.3 ± 1.3) × 10−4 8.19 × 10−5 4.05 ± 1.55 Galileo/GPMSc

O/H H2O⋆ (1.49+0.98
−0.68

) × 10−4 6.06 × 10−4 0.25+0.16
−0.11

Galileo/GPMS@19 barc

S/H H2S (4.5 ± 1.1) × 10−5 1.55 × 10−5 2.88 ± 0.68 Galileo/GPMSc

Ne/H Ne (1.20 ± 0.12) × 10−5 1.18 × 10−4 0.10 ± 0.01 Galileo/GPMSd

Ar/H Ar (9.10 ± 1.80) × 10−6 3.58 × 10−6 2.54 ± 0.50 Galileo/GPMSd

Kr/H Kr (4.65 ± 0.85) × 10−9 2.15 × 10−9 2.16 ± 0.40 Galileo/GPMSd

Xe/H Xe (4.45 ± 0.85) × 10−10 2.11 × 10−10 2.11 ± 0.40 Galileo/GPMSd

P/H PH3
⋆ (1.11 ± 0.06) × 10−6 3.20 × 10−7 3.45 ± 0.18 Cassini/CIRSe

Ge/H GeH4
⋆ (4.1 ± 1.2) × 10−10 4.44 × 10−9 0.09 ± 0.03 Voyager/IRIS f

As/H AsH3
⋆ (1.3 ± 0.6) × 10−10 2.36 × 10−10 0.54 ± 0.27 Ground/IRg

Saturn

He/H He (6.75 ± 1.25) × 10−2 9.69 × 10−2 0.70 ± 0.13 Voyager/IRISh

C/H CH4 (2.67 ± 0.11) × 10−3 2.75 × 10−4 9.72 ± 0.41 Cassini/CIRSi

N/H NH3
⋆ (2.27 ± 0.57) × 10−4 8.19 × 10−5 2.77 ± 0.69 Cassini/VIMS j

S/H H2S (1.25 ± 0.17) × 10−4 1.55 × 10−5 8.08 ± 1.10 Ground/radiok

P/H PH3
⋆ (4.65 ± 0.32) × 10−6 3.20 × 10−7 14.5 ± 1.0 Cassini/CIRSe

(1.76 ± 0.17) × 10−6 3.20 × 10−7 5.49 ± 0.53 Cassini/VIMSi

(4.0+1.7
−1.1

) × 10−6 3.20 × 10−7 12.4+5.3
−3.5

Ground/IRl

Ge/H GeH4
⋆ (2.3 ± 2.3) × 10−10 4.44 × 10−9 0.05 ± 0.05 Ground/IRl

As/H AsH3
⋆ (1.25 ± 0.17) × 10−9 2.36 × 10−10 5.33 ± 0.73 Cassini/VIMSi

(1.71 ± 0.57) × 10−9 2.36 × 10−10 7.3 ± 2.4 Ground/IRl

Uranus

He/H He (9.0 ± 2.0) × 10−2 9.69 × 10−2 0.93 ± 0.20 Voyager/IRIS+occultm

C/H CH4
⋆ (2.36 ± 0.30) × 10−2 2.75 × 10−4 85.9 ± 10.7 Hubble/STISn

S/H H2S⋆ (3.2 ± 1.6) × 10−4 1.55 × 10−5 21.0 ± 10.5 Ground/radioo

Neptune

He/H He (1.17 ± 0.20) × 10−1 9.69 × 10−2 1.21 ± 0.20 Voyager/IRIS+occultp

C/H CH4
⋆ (1.85 ± 0.43) × 10−2 2.75 × 10−4 67.5 ± 15.8 Ground/IRq

(2.47 ± 0.62) × 10−2 2.75 × 10−4 89.9 ± 22.5 Hubble/STISr

S/H H2S⋆ (3.2 ± 1.6) × 10−4 1.55 × 10−5 21.0 ± 10.5 Ground/radioo

⋆: Species which condense or are in chemical disequilibrium, i.e., with vertical/horizontal variations of their concen-

tration. The global elemental abundances are estimated from the maximum measured mixing ratio, but like in the case

of H2O in Jupiter (believed to correspond to the measurement in a dry downdraft), they may only be lower limits to

the bulk abundance.
†: Abundance ratios r are measured with respect to atomic hydrogen. In these atmospheres dominated by molecular

hydrogen and helium, mole fractions f are found by f = 2r/(1 + rHe) where rHe is the He/H abundance ratio.
a: protosolar abundances from Lodders et al. (2009); b: von Zahn et al. (1998b); c: Wong et al. (2004); d: Atreya

et al. (2003); e: Fletcher et al. (2009a); f : Kunde et al. (1982); g: Noll et al. (1990); h: Conrath and Gautier (2000); i:

Fletcher et al. (2009b); j: Fletcher et al. (2011); k: Briggs and Sackett (1989); l: Noll and Larson (1991); m: Conrath

et al. (1987); n: Sromovsky et al. (2011); o: de Pater et al. (1991); p: Conrath et al. (1991); q: Baines and Smith

(1990); r: Karkoschka and Tomasko (2011).
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reference for the giant planets is not the solar atmosphere today, but its value 4.5 billion years ago which is model-

dependent. Table 3 provides the values obtained for the protosun by Lodders et al. (2009). These are used as reference

without accounting for their uncertainties.

The most abundant heavy elements in the envelopes of our four giant planets are O (presumably) and C, N and

S. It is possible to model the chemistry of gases in the tropospheres from the top of the convective zone down to the

2000 K temperature level (Fegley and Lodders, 1994). Models conclude that, whatever the initial composition in these

elements of planetesimals which collapsed with hydrogen onto Jupiter and Saturn cores during the last phase of the

planetary formation, C in the upper tropospheres of giant planets is mainly in the form of gaseous CH4, N in the form

of NH3, S in the form of H2S, and O in the form of H2O. All these gases but methane in Jupiter and Saturn condense

in the upper troposphere and vaporize at deeper levels when the temperature increases. Noble gases do not condense

even at the tropopauses of Uranus and Neptune, the coldest regions in these atmospheres.

Jupiter is the planet which has been best characterized thanks to the measurements of the Galileo atmospheric

probe which precisely measured the abundances of He, Ne, Ar, Kr, Xe, CH4, NH3, H2S, and H2O down to pressures

around 22 bars. As helium, neon was found to be depleted compared to the protosolar value, in line with theoretical

predictions that this atom would fall in with the helium droplets (Roulston and Stevenson, 1995; Wilson and Militzer,

2010, and section 3.2.2). C, N, and S were found to be supersolar by a factor 2.5 to 4.5 (Wong et al., 2004), which was

not unexpected because condensation of nebula gases results in enriching icy grains and planetesimals. The surprise

came from Ar, Kr, Xe, which were expected to be solar because they are difficult to condense, but turned out to be

supersolar by a factor ∼ 2 (Owen et al., 1999; Wong et al., 2004).

H2O is difficult to measure in all four giant planets because of its condensation relatively deep. It was hoped

that the Galileo probe would provide a measurement of its deep abundance, but the probe fell into one of Jupiter’s

5-micron hot spots, now believed to be a dry region mostly governed by downwelling motions (e.g., Showman and

Ingersoll, 1998). As a result, and although the probe provided measurements down to 22 bars, well below water’s

canonical 5 bar cloud base, it is believed that this measurement of a water abundance equal to a fraction of the solar

value is only a lower limit. An indirect determination comes from the measurement of the disequilibrium species CO

which has to be transported fast from the deep levels where H2O and CH4 tend to form more CO (and H2). This

predicts a mostly solar to slightly supersolar (by a factor 2) abundance of O in Jupiter (Visscher and Moses, 2011)

and much larger enrichments in Neptune (Lodders and Fegley, 1994). This however depends crucially on the reaction

network and somewhat on assumptions on mixing, both of which are not well known. The abundance of oxygen, the

most abundant element in the Universe after hydrogen and helium and a crucial planetary building block is essentially

unknown for what concerns our four giant planets.

Three other species can help us probe the bulk elemental abundance inside Jupiter, although with larger difficulties

perhaps because they are not necessarily in chemical equilibrium at the levels where they are detected and their

measured abundances are thus not necessarily representative of their bulk abundance: these are PH3, GeH4 and AsH3.

All three where detected remotely rather than in situ. The first one is clearly supersolar in Jupiter, with an enrichment

in between that measured for C and S. GeH4 is clearly subsolar, but this is not surprising because of condensation into

solid Ge and GeS (Fegley and Lodders, 1994). The same chemical models would predict that the measured abundance

of AsH3 should be close to its bulk abundance. The measured abundance therefore could be interpreted as a subsolar

bulk abundance of As, but with considerable uncertainty.

Table 3 shows that Saturn’s atmosphere is more enriched in heavy elements than Jupiter. Unfortunately, unlike

Jupiter, no in situ measurement has been performed in this planet and we can only rely on remote sensing. But we

can confidently assess that the abundances of C, S, P and As are significantly higher than in Jupiter. Saturn has

about twice more C (as CH4) and S (as H2S) than Jupiter, for a given mass of atmosphere. The situation for PH3 is

unclear, both because it is highly variable both vertically and latitudinally: the enrichment could be only slightly more

than in Jupiter to more than 4 times that value (Fletcher et al., 2009a, 2011). Note that in the presence of horizontal

variability (as for this molecule) table 3 indicates the maximum abundances measured - which should be closer to the

bulk abundance, except if there exist mechanisms to preferentially trap certain species. The enrichment in N (as NH3)

is smaller than in Jupiter. This may be due to its condensation deeper as NH4SH (Gulkis et al., 1978), although it

does not explain why Jupiter and Saturn would be that different in that respect. The enrichment in As (as AsH4) is

considerably larger than in Jupiter, which is also a mystery (Fletcher et al., 2009b). At least, GeH4 appears to be of

equally low abundance in both planets, but this is probably more related to its condensation than to its bulk abundance.

Finally, Uranus and Neptune provide all signs of a significant enrichment in heavy elements, even though very few
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elements have been detected. Methane is the most important one, although the fact that it condenses in these planets

complicates the interpretation of the spectroscopic measurements. Large-scale variations with latitude are observed,

in particular in Uranus (Sromovsky et al., 2011), but less so in Neptune (Karkoschka and Tomasko, 2011). However,

the deep abundances provided in table 3 are very similar for both planets, with a ∼ 90 times solar enrichment. This

is much higher than the ∼ 30 times solar enrichments discussed in past reviews (e.g., Gautier et al., 1995) for two

reasons: one is a decrease of the protosolar abundance itself. The other is the fact that it relied on spectroscopic

measurements probing higher atmospheric levels affected by methane condensation (see Karkoschka and Tomasko,

2011).

