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Abstract: A new method of data reconciliation for linear static systems which is able to take into account

the knowledge about the uncertainties of the used model is proposed. The uncertainties are represented by

bounded variables. The elementary operations relating to the intervals make it possible to propose a state

estimation of the system taking into account the uncertainties without a priori knowledge on their statistic

laws of distribution. The estimation result is also provided in an interval form.

Resume: On propose une nouvelle m´thode de r´conciliation de donn´es de syst`mes statiques lin´aires

capable de prendre en compte les incertitudes param´triques du mod`le utilis´. Les incertitudes sont

repr´sent´es par des variables born´es. Des op´rations ´l´mentaires portant sur les intervalles permettent

de proposer une estimation de l'´tat du syst`me prenant en compte ces incertitudes et sans connaissance a

priori sur leurs lois de distribution statistique. Le r´sultat de l'estimation est ´galement fourni sous une

forme intervalle.

Key Words: Data reconciliation, uncertain models, bounded approach, interval analysis, fault detection

and isolation, analytic redundancy.

Mots cles: Validation de donn´es, mod`les incertain, approche bornante, analyse par intervalles,

d´tection et localisation de d´fauts, redondance analytique.

1 é Introduction

The problem of obtaining reliable estimates of process variables from measurements (data validation or

reconciliation) and the related problem of detecting and isolating gross errors has been well studied.

Historically speaking, likely due to measurement availability, static redundancy equations have been first

utilised in the mineral processing and the chemical industries. The first studies (Ripps, 1962, Vaclavek,

1969, Smith et al., 1973) were concerned with data reconciliation using the now classical technique of

equilibration of production's balances. In the following stages this data reconciliation principle has been

generalised to processes which are described by algebraic equations either linear in the case of total

flowrates (Crowe et al., 1983) or non linear in the case of chemical concentrations (Sood et al., 1979,

Crowe, 1986).

At the same time, data reconciliation went into use for more general applications than establishing

statistically coherent balances. It was then applied to more fundamental problems such as: detection,

localisation and estimation of gross errors (Narasimhan et al., 1989, Ragot et al., 1990), diagnosis and

observability of systems (Kretsovalis et al., 1988), (Crowe, 1989), (Ragot et al., 1998), optimization of

sensor locations (Maquin et al., 1987, 1996) and study of the reliability of a measurement system

(Turbatte et al., 1991).



Data reconciliation methods are mainly based on the knowledge of a model which must describe, as well

as possible, the behaviour of the concerned system. They exploit the analytic redundancy embedded in the

mathematical description of the model by verifying the coherency between the actual measurements and

some estimations issued from the model. This redundancy generally leads to a discrepancy between the

equations and the data which have to be reconciled; so it provides a check on the reliability of a given set

of measurements. At last, it seems relevant to validate and adjust the measurements taking into account

the degree of precision of each measurement and key physical laws. Most of the methods used techniques

based upon statistical considerations, where the noise affecting the records is often characterised by the

mean and the covariance of an amplitude probability function. Maximising the likelihood function issued

from this probability function allows to express the estimation of the true data to be expressed. A survey

of the methods used in data reconciliation can be found in (Crowe, 1996).

As mentioned above, most previous investigators have used statistical criteria such as least squares as the

criteria for calculating the best estimates of process variables. However, the results provided by such

estimators are valid under the following restrictive conditions:

the nature of the measurement noise has to be known

the model of the process has to be perfectly known.

It can be a difficult task to estimate the validity of such assumptions and, in a certain number of

applications, it is obvious that both conditions are not fully respected (Ploix, 1998), (Adrot 2000).

Therefore, it becomes very hazardous and mathematically not correct to reconcile operation data with

regard to an uncertain model without taking this fact into account. Some attempts in this direction have

been already published (Mandel et al., 1998), (Maquin et al., 2000). An alternative method is proposed

here which do not use any hypothesis about the noise distribution nor perfection of the used model. The

only information needed about the noise or the model parameters is the value of the bounds of their

interval variations. On an historical point of view, the paper of Himmelblau (1985) is probably one of the

first which gives the formulation of such data rectification principles. This idea has been confirmed in

(Harikumar et al., 1993) and in (Kyriakopoulos et al., 1996).