The other key species detected in Uranus and Neptune thanks to ground-based radio observations is H2S, which

points to a 10 to 30 enrichment in sulfur (de Pater et al., 1991). Because this element condenses at even greater depths

than methane, the bulk abundance of S in these planets may be larger if the global circulation is indeed important

down to the deep levels probed by the radio waves. The measurement is however a difficult one, with other potential

absorbers affecting the smooth microwave spectra yielding degenerate solutions.

Overall, the global picture that can be drawn is that of an increase of the abundance of heavy elements compared

to the solar value with increasing distance to the Sun, from Jupiter which shows a ∼ 2 to 4 enrichment, Saturn a 3 to

10 one, and Uranus and Neptune which are enriched by a factor ∼ 90 in carbon and by at least 10 to 30 in sulfur. In

spite of their different atmospheric dynamics, and with the present accuracy of the measurements, the two ice giants

have very similar abundances.

2.7. Isotopic ratios

Table 4. Isotopic ratios measured in the tropospheres of giant planets

Isotope Isotopic ratio Protosuna Planet/Protosun Comments

Jupiter

D/H (2.25 ± 0.35) × 10−5 1.94 × 10−5 1.16 ± 0.18 ISO/SWSq

3He/4He (1.66 ± 0.06) × 10−4 1.66 × 10−4 1.00 ± 0.03 Galileo/GPMSd

13C/12C (1.08 ± 0.05) × 10−2 1.12 × 10−2 1.04 ± 0.05 Galileo/GPMSd

15N/14N (2.30 ± 0.30) × 10−3 2.27 × 10−3 0.99 ± 0.13 Galileo/GPMSd

22Ne/20Ne (7.7 ± 1.2) × 10−2 7.35 × 10−2 0.96 ± 0.15 Galileo/GPMSd

38Ar/36Ar (1.79 ± 0.08) × 10−1 1.82 × 10−1 1.02 ± 0.05 Galileo/GPMSd

128Xe/Xe (1.80 ± 0.20) × 10−2 2.23 × 10−2 1.24 ± 0.14 Galileo/GPMSd

129Xe/Xe (2.85 ± 0.21) × 10−1 2.75 × 10−1 0.96 ± 0.07 Galileo/GPMSd

130Xe/Xe (3.80 ± 0.50) × 10−2 4.38 × 10−2 1.15 ± 0.15 Galileo/GPMSd

131Xe/Xe (2.03 ± 0.18) × 10−1 2.18 × 10−1 1.07 ± 0.10 Galileo/GPMSd

132Xe/Xe (2.90 ± 0.20) × 10−1 2.64 × 10−1 0.91 ± 0.06 Galileo/GPMSd

134Xe/Xe (9.10 ± 0.70) × 10−2 9.66 × 10−2 1.06 ± 0.08 Galileo/GPMSd

Saturn

D/H (1.60 ± 0.20) × 10−5 1.94 × 10−5 0.83 ± 0.11 Cassini/CIRSh

(1.70+0.75
−0.45

) × 10−5 1.94 × 10−5 0.88+0.39
−0.23

ISO/SWSq

13C/12C (1.09 ± 0.10) × 10−2 1.12 × 10−2 1.03 ± 0.09 Cassini/CIRSh

Uranus

D/H (4.40 ± 0.40) × 10−5 1.94 × 10−5 2.27 ± 0.21 Herschel/PACSr

Neptune

D/H (4.10 ± 0.40) × 10−5 1.94 × 10−5 2.11 ± 0.21 Herschel/PACSr

a: protosolar abundances from Lodders et al. (2009), except 15N/14N which is corrected by Marty et al. (2011); d:

Atreya et al. (2003); h: Fletcher et al. (2009b); q: Lellouch et al. (2001); r: Feuchtgruber et al. (2013).

The measurement of isotopic ratios in planetary atmospheres is a powerful tool to understand their origin. Table 4

provides the ensemble of isotopic ratios measured in our giant planets, and a comparison to their values in the Sun.

Of course, the Galileo probe and its onboard mass spectrometer have provided us a strikingly clear picture of

Jupiter’s atmosphere: it is directly formed from the same material as our Sun, with isotopic ratios which are, to the
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accuracy of the measurements, indistinguishable (i.e., within 2 sigma) from the solar values and for elements as diverse

as D, He, C, N, Ne, Ar and Xe with as many as 6 isotopes measured. This was expected because indeed Jupiter’s

composition is globally similar to that of the Sun, but given the fact that the abundances of elements are far from

being Sun-like, it is perhaps surprising to find such a good match! By extension, this applies to Saturn although only

the deuterium to hydrogen and 13C/12C isotopic ratios could be measured by remote spectroscopic observations. This

confirms that the atmospheres and envelopes of Jupiter and Saturn originated from the same material that formed the

Sun and that mechanisms leading to isotopic fractionation (e.g., atmospheric evaporation) were of limited importance.

In the case of Uranus and Neptune, only the deuterium to hydrogen ratio was measured, from the ground in the

infrared (Irwin et al., 2014) and most precisely by recent far infrared spectroscopy from Herschel (Feuchtgruber et al.,

2013). Interestingly, it is about twice larger than the protosolar value, and a factor 2 to 6 times smaller than the D/H

value in comets. Given our present knowledge of the interiors of Uranus and Neptune, Feuchtgruber et al. (2013)

conclude that either these planets contain much more rocks than expected or that the ices in their interior have not

been fully mixed.

2.8. Moons and rings

A discussion of our giant planets motivated by the opportunity to extrapolate the results to objects outside our

solar system would be incomplete without mentioning the moons and rings that these planets all possess (see chapters

by Breuer & Moore, by Peale & Canup and by Hussmann et al.). First, the satellites/moons can be distinguished from

their orbital characteristics as regular or irregular. The first ones have generally circular, prograde orbits. The latter

tend to have eccentric, extended, and/or retrograde orbits.

These satellites are numerous: After the Voyager era, Jupiter was known to possess 16 satellites, Saturn to have

18, Uranus 20 and Neptune 8. Recent extensive observation programs have seen the number of satellites increase

considerably, with a growing list of satellites presently reaching 62, 56, 27 and 13 for Jupiter, Saturn, Uranus and

Neptune, respectively. All of the new satellites discovered since Voyager are classified as irregular.

The presence of regular and irregular satellites is due in part to the history of planet formation. It is believed that

the regular satellites have mostly been formed in the protoplanetary subnebulae that surrounded the giant planets (at

least Jupiter and Saturn) at the time when they accreted their envelopes. On the other hand, the irregular satellites are

thought to have been captured by the planet. This is, for example, believed to be the case of Neptune’s largest moon,

Triton, which has a retrograde orbit.

A few satellites stand out by having relatively large masses: it is the case of Jupiter’s Io, Europa, Ganymede and

Callisto, of Saturn’s Titan, and of Neptune’s Triton. Ganymede is the most massive of them, being about twice the

mass of our Moon. However, compared to the mass of the central planet, these moons and satellites have very small

weights: 10−4 and less for Jupiter, 1/4000 for Saturn, 1/25000 for Uranus and 1/4500 for Neptune. All these satellites

orbit relatively closely to their planets. The farthest one, Callisto revolves around Jupiter in about 16 Earth days.

The four giant planets also have rings, whose material is probably constantly resupplied from their satellites. The

ring of Saturn stands out as the only one directly visible with binoculars. In this particular case, its enormous area

allows it to reflect a sizable fraction of the stellar flux arriving at Saturn, and makes this particular ring as bright as the

planet itself. The occurrence of such rings would make the detection of extrasolar planets slightly easier, but it is yet

unclear how frequent they can be, and how close to the stars rings can survive both the increased radiation and tidal

forces.

2.9. Seismology

The best way to directly probe planetary (or stellar) interiors is through seismology, i.e., by measuring the spectrum

of waves propagating through the interior. Our knowledge of the interior structure of the Earth, the Sun and even

other stars is largely due to the ability to detect the oscillations of these objects. Because Jupiter (and by extent the

other giant planets in our Solar System) are similar in composition and density to the Sun, the possibility to detect

pressure waves in their atmosphere has been proposed in the 1970’s. In particular, Vorontsov et al. (1976) showed

that waves with periods smaller than about 10 minutes would be trapped and reflected downwards in Jupiter’s and

Saturn’s atmospheres, creating the possibility for resonant waves similar to those observed in the Sun to exist. On the

theoretical side, the possibility of how these waves may be excited has however remained problematic (e.g., Bercovici

and Schubert, 1987).
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After two decades of promising but slow progress, the case for the existence of detectable free oscillations of giant

planets has recently taken a new turn. First, using ground-based Doppler imaging of Jupiter, Gaulme et al. (2011)

detected an oscillation pattern with frequencies between 0.8 and 2 mHz and a characteristic spacing of the peak of

155.3 ± 2.2 µHz, in agreement with theoretical models. Separately, Hedman and Nicholson (2013) confirmed that

waves observed by the Cassini spacecraft in Saturn’s rings cannot be caused by satellites and therefore must result

from oscillations in Saturn, as had been proposed by Marley and Porco (1993).

Further observations are required to better characterize the oscillations of these planets and start using them as

probes of the planetary interiors (e.g., Jackiewicz et al., 2012). This is very promising however and should lead to a

revolution in our understanding of the giant planets.

2.10. Exoplanets
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Figure 4. Masses and orbital distances of the extrasolar planets discovered by early 2014. Planets detected in transit are shown with circles, those

detected by direct imaging with diamonds. All other systems (mostly detected by radial velocimetry) are shown as triangles. In the case of planets

discovered by radial velocimetry, the displayed masses correspond to masses multiplied by the sine of the unknown inclination. The size of the

symbols is proportional to the mass of the parent star (from 0.1 to 3.1 stellar masses). The color (from reddish to white) is proportional to the stellar

metallicity (from [Fe/H] = −0.8 to 0.6). The radial velocimetry thresholds from 1 cm/s to 10 km/s are indicated as dashed lines.

Huge progress has been made in the field of extrasolar planets since the detection of the first giant planet orbiting

a solar-type star by Mayor and Queloz (1995). As shown in figure 4, more than a thousand planets are known at the

time of this review, and importantly, more than four hundred planets that transit their star at each orbital revolution

have been identified (Wright et al., 2011; Schneider et al., 2011). These transiting planets are especially interesting

because of the possibility to measure both their mass and size and thus obtain constraints on their global composition.

In spite of their particular location just a few stellar radii away from their stars, the transiting giant planets that

have been discovered bear some resemblance with their Solar System cousins in the sense that they are also mostly

14



T. Guillot & D. Gautier / Treatise on Geophysics, 2nd Edition 00 (2014) 1–41 15

made of hydrogen and helium (e.g., Burrows et al., 2000; Guillot, 2005; Baraffe et al., 2005). They are, however,

much hotter due to the intense irradiation that they receive.

Although obtaining direct information on these planets represents a great observational challenge, several key

steps have been accomplished: Atomic sodium, predicted to be detectable (Seager and Sasselov, 2000), has indeed

been detected by transit spectroscopy(Charbonneau et al., 2002) early on, and a tentative abundance measured in

planet HD209458 b: According to Sing et al. (2009), it appears to be oversolar by a factor ∼ 2 at pressures deeper

than about ∼ 3 mbar and undersolar above that level (see also Vidal-Madjar et al., 2011). Hydrodynamically escaping

species (including hydrogen, oxygen, carbon, nitrogen and heavier ions) have also been detected around the brightest

hot Jupiters (e.g., Vidal-Madjar et al., 2003; Fossati et al., 2010; Bourrier et al., 2013). A theoretical study of the

atmospheric dynamics of hot Jupiters (Showman and Guillot, 2002) predicted strong day-night temperature variations

(up to 100’s K), fast km/s zonal jets and a displacement of the hottest point west of the substellar point. These

have been confirmed by observations of transiting and non-transiting planets in the infrared (Harrington et al., 2006;

Knutson et al., 2007) and by doppler-imaging of planetary CO lines (Snellen et al., 2010).

Unfortunately, the list of chemical species thought to have been detected (see Seager and Deming, 2010, for a

review) has dwindled in recent years due to the realization that instrumental effects could mimic spectral signatures

(e.g., Désert et al., 2009; Gibson et al., 2011; Crouzet et al., 2012), due to new observations with a better instrument

(e.g., Deming et al., 2013) and generally because of the unexpected prevalence of hazes in these close-in exoplanets

(e.g., Sing et al., 2009; Pont et al., 2013). After examination, claims of a high C/O ratio in some of these atmospheres

also appear to be highly uncertain (Crossfield et al., 2012).

In any case, in spite of the hiccups, there is obviously a big potential for growth in this young field, and the

comparison between fine observations made for giant planets in our Solar System and the more crude, but also more

statistically significant data obtained for planets around other stars promise to be extremely fruitful to better understand

these objects.

3. The calculation of interior and evolution models

3.1. Basic equations

The structure and evolution of a giant planet is governed by the following hydrostatic, thermodynamic, mass

conservation and energy conservation equations:

∂P

∂r
= −ρg (4)

∂T

∂r
=
∂P

∂r

T

P
∇T . (5)

∂m

∂r
= 4πr2ρ. (6)

∂L

∂r
= 4πr2ρ

(

ǫ̇ − T
∂S

∂t

)

, (7)

where P is the pressure, ρ the density, and g = Gm/r2 the gravity (m is the mass, r the radius and G the gravitational

constant). The temperature gradient ∇T ≡ (d ln T/d ln P) depends on the process by which the internal heat is trans-

ported. L is the intrinsic luminosity, t the time, S the specific entropy (per unit mass), and ǫ̇ accounts for the sources

of energy due e.g., to radioactivity or more importantly nuclear reactions. Generally it is a good approximation to

assume ǫ̇ ∼ 0 for objects less massive than ∼ 13 MJ, i.e., too cold to even burn deuterium (but we will see that in

certain conditions this term may be useful, even for low mass planets).

The boundary condition at the center is trivial: r = 0; (m = 0, L = 0). The external boundary condition is more

difficult to obtain because it depends on how energy is transported in the atmosphere. One possibility is to use the

Eddington approximation, and to write (e.g., Chandrasekhar, 1939): r = R; (T0 = Teff, P0 = 2/3 g/κ), where Teff is

the effective temperature (defined by L = 4πRσT 4
eff

, with σ being the Stephan-Boltzmann constant), and κ is a mean

opacity. Note for example that in the case of Jupiter Teff = 124 K, g = 26 m s−2 and κ ≈ 5 × 10−3(P/1 bar) m2 kg−1.

This implies P0 ≈ 0.2 bar (20,000 Pa), which, given the simplicity of the calculation, is surprisingly close to the
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location of Jupiter’s real tropopause where T ≈ 110 K. Actually, the properties of the opacities of important absorbing

chemical species like water and their pressure dependence imply that photospheres around 0.1 bar should be common

(Robinson and Catling, 2014).

However, the Eddington boundary condition should not be used in the case of irradiated atmospheres because it

does not properly account for both the incoming flux (mostly at visible wavelengths for planets around solar-type

stars) and the intrinsic flux (in the infrared). The fact that opacities differ at these wavelengths yields the possibility of

thermal inversions (higher visible than infrared opacities) or a greenhouse effect (lower visible than infrared opacities)

and thus a hotter interior, something that cannot be captured without accounting for the different fluxes. Analytical

solutions of the radiative transfer problem exist in the semi-grey case (two opacities for the visible and infrared,

respectively) (Hansen, 2008; Guillot, 2010), and can even be extended to include non-grey effects (Parmentier and

Guillot, 2014). Numerical solutions in the non-irradiated, solar-composition case are provided by Saumon et al.

(1996), and for the irradiation levels and compositions relevant for the solar system giant planets by Fortney et al.

(2011). In that case, a grid is used to relate the atmospheric temperature and pressure at a given level to the radius

R, intrinsic luminosity L and incoming stellar luminosity L∗p: r = R; (T0 = T0(R, L, L∗p), P0 = P0(R, L, L∗p)). P0 is

chosen to satisfy the condition that the corresponding optical depth at that level should be much larger than unity.

3.2. High pressure physics & equations of state

3.2.1. Hydrogen

In terms of pressures and temperatures, the interiors of giant planets lie in a region for which accurate equations

of state (EOS) are extremely difficult to calculate. This is because both molecules, atoms, and ions can all coexist,

in a fluid that is partially degenerate (free electrons have energies that are determined both by quantum and thermal

effects) and partially coupled (Coulomb interactions between ions are not dominant but must be taken into account).

The presence of many elements and their possible interactions further complicate matters. For lack of space, this

section will mostly focus on hydrogen whose EOS has seen the most important developments in recent years. A phase

diagram of hydrogen (fig. 5) illustrates some of the important phenomena that occur in giant planets.

The photospheres of giant planets are generally relatively cold (50 to 3000 K) and at low pressure (0.1 to 10 bar,

or 104 to 106 Pa), so that hydrogen is in molecular form and the perfect gas conditions apply. As one goes deeper

into the interior hydrogen and helium progressively become fluid. (The perfect gas relation tends to underestimate the

pressure by 10% or more when the density becomes larger than about 0.02 g cm−3 (P ∼> 1 kbar in the case of Jupiter)).

Characteristic interior pressures are considerably larger however: as implied by Eqs. 4 and 6, Pc ≈ GM2/R4,

of the order of 10-100 Mbar for Jupiter and Saturn. As shown in fig. 5, all the central pressures and temperatures

of giant planets and brown dwarfs (from Uranus to CoRoT-15b) lie in a regime of high pressures and temperatures

lower than the corresponding Fermi temperature TF, implying that electrons are degenerate: their pressure is mostly

a function of the density of the material. In Jupiter and Saturn, the degeneracy parameter θ = T/TF is always close

to 0.03. Even for the warmer CoRoT-15b (a ∼ 60 MJup brown dwarf discovered in transit in front of its parent star

– see Bouchy et al. (2011)), θ ≈ 0.2. This implies that for these objects, the thermal component is small so that the

energy of electrons in the interior is expected to be only slightly larger than their non-relativistic, fully degenerate

limit: ue ≥ 3/5 kTF = 15.6 (ρ/µe)2/3 eV, where k is Boltzmann’s constant, µe is the number of nucleons per electron

and ρ is the density in g cm−3. For pure hydrogen, when the density reaches ∼ 0.8 g cm−3, the average energy of

electrons becomes larger than hydrogen’s ionization potential, even at zero temperature: hydrogen pressure-ionizes

and becomes metallic. This molecular to metallic transition occurs near Mbar pressures, but exactly how this happens

is a result of the complex interplay of thermal, Coulomb and degeneracy effects.

Recent laboratory measurements on fluid deuterium have been able to reach extremely high pressures up to

20 Mbar (Mochalov et al., 2012). Beyond that experimental feat, most of the progress of the decade in the domain

has been the improvement in our understanding of the hydrogen metallization region at pressures of a fraction to a

few Mbars, both from an experimental and numerical point of view (see the very complete review by McMahon et al.,

2012). Already in the 1990’s, gas-gun experiments had been able to measure a rise in the conductivity of molecular hy-

drogen up to T ∼ 3000 K, P ∼ 1.4 Mbar, a sign that metallization had been reached (Weir et al., 1996). A very sharp

transition, probably discontinuous, was then later measured by isentropic convergent explosive shock experiments

(Fortov et al., 2007) at pressures between 1.5 and 2.5 Mbar but uncertain temperatures below 4000 K(see McMahon

et al., 2012). New experiments at higher temperatures using laser compression, directly (Sano et al., 2011) and from
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Figure 5. Phase diagram for hydrogen in the pressure-temperature plane, with pressure in bars (1 bar = 105 Pa = 106 dyn cm−2). The thick lines

indicate the first order (discontinuous) phase transitions, the black circles the critical points (McMahon et al., 2012; Morales et al., 2013b). Phase

transitions in solid hydrogen with the different known phases are labelled I, II, III, IV (McMahon et al., 2012). The region where 50% of all

hydrogen is in atomic form (from Saumon et al., 1995) is shown by a thin contour. The approximate location of the molecular to metallic hydrogen

(continuous) transition (Loubeyre et al., 2012; Morales et al., 2013b) is indicated by a dashed line. The T = TF line separate the non-degenerate

region (at low pressures and high temperatures) from the region in which electrons are degenerate (see text). The Pgas = Prad line shows the region

which is dominated by radiation pressure (at high temperatures). Colored lines show profiles for a selection of noteworthy substellar objects: giant

planets from Uranus to Jupiter (Guillot, 2005), the hot Jupiter HD 209458 b (Guillot and Showman, 2002; Burrows, 2013), the brown dwarfs

Gl 229 B (Marley et al., 1996), CoRoT-15 b (Bouchy et al., 2011) and our Sun (Christensen-Dalsgaard et al., 1996). The diamonds correspond to

the conditions either at the core/envelope interface for Jupiter and Saturn or at the center for the other objects.
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precompressed targets (Loubeyre et al., 2012), confirmed that this transition from a weakly conducting molecular

fluid to a metal-like hydrogen fluid occurs around pressures near 1 Mbar and temperatures as high as 15,000 K, but

that it is continuous at these temperatures. In parallel, ab initio calculations of the behavior of fluid hydrogen in this

thermodynamical regime predicted the existence of a first order liquid-liquid phase transition (the so-called PPT for

Plasma Phase Transition) with a critical point near T ∼ 1500 − 2000 K and P ∼ 2.2 Mbar (Morales et al., 2010,

2013b). This discontinuous transition at low temperatures merges into a continuous transition at temperatures above

the critical point, in good agreement with the experimental data. The PPT is indicated by a thick almost vertical line in

fig. 5. It is prolonged by a dashed line indicating the location of the continuous transition from molecular to metallic

hydrogen that extends up to the region of thermal dissociation and ionization of hydrogen.