In this paper, a quite different approach is proposed. The uncertainties are represented by bounded

variables and the all the treatments are based on interval analysis (Moore, 1979), (Neumaier, 1990). In

order to simplify, the presentation essentially deals with static linear models of the following form:

Ax

x R A Rn m n

=

∈ ∈

0

, .
(1)

The entries A j i,  of the process constraint matrix A are interval variables A A Aj i j i j i, , ,,=  where

j m= 1K , i n= 1K , A j i,  and A j i,  denote respectively the lower and upper bounds of the interval.

The measurement system is represented by the uncertain following model:

y h a x g bi i i i i i i i= + + +1 1η νg L g L       i n= 1K (2)

The ηi  and ν i  variables are bounded and normalised, i.e. ηi ≤ 1  and ν i ≤ 1 , a b hi i i, ,  and gi  are positive

constants. The term h a xi i i iη  represents the multiplicative error while g bi i i1+ νg L  stands for additive error.

Based on the knowledge of the process model (1) and measurement system model (2) as well as the

measurements yi , i n= 1K , the main objective is to reconcile the measurements using a state estimation

method based on interval algebra. In order to simplify the presentation, all the state variables of the

process are assumed to be measured. If this is not the case, a preliminary observability analysis allows the

redundant part on which the proposed treatment may be done, to be extracted (Ragot et al., 1998).



2 é Fault detection

Coherency study is based on residual analysis. These residuals are obtained by substituting to the true

(but unknown !) state variables, in model equation (1), estimated values obtained from measurement

equation (2). Indeed, from (2), one obtains:
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Remembering that ν i  and ηi  are normalised bounded variables, the ith estimation is such that:
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The $xi  and $xi  variables are respectively upper and lower bounds of this ith interval estimation $xi .

Taking into account the model equation (1), residuals may now be defined as:

R A xj j= $   with $ $, $x x x=   and  j=1’m (5)

In this last expression, A j  denotes the jth row of the A matrix. As the entries of A are also interval

variables, a residual is defined by the scalar product of two interval variable vectors. The scalar product

between an interval variable vector $x  and an ordinary vector (real value vector) A j  is defined as follows:

A x A x x A x x x xj j j
$ $ $ $ $, $ $= + + − −1

2

1

2
i e (6a)

The scalar product between $x  and Aj  is defined as well :

A x A x x A x x x xj j j$ $ $ $ $, $ $= + + − −1

2
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2
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where A Rj ∈  is the row vector which entries are the lower bounds of the jth row and A Rj ∈  the upper

bounds row vector. Generalising these expressions, the scalar product of the two interval variable vectors

A j  and $x  that defines the R j  residual is then expressed as:

R R R

R A x A x R A x A x

j j j

j j j j j j

=

= =

,

min min( $),min( $) , max max( $),max( $)j F j F
(7)

In this expression R j  represents the lower bound of the R j  residual and R j  it«s upper bound.

Incoherences between the different measurements may now be highlighted through an analysis of these

residuals. Indeed, an interval residual will be considered as » normal “ if it contains the zero value. In that

case, all the measurements intervening in the corresponding residual are assumed to be fault-free and

coherent with the model. Otherwise, the residual is abnormal, and the measurements from which it is

calculated are not coherent with the model.

3 é Fault isolation

Isolation of faults is based on the analysis of a classical fault signature matrix. Indeed, each redundancy

equation (or a subset of them) represents a partial model of the system, which has been obtained either

directly, if all the state variables are measured or by rewriting the original constraints so as to be

expressed using only known variables. All these partial models are obviously ”true„ (then the

corresponding residual is said ”normal„) when the system operates normally (since they described in fact

the normal operation), and some of them become ”false„ (abnormal residual) when some fault or failure

occurs. The proposed analysis is based on an occurrence or signature matrix. This matrix has as many



rows as residuals and as many columns as state variables. The number of residuals is not a priori known.

Indeed, one can separate the so-called primary residuals corresponding to a set of independent equations

(directly those describing the process constraints if all the state variables are measured) and linear

combinations of these primary residuals which aim to eliminate one or several particular variables. The

entries of this matrix are evaluated as follows. If a residual is ”normal„ (i.e. contains the zero value),

respectively ”abnormal„, all the elements corresponding to the state variables intervening in it«s

expression are set to ”1„, respectively ”0„, the other elements are ”undetermined„.