The controversy that had arisen between laser-induced shock compression (da Silva et al., 1997; Collins et al.,

1998) and pulsed-power shock compression (Knudson et al., 2004) regarding the maximum compression of deuterium

along the principal shock Hugoniot has now been resolved in favor of the latter thanks to new experiments (Boriskov

et al., 2005; Hicks et al., 2009) and the realization that the equation of state of quartz used to calibrate the laser-induced

shock experiments was incorrect (Knudson and Desjarlais, 2009). Similarly, the existence of a PPT of hydrogen at

high temperatures in a regime crossing the adiabats of Jupiter and Saturn (Saumon et al., 1995) have now been shown

to be a spurious effect resulting from the different treatment of molecules, atom and ions within the so-called chemical

picture (Chabrier et al., 2007). Both laboratory experiments and independent models based on first-principles (Militzer

et al., 2001; Desjarlais, 2003; Bonev et al., 2004; Vorberger et al., 2007; French et al., 2012) now agree and show that

the transition from molecular to metallic hydrogen should occur continuously in all known giant planets.

Progress has also been made on the issue of the solidification of hydrogen (see McMahon et al., 2012, and ref-

erences therein). This has led to the confirmation that the interiors of the hydrogen-helium giant planets and brown

dwarfs are fluid whatever their age, a result expected since the pioneering study by Hubbard (1968). Of course, be-

cause of their initial gravitational energy, these objects are warm enough to avoid the critical point for the liquid gas

transition in hydrogen and helium, at very low temperatures, but they also lie comfortably above the solidification

lines for hydrogen and helium. (An isolated Jupiter should begin partial solidification only after at least ∼ 103 Ga

of evolution.) They are considered to be fluid because at the high pressures and relatively modest temperatures in

their interiors, Coulomb interactions between ions play an important role in the EOS and yield a behavior that is more

reminiscent of that of a liquid than that of a gas, contrary to what is the case in e.g., solar-like stars. For Uranus

and Neptune, the situation is actually more complex because at large pressures they are not expected to contain a

significant amount of hydrogen (see next section).

As fig. 5 highlights, while some highly irradiated planets and brown dwarfs like CoRoT-15b have temperature

profiles that get close to the hydrogen thermal dissociation line, most of them are well within the molecular hydrogen

regime at low-pressures and in the metallic, degenerate regime at high pressures. Stars like our Sun lie in a higher

temperature regime for which the EOS is dominated by thermal effects and electrons are essentially non-degenerate.

3.2.2. Other elements and mixtures

Hydrogen is of course a key element, but it is not sufficient to describe the structure of all giant planets. A

description of the high-pressure behavior of other elements would go beyond the scope of the present review. We only

sketch a few important results here.

In order to obtain tractable equations of state in the entire domain of pressure and temperature spanned by the

planets during their evolution, one has to consider simplifications, among which the first one is to consider that

an element (e.g., hydrogen) dominates, and that others can be considered as a perturbation. This is done for the

hydrogen-helium mixture for the now classical EOS by Saumon et al. (1995), and now with more up-to-date EOSs

(Caillabet et al., 2011; Nettelmann et al., 2012; Militzer and Hubbard, 2013). The addition of other elements can

be done through the so-called additive volume rule which is generally a good approximation given other sources of

uncertainty (Vorberger et al. (2007); see also Chabrier and Ashcroft (1990)).

Equations of state for elements other than hydrogen and helium in the parameter range relevant for giant planetary

interiors have traditionally been difficult to obtain, and are often not easily shared. Beyond an extrapolation from

the classical ANEOS and Sesame tables (see Saumon and Guillot, 2004, and references therein), new results have

become available. In particular, ab-initio simulations revealed that when compressing water or ammonia along an

isentrope from conditions relevant to the atmospheres of Uranus and Neptune, they transition from a molecular to a

ionic fluid, then to a superionic fluid and finally to a plasma (Cavazzoni et al., 1999). The superionic fluid corresponds
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to a state in which protons move relatively freely among a lattice of oxygen atoms. An equation of state for water has

been calculated from first-principles by French et al. (2009) and is found to be in good agreement with experiments

(Knudson et al., 2012). A similar equation of state for ammonia is presented by Bethkenhagen et al. (2013). In models

of Uranus and Neptune, for water, the ionic transition occurs near 0.1 Mbar and the superionic transition near 1 Mbar

(Redmer et al., 2011).

Morales, et al. (2013)

Figure 6. Phase diagram for the hydrogen-helium mixture for a helium mole concentration of 8%. The orange region shows where the two elements

are expected to separate from each other according to the calculations of Lorenzen et al. (2011). The red curve correspond to the critical temperature

for that separation according to Morales et al. (2013a). Numerical results by Schouten et al. (1991) and experimental determinations by Loubeyre

et al. (1991) are also shown. The back curves show the isentropes of Jupiter (plain) and Saturn (dashed) respectively. [From Morales et al. (2013a)].

In some cases however, generally at low enough temperatures for a given pressure range, mixtures cannot remain

homogeneous. This further complicates the calculation of equations of state and has important physical consequences

for the planetary structure: the two components having different molecular weights, they tend to be separated by

gravity so that the heavier component settles down under the lighter one. This is the case of the hydrogen and helium

mixture for which it was proposed that such a separation would occur in Saturn already in the 1970s (Salpeter, 1973;

Stevenson and Salpeter, 1977a), but for which realistic calculations have only become possible in the past decade or

so (see Morales et al., 2009; Lorenzen et al., 2011; Morales et al., 2013a). Figure 6 shows the comparison between

two of these calculations based on first-principles simulations. According to these calculations, Saturn’s interior is in

the phase separation region below 1 Mbar but whether Jupiter is too depends on which calculation is considered.

The separation of other mixtures have also been calculated and is relevant to understand the initial formation and

subsequent possible erosion of the cores of giant planets (see Guillot et al., 2004). First-principles calculations of the

water in metallic hydrogen (at pressures above 10 Mbar) predict a critical phase separation temperature of less than

4000 K (Wilson and Militzer, 2010) implying that water is completely soluble in hydrogen in the interiors of Jupiter,

Saturn and generally gas giants. This is also the case of iron, with a critical temperature of around 2000 K (Wahl et al.,

2013). Finally, mixing rocks (specifically MgO) and metallic hydrogen is also relatively easy, even though the critical

temperature for the same pressure range is higher, of order 10,000 K or less (Wilson and Militzer, 2012).

3.3. Heat transport

Giant planets possess hot interiors, implying that a relatively large amount of energy has to be transported from the

deep regions of the planets to their surface. This can either be done by radiation, conduction, or, if these processes are

not sufficient, by convection. Convection is generally ensured by the rapid rise of the opacity with increasing pressure
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and temperature. At pressures of a bar or more and relatively low temperatures (less than 1000 K), the three dominant

sources of opacities are water, methane and collision-induced absorption by hydrogen molecules.

However, in the intermediate temperature range between ∼ 1200 and 1500 K, the Rosseland opacity due to the

hydrogen and helium absorption behaves differently: the absorption at any given wavelength increases with density,

but because the temperature also rises, the photons are emitted at shorter wavelengths, where the monochromatic

absorption is smaller. As a consequence, the opacity can decrease. This was shown by Guillot et al. (1994) to

potentially lead to the presence of a deep radiative zone in the interiors of Jupiter, Saturn and Uranus.

This problem must however be reanalyzed in the light of observations and analyses of brown dwarfs. Their

spectra show unexpectedly wide sodium and potassium absorption lines (see Burrows, Marley & Sharp 2000), in

spectral regions where hydrogen, helium, water, methane and ammonia are relatively transparent. It thus appears that

the added contribution of these elements (if they are indeed present) would wipe out any radiative region at these

levels (Guillot et al., 2004).

At temperatures above 1500 ∼ 2000 K two important sources of opacity appear: (i) the rising number of electrons

greatly enhances the absorption of H−
2

and H−; (ii) TiO, a very strong absorber at visible wavelengths is freed by the

vaporization of CaTiO3. Again, the opacity rises rapidly which ensures a convective transport of the heat. Still deeper,

conduction by free electrons becomes more efficient, but the densities are found not to be high enough for this process

to be significant, except perhaps near the central core (see Hubbard, 1968; Stevenson and Salpeter, 1977b).

While our giant planets seem to possess globally convective interiors, strongly irradiated extrasolar planets must

develop a radiative zone just beneath the levels where most of the stellar irradiation is absorbed. Depending on

the irradiation and characteristics of the planet, this zone may extend down to kbar levels, the deeper levels being

convective. In this case, a careful determination of the opacities is necessary (but generally not possible) as these

control the cooling and contraction of the deeper interior (see Freedman et al., 2008, for a discussion of opacities and

tables for substellar atmospheres and interiors).

3.4. The contraction and cooling histories of giant planets

The interiors of giant planets are expected to evolve with time from a high entropy, high θ value, hot initial state

to a low entropy, low θ, cold degenerate state. The essential underlying physics can be derived from the well-known

virial theorem and the energy conservation which link the planet’s internal energy Ei, gravitational energy Eg and

luminosity through:

ξEi + Eg = 0, (8)

L = −
ξ − 1

ξ

dEg

dt
, (9)

where ξ =
∫ M

0
3(P/ρ)dm/

∫ M

0
udm ≈<3P/ρu>, the brackets indicating averaging, and u is the specific internal energy.

For a diatomic perfect gas, ξ = 3.2; for fully-degenerate non-relativistic electrons, ξ = 2.

Thus, for a giant planet or brown dwarf beginning its life mostly as a perfect H2 gas, two third of the energy gained

by contraction is radiated away, one third being used to increase Ei. The internal energy being proportional to the

temperature, the effect is to heat up the planet. This represents the slightly counter-intuitive but well known effect that

a star or giant planet initially heats up while radiating a significant luminosity (e.g., Kippenhahn and Weigert, 1994).

Let us now move further in the evolution, when the contraction has proceeded to a point where the electrons have

become degenerate. For simplicity, we will ignore Coulomb interactions and exchange terms, and assume that the

internal energy can be written as Ei = Eel+Eion, and that furthermore Eel ≫ Eion (θ is small). Because ξ ≈ 2, we know

that half of the gravitational potential energy is radiated away and half of it goes into internal energy. The problem

is to decide how this energy is split into an electronic and an ionic part. The gravitational energy changes with some

average value of the interior density as Eg ∝ 1/R ∝ ρ1/3. The energy of the degenerate electrons is essentially the

Fermi energy: Eel ∝ ρ
2/3. Therefore, Ėg ≈ 2(Eg/Eel)Ėel. Using the virial theorem and specifically eq. (8) we get that

Ėg ≈ −Ėel. The luminosity is by definition L = −(Ėg + Ėi) and therefore

L ≈ −Ėion ∝ −Ṫ . (10)

In this limit, the gravitational energy lost is entirely absorbed by the increase in pressure of the degenerate electrons

and the observed luminosity is due to the thermal cooling of the ions (Guillot, 2005).
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Figure 7. Evolution of the luminosity (in L⊙) of solar-metallicity M dwarfs and substellar objects vs. time (in yr) after formation. In this figure,

”brown dwarfs” are arbitrarily designated as those objects that burn deuterium, while those that do not are tentatively labelled ”planets”. Stars are

objects massive enough to halt their contraction due to hydrogen fusion. Each curve is labelled by its corresponding mass in M⊙, with the lowest

three corresponding to the mass of Saturn, half the mass of Jupiter, and the mass of Jupiter. [From Burrows et al. (1997)].

Several simplifications limit the applicability of this result (that would be valid in the white dwarf regime). In

particular, the Coulomb and exchange terms in the EOS introduce negative contributions that cannot be neglected.

However, the approach is useful to grasp how the evolution proceeds: in its very early stages, the planet is very

compressible. It follows a standard Kelvin-Helmholtz contraction. When degeneracy sets in, the compressibility

becomes much smaller (αT ∼ 0.1, where α is the coefficient of thermal expansion), and the planet gets its luminosity

mostly from the thermal cooling of the ions. The luminosity can be written in terms of a modified Kelvin-Helmholtz

formula:

L ≈ η
GM2

Rτ
, (11)

where τ is the age, and η is a factor that hides most of the complex physics. In the approximation that Coulomb and

exchange terms can be neglected, η ≈ θ/(θ + 1). The poor compressibility of giant planets in their mature evolution

stages imply that η ≪ 1 (η ∼ 0.03 for Jupiter): the luminosity is not obtained from the entire gravitational potential,

but from the much more limited reservoir constituted by the thermal internal energy. Equation (11) shows that to first

order, log L ∝ − log τ: very little time is spent at high luminosity values. In other words, the problem is (in most cases)

weakly sensitive to initial conditions. However, it is to be noticed that with progress in our capability to detect very

young objects, i.e., planets and brown dwarfs of only a few million years of age, the problem of the initial conditions

does become important (Marley et al., 2006). Interestingly, at these early stages, their luminosity appears to strongly

depend on their core mass (Mordasini, 2013).

Figure 7 shows more generally how giant planets, but also brown dwarfs and small stars see their luminosities

evolve as a function of time. The 1/τ slope is globally conserved, with some variations for brown dwarfs during the

transient epoch of deuterium burning, and of course for stars, when they begin burning efficiently their hydrogen and

settle on the main sequence: in that case, the tendency of the star to contract under the action of gravity is exactly

balanced by thermonuclear hydrogen fusion.
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Figure 8. Theoretical and observed mass-radius relations. The black line is applicable to the evolution of solar composition planets, brown dwarfs

and stars, when isolated or nearly isolated (as Jupiter, Saturn, Uranus and Neptune, defined by diamonds and their respective symbols), after 5 Ga

of evolution. The dotted line shows the effect of a 15 M⊕ core on the mass-radius relation. Orange and yellow curves represent the mass-radius

relations for heavily irradiated planets with equilibrium temperatures of 1000 and 2000 K, respectively, and assuming that 0.5% of the incoming

stellar luminosity is dissipated at the center (see section 4.3). For each irradiation level, two cases are considered: a solar-composition planet with

no core (top curve), and one with a 100 M⊕ central core (bottom curve). Circles with error bars correspond to known planets, brown dwarfs and

low-mass stars, color-coded as a function of their equilibrium temperature(below 750, 1500, 2250 K and above 2250 K, respectively, from darkest

to lightest).
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3.5. Mass-radius relation

The relation between mass and radius has very fundamental astrophysical applications. Most importantly it al-

lows one to infer the gross composition of an object from a measurement of its mass and radius. This is especially

relevant in the context of the discovery of extrasolar planets with both radial velocimetry and the transit method, as

the two techniques yield relatively accurate determination of M and R, these determinations being often limited by

the uncertainty on the stellar parameters themselves.

Figure 8 shows mass-radius relations for compact degenerate objects from giant planets to brown dwarfs and low-

mass stars. The right-hand side of the diagram shows a rapid increase of the radius with mass in the stellar regime

which is directly due to the onset of stable thermonuclear reactions. In this regime, observations and theoretical models

agree (see however Ribas, 2006, for a more detailed discussion). The left-hand side of the diagram is obviously more

complex, and this can be understood by the fact that planets have much larger variations in composition than stars,

and because external factors such as the amount of irradiation they receive do affect their contraction in a significant

manner.

Let us first concentrate on isolated or nearly-isolated gaseous planets. The black curves have a local maximum near

4 MJ: at small masses, the compression is small so that the radius increases with mass. At large masses, degeneracy

sets in and the radius decreases with mass.

This can be understood on the basis of polytropic models based on the assumption that P = Kρ1+1/n, where K and

n are constants. Because of degeneracy, a planet of large mass will tend to have n → 1.5, while a planet of smaller

mass will be less compressible (n → 0). Indeed, it can be shown that in their inner 70 to 80% in radius isolated solar

composition planets of 10, 1 and 0.1 MJ have n = 1.3, 1.0 and 0.6, respectively. From polytropic equations (e.g.,

Chandrasekhar, 1939):

R ∝ K
n

3−n M
1−n
3−n . (12)

Assuming that K is independant of mass, one gets R ∝ M0.16, M0, and M−0.18 for M = 10, 1 and 0.1 MJ, respectively,

in relatively good agreement with fig. 8 (the small discrepancies are due to the fact that the intrinsic luminosity and

hence K depend on the mass considered).

Figure 8 shows already that the planets in our Solar System are not made of pure hydrogen and helium and require

an additional fraction of heavy elements in their interior, either in the form of a core, or distributed in the envelope

(dotted line).

For extrasolar planets, the situation is complicated by the fact that the intense irradiation that they receive plays

a major role in their evolution. The present sample is already quite diverse, with equilibrium temperature (defined as

the effective temperature corresponding to the stellar flux received by the planet) ranging from 1000 to 2500 K. Their

compositions are also quite variable, with some planets having large masses of heavy elements (Sato et al., 2005;

Guillot et al., 2006). The orange and yellow curves in fig. 8 show theoretical results for equilibrium temperatures of

1000 and 2000 K, respectively. Two extreme models have been plotted: assuming a purely solar composition planet

(top curve), and assuming the presence of a 100 M⊕ central core (bottom curve). In each case, an additional energy

source proportional to 0.5% of the incoming luminosity was also assumed (see discussion in § 4.3 hereafter).

The increase in radius for decreasing planetary mass for irradiated, solar-composition planets with little or no

core can be understood using the polytropic relation (eq. 12), but accounting for variations of K as defined by the

atmospheric boundary condition. Using the Eddington approximation, assuming κ ∝ P and a perfect gas relation

in the atmosphere, one can show that K ∝ (M/R2)−1/2n and that therefore R ∝ M
1/2−n

2−n . With n = 1, one finds

R ∝ M−1/2. Strongly irradiated hydrogen-helium planets of small masses are hence expected to have the largest radii

which qualitatively explain the positions of the extrasolar planets in fig. 8. Note that this estimate implicitly assumes

that n is constant throughout the planet. The real situation is more complex because of the growth of a deep radiative

region in most irradiated planets, and because of structural changes between the degenerate interior and the perfect

gas atmosphere (Guillot, 2005).

In the case of the presence of a fixed mass of heavy elements, the trend is inverse because of the increase of mean

molecular mass (or equivalently core/envelope mass) with decreasing total mass. Thus, small planets with a core are

much more tightly bound and less subject to evaporation than those that have no core.
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3.6. Rotation and the figures of planets

The mass and radius of a planet informs us on its global composition. Because planets are also rotating, one is

allowed to obtain more information on their deep interior structure. The hydrostatic equation becomes more complex

however:
∇P

ρ
= ∇

(

G

∫∫∫

ρ(r′)

|r − r′|
d3r′

)

−Ω × (Ω × r), (13)

whereΩ is the rotation vector. The resolution of eq. (13) is a complex problem. It can however be somewhat simplified

by assuming that |Ω| ≡ ω is such that the centrifugal force can be derived from a potential. The hydrostatic equilibrium

then writes ∇P = ρ∇U, and the figure of the rotating planet is then defined by the U = constant level surface.

One can show (e.g., Zharkov and Trubitsyn, 1978) that the hydrostatic equation of a fluid planet can then be written

in terms of the mean radius r (the radius of a sphere containing the same volume as that enclosed by the considered

equipotential surface):
1

ρ

∂P

∂r
= −

Gm

r
2
+

2

3
ω2r +

GM

R
3

rϕω, (14)

where M and R are the total mass and mean radius of the planet, and ϕω is a slowly varying function of r. (In the

case of Jupiter, ϕω varies from about 2 × 10−3 at the center to 4 × 10−3 at the surface.) Equations (5-7) remain the

same with the hypothesis that the level surfaces for the pressure, temperature, and luminosity are equipotentials. The

significance of rotation is measured by the ratio of the centrifugal acceleration to the gravity:

q =
ω2R3

eq

GM
. (15)

As discussed in section 2.2, in some cases, the external gravity field of a planet can be accurately measured in the

form of gravitational moments Jk (with zero odd moments for a planet in hydrostatic equilibrium) that measure the

departure from spherical symmetry. Together with the mass, this provides a constraint on the interior density profile

(see Zharkov and Trubitsyn (1974) -see also chapters by Van Hoolst and Sohl & Schubert):

M =

∫∫∫

ρ(r, θ)d3τ,

J2i = −
1

MR2i
eq

∫∫∫

ρ(r, θ)r2iP2i(cos θ)d3τ,

where dτ is a volume element and the integrals are performed over the entire volume of the planet.

Figure 9 shows how the different layers inside a planet contribute to the mass and the gravitational moments. The

figure applies to Jupiter, but would remain relatively similar for other planets. Note however that in the case of Uranus

and Neptune, the core is a sizable fraction of the total planet and contributes both to J2 and J4. Measured gravitational

moments thus provide information on the external levels of a planet. It is only indirectly, through the constraints on

the outer envelope that the presence of a central core can be infered. As a consequence, it is impossible to determine

this core’s state (liquid or solid), structure (differentiated, partially mixed with the envelope) and composition (rock,

ice, helium...) from the gravity field data.