Isolation of faulty measurements is therefore very simple: they are associated to the columns of the

signature matrix that don«t contain ”1„ elements. Indeed, the absence of ”1„, in a column corresponding

to a particular state variable, means that this latter belongs systematically to abnormal residuals It is

therefore natural to think that it is this particular variable that renders abnormal the residuals in which it

intervenes. The example of section 5 will illustrate the proposed analysis.

4 é State estimation

Before precisely describing the state estimation process, let us formulate a remark and introduce some

notations. Based on the analytic redundancy of the process model, several ”local„ estimations of a state

variable may be proposed. In fact, a different interval estimation of a particular state variable may be

evaluated from any process constraint in which it intervenes. To precise this idea, let us consider any

constraint, say the jth, in which the kth variable intervenes. Let us also define the B j
kg L

 vector built from

the jth row of process constraint matrix A j  such that it«s entries are defined by:
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Therefore, the different estimations $ ,xk j  of the state variable xk  may be computed as follows:

$ $,x B xk j j
k= g L

(9)

In the notation $ ,xk j , the first subscript indicates the number of the estimated variable while the second

one corresponds to the number of the constraint used for that estimation. On a practical point of view,

these estimations are defined by a scalar product between two interval variable vectors, so the calculus

principle previously described may be applied.

The state estimation process is then divided into two consecutive steps. The first one consists to ”correct„

the primary estimations (3) issued from the use of the measurement model if the corresponding

measurement has been detected faulty. Let us consider that the kth measurement is faulty, the new

estimation of this variable is obtained as the intersection of all the possible estimations $ ,xk j :

$ $ ,x xk k j
j

= I (10)

At this step, all the estimations $xi , i n= 1K , are coherent with the process model ; all the residuals

evaluated with these primary or corrected estimations contain the zero value. However, it is still possible

to enhance them by using more completely the analytical redundancy of the model. Indeed, the multiple

estimation process described previously for state variables corresponding to faulty measurements may

now be also applied to the other state variables.



The final estimation $$xi  of the ith variable exploits all these ”local„ estimations as it is obtained by their

intersection:

$$ $ $,x x xi i j
j

i=
H
GI

K
Ja

I I (11)

5 é Example

5.1 œ Description

The chosen academic example describes a system characterised by ten variables and five constraint

equations. Some parameters of the constraints are perfectly known and the others are described by an

interval variable.

A =

− −

−

− −

− −

− −

H
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I
I
I
I
I

K

J

a
a
a
a
a

[ . , . ] [ . , . ] [ . , . ]

[ . , . ] [ . , . ]

[ . , . ]

[ . , . ] [ . , . ]

[ . , . ]

0 98 1 02 0 99 1 01 0 1 0 0 98 1 02 0 0 0 0

0 0 99 1 01 0 0 0 0 1 0 95 1 05 0 0

0 0 0 1 0 99 1 01 0 1 0 0 0

0 0 1 0 0 99 1 01 0 98 1 02 0 0 0 0

0 0 1 0 0 0 0 0 0 9 11 1

(12)

The uncertain model of the measurement system is described by:

y a x ii i i i i= + ≤ =1 1 1 10η ηg L , , K (13)

In order to simplify the presentation, only the multiplicative errors have been taken into account in this

example. The measurement vector and it«s corresponding vector of ai  coefficients are the following:

y
T= 2117 517 5 91 11 71 11 55 5 60 10 20 15 0 97 4 90. . . . . . . .40 . .f f (14a)

a
T= 0 1 0 1 0 15 0 1 0 15 0 1 0 25 0 1 0 1 0 1. . . . . . . . . .f f (14b)

Remembering that ηi  is a normalised bounded variable ( ηi ≤ 1), one deduces from (14) that:
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=$ ... (15)

Substituting the measurements in this inequality allows the estimations $xi  (i =1’10) to be obtained:

$ . , .x1 19 25 2352= , $ . , .x2 4 70 5 74= , $ . , .x3 514 6 95= ,  $ . , .x4 10 65 13 01=
$ . , .x5 10 04 13 59= , $ . , .x6 509 6 22= , $ . , .x7 816 13 60= , $ . , .x8 14 00 17 11= (16)