The Juno (Bolton, 2010) and Cassini Solstice (Spilker, 2012) missions are expected to yield considerable improve-

ments in our determination of the gravity fields of Jupiter and Saturn, respectively. Because the theory of figures is

limited by its expansion in terms of the rotation parameter q and because purely barotropic solutions are possible only

in the limit of solid-body rotation and of pure rotation on cylinders, these high precision measurements will require

new approaches to include rotation in planetary models (see Hubbard, 1999, 2013). Separately, these measurements

will enable new constraints such as the determination of the planets’ angular momentum through the measurement

of the relativistic Lense-Thirring effect (Iorio, 2010) and the determination of their moment of inertia (Helled, 2011;

Helled et al., 2011b). But probably the most important prospects lie in the possibility to couple measurements on

gravity field, magnetic fields and wind speeds with combined tri-dimensional magnetohydrodynamical models (see

sections 2.3 and 2.4).

For planets outside the solar system, although measuring their gravitational potential is presently beyond reach,

an indirect measurement of the planets’ Love number k2 may be possible in systems of planets in which one is locked
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Figure 9. Contribution of the level radii to the gravitational moments of Jupiter. J0 is equivalent to the planet’s mass. The small discontinuities are

caused by the following transitions, from left to right: core/envelope, helium rich/helium poor (metallic/molecular). Diamonds indicate the median

radius for each moment. They correspond to pressures of 9.1, 1.3, 0.75, 0.45 and 0.35 Mbar, respectively, from left to right (J0 to J8).

into a so-called fixed-point eccentricity. So far, one such transiting system is known, HAT-P-13 (Batygin et al., 2009;

Mardling, 2010), because it contains a transiting planet, HAT-P-13b and a companion, HAT-P-13c whose minimum

mass M sin i and orbital eccentricity are known (Bakos et al., 2009). The value of k2 constrains the interior structure

in a way that is very similar to J2 and has been used to obtain first constraints on the interior structure of this planet

(Kramm et al., 2012).

4. Interior structures and evolutions

4.1. Jupiter and Saturn

As illustrated by fig. 10, the simplest interior models of Jupiter and Saturn matching all observational constraints

assume the presence of three main layers: (i) an outer hydrogen-helium envelope, whose global composition is that of

the deep atmosphere; (ii) an inner hydrogen-helium envelope, enriched in helium because the whole planet has to fit

the H/He protosolar value; (iii) a central dense core. Because the planets are believed to be mostly convective, these

regions are expected to be globally homogeneous. (Many interesting thermochemical transformations take place in

the deep atmosphere, but they are of little concern to us).

The transition from a helium-poor upper envelope to a helium-rich lower envelope is thought to take place through

the formation of helium-rich droplets that fall deeper into the planet due to their larger density. These droplets form

when the temperature-pressure profiles enter the separation region for the initial helium abundance, as shown in

section 3.2.2. Three-layer models implicitly make the hypothesis that this region is adiabatic (this is justified only

if convection is not inhibited by the formation of helium droplets, as discussed by Stevenson and Salpeter (1977a))

and narrow. Figure 6 shows that this zone may be extended, especially in present-day Saturn (see also Fortney and

Hubbard, 2003).

As discussed by Stevenson and Salpeter (1977a); Stevenson (1982) the planets would start from an initially hot

and homogeneous state and would start entering the phase separation region progressively, leading to a depletion

of helium in the outer region and its increase in the deeper interior. According to the calculations by Lorenzen

et al. (2011) and Morales et al. (2013a) the separation would first occur at a pressure between 1 and 2 Mbar and the

inhomogeneous region would grow inward but not so much towards lower pressures because of the higher solubility of

helium in molecular hydrogen. According to the simulations, although needed to explain the abundances in Jupiter’s

atmosphere (section 2.6), it is not yet clear that the process has begun in this planet. Fully consistent calculations
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Figure 10. Schematic representation of the interiors of Jupiter and Saturn. The range of temperatures is estimated using homogeneous models and

including a possible radiative zone indicated by the hashed regions. Helium mass mixing ratios Y are indicated. The size of the central rock and

ice cores of Jupiter and Saturn is very uncertain (see text). In the case of Saturn, the inhomogeneous region may extend down all the way to the

core which would imply the formation of a helium core. [Adapted from Guillot (1999b)].

that account both for the constraints on the planets’ gravitational moments and their atmospheric composition should

become possible, especially with the additional information brought by the Juno (Bolton, 2010) and Cassini Solstice

(Spilker, 2012) space missions.

In the absence of these calculations, adiabatic three-layer models can be used as a useful guidance to a necessarily

hypothetical ensemble of allowed structures and compositions of Jupiter and Saturn. A relatively extensive exploration

of the parameter space has been performed by several authors (Saumon and Guillot, 2004; Fortney and Nettelmann,

2010; Nettelmann et al., 2012, 2013b; Helled and Guillot, 2013). The calculations account for a transition from a

helium-poor outer envelope to a helium-rich inner envelope. The abundance of heavy elements may or may not be

held constant across this transition. Many sources of uncertainties are taken into account however; among them, the

most significant are on the equations of state of hydrogen and helium, the uncertain values of J4 and J6, the presence

of differential rotation deep inside the planet, the location of the helium-poor to helium-rich region, and the uncertain

helium to hydrogen protosolar ratio.

Their results indicate that Jupiter’s core is smaller than ∼ 10 M⊕, and that its global composition is pretty much

unknown (between 10 to 42 M⊕ of heavy elements in total). The models indicate that Jupiter is enriched compared

to the solar value by a factor 1.5 to 8 times the solar value. This enrichment is compatible with a global uniform

enrichment of all species near the atmospheric Galileo values, but allows many other possibilities as well.

Other models of Jupiter based on an ab-initio equation of state by (Militzer et al., 2008) led to a solution with a

large core mass and a very small enrichment in heavy elements in the envelope incompatible with either the Galileo

probe measurements or the protosolar helium abundance. A significant update in the EOS is presented by Militzer

and Hubbard (2013). This updated EOS yields a warmer interior than the 2008 models and should therefore lead

to a smaller core mass and larger amount of heavy elements in the envelope, in line with the other results. At the

same time, the Militzer and Hubbard (2013) EOS is much more accurate than the range of EOSs used by Saumon and

Guillot (2004) and it differs slightly from the other ab-initio EOS used by Nettelmann et al. (2012) and Nettelmann

et al. (2013b). New constraints should therefore be derived on the basis of those new data.

In the case of Saturn, the solutions depend less on the hydrogen EOS because the Mbar pressure region is com-

paratively smaller. The total amount of heavy elements present in the planet can therefore be estimated with a better

accuracy than for Jupiter, and is between 16 and 30 M⊕ (Nettelmann et al., 2013b; Helled and Guillot, 2013). The

uncertainty on the core mass is found to be larger than for Jupiter because a heavy-element rich inner envelope can
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mimic the gravitational signature of the core. As a result only an upper limit on the core mass of 20 M⊕ is derived.

Concerning the evolutions of Jupiter and Saturn, the three main sources of uncertainty are, by order of impor-

tance: (1) the magnitude of the helium separation; (2) the EOS; (3) the atmospheric boundary conditions. Figure 11

shows an ensemble of possibilities that attempts to bracket the minimum and maximum cooling. In all these quasi-

adiabatic cases, helium sedimentation is needed to explain Saturn’s present luminosity (see Salpeter, 1973; Stevenson

and Salpeter, 1977a; Hubbard, 1977; Hubbard et al., 1999; Fortney and Hubbard, 2003). In the case of Jupiter, the sed-

imentation of helium that appears to be necessary to explain the low atmospheric helium abundance poses a problem

for evolution models because it appears to generally prolong its evolution beyond 4.55 Ga, the age of the Solar System

(Fortney et al., 2011; Nettelmann et al., 2012). However, different solutions are possible, including improvements of

the EOS and atmospheric boundary conditions, or even the possible progressive erosion of the central core that would

yield a lower luminosity of Jupiter at a given age (Guillot et al., 2004).

Figure 11. Final stages of evolution of Jupiter and Saturn. The present effective temperatures, reached after ∼ 4.55 Ga of evolution, are indicated

as horizontal orange lines. For each planet two models represent attempts to bracket the ensemble of possibilities, with the faster evolution

corresponding to that of an homogeneous planet, while the slowest evolution includes the effect of helium settling in the last evolution phase.

[Adapted from Hubbard et al. (1999) and Fortney and Hubbard (2003)].

A different set of solutions appears when one considers the possibility that the envelopes of Jupiter and Saturn

are not homogeneous and adiabatic on large scales, but are instead of variable composition, with heavier elements at

the bottom. In that case, convection can be strongly inhibited which requires the temperature gradient to be larger in

order to transport the same intrinsic luminosity. In the case of giant planets, this process, known as semiconvection

or diffusive convection leads to the formation of a non-static staircase structure with diffusive interfaces with abrupt

variations of temperature and composition and a homogeneous adiabatic structure inbetween (Stevenson, 1985b;

Rosenblum et al., 2011). By assuming that this structure is maintained over the entire envelopes of Jupiter and Saturn,

Leconte and Chabrier (2012) derive much warmer interior structures with also 30% to 60% more heavy elements than

in conventional models. However, the assumption that this non-homogenous composition is maintained in the entire

envelopes is ad hoc. In reality, one may expect semi-convection to be confined to a much smaller region and thus have

a more limited effect. The problem is open however and requires further study. Its understanding is also critical for

deciding whether Jupiter’s core can erode into its envelope (see Guillot et al., 2004; Wilson and Militzer, 2012).

As discussed in sections 2.3 and 2.4, classical interior models of Jupiter and Saturn based on the assumption

of a homogeneous structure in the molecular envelope and an increase of the conductivity mainly due to hydrogen

metallization do yield solutions for their magnetic fields and atmospheric zonal winds that globally match the obser-

vations. However, important “details” such as why Saturn’s magnetic field is axisymmetric and Jupiter is not remain

unexplained. Coupling interior and dynamical models in order to fit both Jupiter and Saturn’s gravity and magnetic

fields as well as their observed zonal winds (see sections 2.3 and 2.4) should bring a more global understanding of the

planetary structures.
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4.2. Uranus and Neptune
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Figure 12. Schematic representation of the interiors of Uranus and Neptune. The ensemble of possibilities for Neptune is larger. Two possible

structures are shown. [Adapted from Guillot (1999b) using results from Nettelmann et al. (2013a)].

Although the two planets are relatively similar, table 3 already shows that Neptune’s larger mean density compared

to Uranus has to be due to a slightly different composition: either more heavy elements compared to hydrogen and

helium, or a larger rock/ice ratio. The gravitational moments impose that the density profiles lie close to that of

“ices” (a mixture initially composed of e.g., H2O, CH4 and NH3, but which rapidly becomes a ionic fluid of uncertain

chemical composition in the planetary interior), except in the outermost layers, which have a density closer to that of

hydrogen and helium (Marley et al., 1995; Podolak et al., 2000). As illustrated in fig. 12, three-layer models of Uranus

and Neptune consisting of a central “rocks” core (magnesium-silicate and iron material), an ice layer and a hydrogen-

helium gas envelope have been calculated (Podolak et al., 1991; Hubbard et al., 1995; Fortney and Nettelmann, 2010;

Helled et al., 2011a; Nettelmann et al., 2013a).

According to the models of Nettelmann et al. (2013a), Uranus contains a minimum of 1.8 to 2.2 M⊕ of hydrogen

and helium and Neptune 2.7 to 3.3 M⊕. The global ice to rock ratio that is derived is very high (19 to 36) in Uranus,

while Neptune has a wide range of solutions from 3.6 to 14. These values are much larger than the canonical ice to

rock ratio of 2 to 3 for the protosun that accounts for the abundances of all elements condensing at low temperatures

(“ices”) versus that of more refractory elements (“rocks”). The fact that either planet would have accreted much less

rocks than ices is puzzling and unexplained by formation models. It is probably an artefact from assuming ices being

confined to the envelope and rocks to the core.

The evolution of the two planets also remains a mystery. While Neptune’s present luminosity may be explained

by the adiabatic cooling of the planet over the age of the Solar System, this is not the case of Uranus’s very low

luminosity (Podolak et al., 1995; Fortney et al., 2011; Nettelmann et al., 2013a). This could be explained by the

presence of a strongly inhibiting compositional gradient decoupling an inner region which would remain hot and an

outer envelope which would cool progressively(Podolak et al., 1995). Such regions could also be present in Neptune

but considerably deeper. Unfortunately, this qualitative explanation cannot be tied to the inferred interior structures.

Apart from the latest models by (Nettelmann et al., 2013a), the models of Uranus and Neptune are too similar (and so

are their magnetic fields – see section 2.3) to explain why Uranus would have such a small intrinsic heat flux and not

Neptune.

In fact, it is likely that all present models of Uranus and Neptune are inadequate because of the assumption of

an adiabatic temperature structure across interfaces with different compositions. Instead, diffusive-convection should

occur and lead to strongly superadiabatic temperature gradient (e.g., Rosenblum et al., 2011). As in the case of

Jupiter and Saturn (see Leconte and Chabrier, 2012), this would lead to higher temperatures in the interior and very

different constraints on the interior composition. The amount of rocks required to fit the mean density and gravitational

moments would certainly rise, potentially solving the ice to rock ratio problem. The evolution of the planets would
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be very different as the present-day luminosity would be mostly governed by the leak of heat from the hot interior by

diffusion at the interfaces.

4.3. Irradiated giant planets

4.3.1. Interior structure and dynamics

The physics that governs the calculation of interior structure and evolution models of giant planets described in

the previous sections can be applied in principle to any gaseous exoplanet and brown dwarf. We focus the discussion

on the ones that orbit extremely close to their star because of the possibility to directly characterise them and measure

their mass, radius and in some cases even the properties of their atmosphere. Two planets are proxies for this new

class of objects: the first extrasolar giant planet discovered, 51 Peg b, with an orbital period of P = 4.23 days, and the

first transiting extrasolar giant planet, HD 209458 b, with P = 3.52 days. Following widespread usage, we call these

planets “hot Jupiters” (a.k.a “Pegasids” since these two archetypes have been discovered in the Pegasus constellation).

With such a short orbital period, these planets are for most of them subject to an irradiation from their central

star that is so intense that the absorbed stellar energy flux can be about ∼ 104 times larger than their intrinsic flux.

The atmosphere is thus prevented from cooling, with the consequence that a radiative zone develops and governs the

cooling and contraction of the interior (Guillot et al., 1996). Typically, for a planet like HD 209458 b, this radiative

zone extends to kbar levels, T ∼ 4000 K, and is located in the outer 5% in radius (0.3% in mass) (Guillot and

Showman, 2002).

Figure 13. Conjectured dynamical structure of hot Jupiters (strongly irradiated extrasolar giant planets): At pressures larger than 0.1 − −1 kbar, the

intrinsic heat flux must be transported by convection. The convective core is at or near synchronous rotation with the star and has small latitudinal

and longitudinal temperature variations. At lower pressures a radiative envelope is present. The top part of the atmosphere is penetrated by the

stellar light on the day side. The spatial variation in insolation should drive winds that transport heat from the day side to the night side. [From

Showman and Guillot (2002)].

Problems in modeling the evolution of hot Jupiters arise because of the uncertain outer boundary condition. The

intense stellar flux implies that the atmospheric temperature profile is extremely dependent upon the opacity sources

considered. Depending on the chosen composition, the opacity data used, the assumed presence of clouds, the ge-

ometry considered, resulting temperatures in the deep atmosphere can differ by up to ∼ 600 K (Seager and Sasselov,

2000; Goukenleuque et al., 2000; Barman et al., 2001; Sudarsky et al., 2003; Iro et al., 2005; Fortney et al., 2006).

Furthermore, as illustrated by fig. 13, the strong irradiation and expected synchronization of the planets’ spin implies

that strong inhomogeneities should exist in the atmosphere with in particular strong (∼ 500 K) day-night and equator-
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to-pole differences in effective temperatures (Showman and Guillot, 2002; Iro et al., 2005; Cooper and Showman,

2005; Barman et al., 2005).

Figure 14 illustrates the expected structure for the atmosphere of HD209458b from a modern, tri-dimensional

global circulation model coupled with a one-dimensional radiative transfer algorithm (Parmentier et al., 2013). All

the caveats concerning these overforced simulations discussed in section 2.4 of course also apply and add to the

uncertainties stemming from the poorly known chemical composition. For example, the particular simulation of

fig. 14 assumes the presence of TiO in the atmosphere, which yields very high temperatures at low pressures on the

day side of the planet. It is not clear that this molecule is present or has condensed at deeper levels (see also Spiegel

et al., 2009). Aside from that, the eastward equatorial circulation and the strong equator to pole gradient now appear

to be a robust feature of these simulations (e.g., Showman and Guillot, 2002; Rauscher and Menou, 2013; Parmentier

et al., 2013). As seen in fig. 14, the equatorial jet redistributes heat between the day side and the night side relatively

efficiently at large pressures and on the equator, but this is not the case at the poles, and at low pressures, in line with

the observational constraints (see section 2.10).

These strong temperature variations must influence at some point the cooling and contraction histories of hot

Jupiters. When opacities variations are not included, they result in more loss of the intrinsic heat and a faster con-

traction than when assuming that the stellar irradiation is homogeneously redistributed across the planetary surface

(Guillot and Showman, 2002; Guillot, 2010; Budaj et al., 2012; Spiegel and Burrows, 2013). However, given other un-

certainties (e.g., on the chemical composition and opacities to be used), this has been neglected in planetary evolution

models thus far.

4.3.2. Thermal evolution and inferred compositions

We have seen in fig. 8 that the measured masses and radii of transiting planets can be globally explained in the

framework of an evolution model including the strong stellar irradiation and the presence of a variable mass of heavy

elements, either in the form of a central core, or spread in the planet interior. However, when analyzing the situation

for each planet, it appears that several planets are too large to be reproduced by standard models, i.e., models using

the most up-to-date equations of state, opacities, atmospheric boundary conditions and assuming that the planetary

luminosity governing its cooling is taken solely from the lost gravitational potential energy (see section 3.4).

Figure 15 illustrates the situation for the particular case of HD209458b: unless using an unrealistically hot at-

mosphere, or arbitrarily increasing the internal opacity, or decreasing the helium content, one cannot reproduce the

observed radius which is 10 to 20% larger than calculated using standard models (Bodenheimer et al., 2001, 2003;

Guillot and Showman, 2002; Baraffe et al., 2003). The fact that the measured radius corresponds to a low-pressure

(∼mbar) level while the calculated radius corresponds to a level near 1 bar is not negligible (Burrows et al., 2003) but

too small to account for the difference. This is problematic because while it is easy to invoke the presence of a massive

core to explain the small size of a planet, a large size such as that of HD209458b requires an additional energy source,

or significant modifications in the data/physics involved.

The discovery of many transiting hot Jupiters has shown that this phenomenon is widespread, with at least a third of

them being oversized compared to predictions from the standard evolution of a solar-composition planet with no core

(Guillot et al., 2006; Guillot, 2008; Laughlin et al., 2011). Numerous explanations have been put forward to explain

this large size. The first ones, invoking tidal dissipation of eccentricity (Bodenheimer et al., 2001) or inclination

(Winn and Holman, 2005) imply that orbital energy is transfered to the planet. These are generally too short-lived

(e.g., Leconte et al., 2010) or of a low probability of occurrence (Levrard et al., 2007). The second ones posit that

part of the irradiation energy is transferred into kinetic energy and is then dissipated deeper into the planet. This is

the case of weather-noise (Showman and Guillot, 2002), ohmic dissipation (Batygin and Stevenson, 2010), thermal

tides (Arras and Socrates, 2010) and turbulent burial (Youdin and Mitchell, 2010) models. These mechanisms appear

quite promising as they are long-lived and generally require only a small fraction of order 1% or less of the irradiation

luminosity to be transported and dissipated at deeper levels to explain the observed planets (Guillot and Showman,

2002). Finally, a third class of models is based on a reduced cooling, either through an ad hoc increase of opacities

(Burrows et al., 2007) or inefficient heat transport due to semi-convection (Chabrier and Baraffe, 2007). Validating

these models is becoming possible thanks to a large number of planets allowing statistical tests (see Laughlin et al.,

2011), but will require further work.

In any case, the fact that a large number of planets are oversized lends weight to a mechanism that would apply

to each planet. Masses of heavy elements can then be derived by imposing that all planets should be fitted by the
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Figure 14. Simulated temperatures as a function of latitude (0◦ at the equator, ±90◦ at the poles) and pressure for HD209458 b obtained from a

global 3D global circulation model. The four panels correspond to cuts from pole to pole at different longitudes (clockwise from the upper left): 0◦

(crossing the substellar point), 90◦E (along the east limb), 180◦E (crossing the antistellar point) and 270◦E (along the west limb). A superrotating

equatorial jet (0◦ latitude) is present and characterized by warmer temperatures than its surrounding at pressures of a few bars. The globally west

to east circulation is responsible for a pronounced asymmetry between the warmer east limb and colder west limb. [Figure based on Parmentier

et al. (2013). Courtesy of V. Parmentier.]

31



T. Guillot & D. Gautier / Treatise on Geophysics, 2nd Edition 00 (2014) 1–41 32

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10[Fe/H]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
M

Z
/M

to
t

1

2

3

4

5

6

8

9

10

11
12

13

14 16

17

18

19

20

21

23

Figure 15. The contraction of HD209458b as a function of time can be compared to its measured radius and inferred age shown by the black box.

Standard models (blue curve) for the evolution of that 0.69 MJ planet generally yield a radius that is too small compared to the observations, even

for a solar composition and no central core (a larger core and -in most cases- larger amounts of heavy elements in the planet imply an even smaller

size for a given age). Unrealistically low helium abundances or high opacities models lead to evolution tracks that barely cross the observational

box. A possibility is that heat is dissipated into the deep interior by stellar tides, either related to a non-zero orbital eccentricity forced by an unseen

companion, or because of a constant transfer of angular momentum from the heated atmosphere to the interior (black curve). Alternatively, the

atmosphere may be hotter than predicted due to heating by strong zonal winds and shear instabilities (red curve).
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Figure 16. Mass fraction of heavy elements in the planets as a function of the metal content of their parent star expressed in solar units (e.g.,

10[Fe/H] = 3 implies that the star contains three times more iron than our Sun). The evolution model assumes that 0.25% of the incoming irradiation

flux is dissipated at the planet’s center. Circles which are labeled 1 to 23 correspond to the CoRoT giant planets. Gray symbols correspond to a

subset of known transiting systems (Guillot, 2008; Laughlin et al., 2011). Unphysical negative values for MZ correspond to insufficient heat sources

leading to a radius that is larger than observed. [From Moutou et al. (2013).]
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same model with the same hypotheses. This can be done by inverting the results of fig. 8, as proposed by Guillot

et al. (2006). On the basis of this hypothesis, figure 16 shows that some of the hot Jupiters contain a large fraction

of heavy elements in their interior and that this fraction is correlated with the metallicity of the parent star. The large

fraction of heavy elements is inferred both for relatively small giant planets (i.e., Saturn mass) and for planets which

are several times the mass of Jupiter. A typical archetype of the first is HD149026 b which must contain around 70 M⊕
of heavy elements, a conclusion that is hard to escape because of the low total mass and high irradiation of the planet

(see Ikoma et al., 2006; Fortney et al., 2006). For the latter, CoRoT-20b appears to push the models to the limit, with

predicted masses of heavy elements in excess of 400 M⊕ (Deleuil et al., 2012).

The correlation between mass of heavy elements in hot Jupiters and stellar metallicity first obtained by Guillot

et al. (2006) appears to stand the trial of time (Burrows et al., 2007; Guillot, 2008; Laughlin et al., 2011; Moutou et al.,

2013), and remains valid when applied to planets with low irradiation levels which do not require additional physics

to explain their large sizes (Miller and Fortney, 2011). It is important to realize that simply accreting slightly more

metal-rich gas with the composition of the parent star would lead to a much smaller increase of a few percent at most.

This correlation requires an efficient mechanism to collect solids in the protoplanetary disk and bring them into the

hot Jupiters, something that is just beginning to be included into planet formation models (Mordasini et al., 2012).

Another intriguing possibility concerning hot Jupiters is that of a sustained mass loss due to the high irradiation

dose that the planets receive. Indeed, this effect was predicted (Burrows and Lunine, 1995; Guillot et al., 1996;

Lammer et al., 2003) and detected (Vidal-Madjar et al., 2003; Fossati et al., 2010; Bourrier et al., 2013). While its

magnitude is still uncertain, it appears to have sculpted the population of planets in very close orbits around their star

(e.g., Lopez et al., 2012).

The harvest of the Kepler and CoRoT missions opens the possibility to extend these studies to smaller planets.

These objects are especially interesting but pose difficult problems in terms of structure because depending on their

formation history, precise composition and location, they may be fluid, solid, or they may even possess a global liquid

ocean (see Kuchner, 2003; Léger et al., 2004).

5. Implications for planetary formation models

The giant planets in our Solar System have in common a large mass of hydrogen and helium, but they are obviously

quite different in their appearances, compositions and internal structures. Although studies cannot be conducted with

the same level of details, we can safely conclude that extrasolar planets show a greater variety of compositions and

structures, and imagine that their appearances differ even more significantly.

A parallel study of the structures of our giant planets and of giant planets orbiting around other stars should provide

us with key information regarding planet formation in the next decade or so. But, already, some conclusions, some of

them robust, others still tentative, can be drawn:

Giant planets formed in circumstellar disks, before these were completely dissipated:

This is a relatively obvious consequence of the fact that giant planets are mostly made of hydrogen and helium:

these elements had to be acquired when they were still present in the disk. Because the observed lifetime of gaseous

circumstellar disks is of the order of a few million years, this implies that these planets formed (i.e., acquired most of

their final masses) in a few million years also, quite faster than terrestrial planets in the Solar System.

Giant planets migrated:

The observed orbital distribution of extrasolar planets and the presence of planets extremely close to their star is

generally taken a strong evidence for an inward migration of planets, and various mechanisms have been proposed

for that (see Ida and Lin, 2004a; Alibert et al., 2005; Moorhead and Adams, 2005, ...etc.). Separately, it was shown

that several properties of our Solar System can be explained if Jupiter, Saturn, Uranus and Neptune ended the early

formation phase in the presence of a disk with quasi-circular orbit, and with Saturn, Uranus and Neptune significantly

closer to the Sun than they are now, and that these three planets subsequently migrated outward (Tsiganis et al., 2005).

Accretion played a key role for giant planet formation:

Although formation by direct gas instability still remains a possibility (e.g., Helled and Bodenheimer, 2011; Boley

et al., 2011), several indications point towards a formation of giant planets that is dominated by accretion of heavy

elements: First, Jupiter, Saturn, Uranus and Neptune are all significantly enriched in heavy elements compared to the

Sun. This feature can be reproduced by core-accretion models, for Jupiter and Saturn at least (Alibert et al., 2005).

33



T. Guillot & D. Gautier / Treatise on Geophysics, 2nd Edition 00 (2014) 1–41 34

Second, the probability to find a giant planet around a solar-type star (with stellar type F, G or K) is a strongly rising

function of stellar metallicity (Gonzalez, 1998; Santos et al., 2004; Fischer and Valenti, 2005), a property that is also

well-reproduced by standard core accretion models (Ida and Lin, 2004b; Alibert et al., 2005). Third, the large masses

of heavy elements inferred in some transiting extrasolar planets as well as the apparent correlation between mass of

heavy elements in the planet and stellar metallicity (Guillot et al., 2006; Burrows et al., 2007; Guillot, 2008; Laughlin

et al., 2011) is a strong indication that accretion was possible and that it was furthermore efficient.

Giant planets were enriched in heavy elements by core accretion, planetesimal delivery and/or formation in an

enriched protoplanetary disk:

The giant planets in our Solar System are unambigously enriched in heavy elements compared to the Sun, both

globally, and when considering their atmosphere. This may also be the case of extrasolar planets, although the

evidence is still tenuous. The accretion of a central core can explain part of the global enrichment, but not that of the

atmosphere. The accretion of planetesimals may be a possible solution but in the case of Jupiter at least the rapid drop

in accretion efficiency as the planet reaches appreciable masses (∼ 100 M⊕ or so) implies that such an enrichment

would have originally concerned only very deep layers, and would require a relatively efficient upper mixing of these

elements, and possibly an erosion of the central core (Guillot et al., 2004; Wilson and Militzer, 2012).

Although not unambiguously explained, the fact that Jupiter is also enriched in noble gases compared to the Sun

is a key observation to understand some of the processes occuring in the early Solar System. Indeed, noble gases are

trapped into solids only at very low temperatures, and this tells us either that most of the solids that formed Jupiter

were formed at very low temperature to be able to trap gases such as argon, probably as clathrates (Gautier et al., 2001;

Hersant et al., 2004; Mousis et al., 2012), or that the planet formed in an enriched disk as it was being evaporated

(Guillot and Hueso, 2006). The fact that in Jupiter, argon, krypton and xenon have a comparable enrichment over the

solar value within the error bars (see Lodders, 2008, and table 3) slightly favors the latter explanation.

6. Future prospects

We have shown that the compositions and structures of giant planets remain very uncertain. This is an important

problem when attempting to understand and constrain the formation of planets, and the origins of the Solar System.

However, the parallel study of giant planets in our Solar System by space missions such as Galileo and Cassini, and

of extrasolar planets by both ground based and space programs has led to rapid improvements in the field, with in

particular a precise determination of the composition of Jupiter’s troposphere, and constraints on the compositions of

a dozen of extrasolar planets.

Improvements on our knowledge of the giant planets requires a variety of efforts. Fortunately, nearly all of these

are addressed at least partially by adequate projects in the next few years. The efforts that are necessary thus include

(but are not limited to):

• Continue progresses on EOSs in order to obtain reliable results that can be used for a wide range of temperatures

and pressures in the astrophysical context. This should be done with the help of laboratory experiments, for

instance by using powerful lasers such as the NIF in the USA and the MégaJoule laser in France. Extensive

numerical calculations should be performed as well, in particular with mixtures of elements.

• Calculate phase diagrams for a variety of mixtures, in particular involving superionic water, rocks, iron (and

hydrogen). The hydrogen-helium phase diagram should also be refined because it is critical to understand the

evolution and structure of Jupiter and Saturn.

• Have a better yardstick to measure solar and protosolar compositions. This has not been fully addressed by the

Genesis mission and may require another mission and/or progresses in modeling the Sun’s composition.

• Improve the measurement of Jupiter’s gravity and magnetic fields, and determine the abundance of water in the

deep atmosphere. This will be done by the Juno mission (Bolton, 2010) which is to arrive at Jupiter in 2016,

and whose polar orbit skimming a mere 5000 km above the cloud tops should enable exquisite measurements

of these quantities.
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• Measure with high precision Saturn’s gravity field. Saturn’s gravitational moments have already been improved,

but an important increase in accuracy can be obtained as part of the Cassini Solstice mission (Spilker, 2012),

while the spacecraft plunges onto the planet. This should lead to better constraints, and possibly a determination

of whether the interior of Saturn rotates as a solid body.

• Pursue the discovery of transiting extrasolar planets including some with longer orbital periods and around

bright stars. A large number of these objects will enable detailed statistical studies which will be key in under-

standing this population of objects.

• Develop consistent models for the formation, evolution, present structure and magnetic field of Uranus and

Neptune, in order to understand ice giants as a class of planets.

• It would be highly desirable to send a probe similar to the Galileo probe into Saturn’s atmosphere (e.g., Marty

et al., 2009). The comparison of the abundance of noble gases would discriminate between different models of

the enrichment of the giant planets, and the additional measurement of key isotopic ratio would provide further

tests to understand our origins.

• In the long term, a mission to the ice giants Uranus or Neptune would bring new views of these fascinating

planets and help to complete our knowledge of the outer solar system.

Clearly, there is a lot of work on the road, but the prospects for a much improved knowledge of giant planets and

their formation are bright.
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