$ . , .x9 0 88 108= , $ . , .x10 4 45 5 44=

5.2 œ Residual analysis

From the estimations (16), the process model (12) and equations (6) and (7), the following residuals are

then evaluated:

R x x x x1 1 2 4 60 98 1 02 0 99 1 01 0 98 1 02 5 04 13 01= − − + =. , . $ . , . $ $ . , . $ . , . (17a)

R x x x2 2 8 70 99 1 01 0 95 1 05 515 6 10= − + = −. , . $ . , . $ $ . , . (17b)

R x x x3 4 5 70 99 1 01 11 24 10 53= − − = − −$ . , . $ $ . , . (17c)

R x x x4 5 3 60 99 1 01 0 98 1 02 3 36 3 60= − − = −. , . $ $ . , . $ . , . (17d)

R x x x5 3 9 100 9 11 1 1 70= − − = −$ . , . $ $ .49, . (17d)



The zero element doesn«t belong to the first and third residuals (17a) and (17c), so, they are declared

”abnormal„. Therefore, there exist incoherences between the measurements and the process model. At

least, one of the measurements intervening in the expressions of these residuals, i.e. y1 , y2 , y4 , y5 , y6

and y7  is suspected to be faulty.

5.3 œ Fault isolation by signature analysis

For this particular small dimension example, the generic procedure proposed in section 3 may be reduced.

As only two residuals are suspected, the more suspect measurement is that which is common to R1  and

R3 , i.e. y4 . Combining the expressions of these two residuals, it is possible to eliminate this variable

leading to the new residual R31 .

R x x x x x31 1 2 6 5 70 98 1 02 0 99 1 01 0 98 1 02 0 99 1 01= − + − −. , . $ . , . $ . , . $ . , . $ $ (18)

The value of this residual is then numerically evaluated taking into account estimations (16):

R31 9 28 7 58= − . , . . Clearly this residual is not suspect as the interval contains the zero value. The

following signature table exhibits this analysis.

Measurement

Residual
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 Normal

R1 0 0 0 0 No

R2 1 1 1 Yes

R3 0 0 0 No

R4 1 1 1 Yes

R5 1 1 1 Yes

R31 1 1 1 1 1 Yes

Table 1: Signature table

5.4 œ State estimation

The measurement y4  is faulty ; it is then necessary to estimate the corresponding state variable from the

other fault-free measurements. As it intervenes into two process constraints (the first and the third row of

the A matrix, it is possible to propose the two following estimations:

$ . , . $ $ . , .,x x x4 3 5 70 99 1 01 1810 27 32= + = (19a)

$ . , . $ , . $ . , . $ . , ., .x x x x4 1 1 2 60 98 1 02 0 99 1 01 0 98 1 02 18 05 25 69= − + = (19b)

Due to measurement errors it«s natural that these two estimations don«t matched perfectly. The primary

estimation $ . , .x4 10 65 13 01=  is then replaced by $ ( $ $ ) . , ., ,x x x4 4 1 4 3 1810 25 69= ∩ = . All the other multiple

estimations are then computed on the basis of $xi , i n= 1K . One obtains:

$ .41, . $ . , . $ . , . $ . , .

$ . , . $ . , . $ . , . $ . , .

$ . , . $ . , . $ . , . $ . , .

$ . . $ .

, , , ,

, , , ,

, ,

, ,

x x x x

x x x x

x x x x

x x

1 1 2 1 2 2 3 4

3 5 4 1 4 3 5 3

5 4 6,1 6,4 7 2

7 3 8 2

16 26 50 184 12 24 0 30 9 81 3 60 8 74

5 25 6 63 18 05 25 69 1810 27 32 4 50 17 53

10 13 13 30 1 24 12 63 2 99 8 59 7 50 13 31

4 38 15 74 12 81

= = − = − =

= = = =

= = − = =

= = , .40 $ . , . $ . , ., ,19 0 31 2 50 3 95 6 169 5 10 5x x= − =



The final estimations are then evaluated on the basis of the previous one:

$$ $ $ . , . $$ $ $ $ . , .

$$ $ $ $ . , . $$ $ $ . , .

$$ $ $ $ . , . $$ $ $ $ . , .

$$ $ $ $ .

, , ,

, , , ,

, ,

, ,

x x x x x x x

x x x x x x x

x x x x x x x x

x x x x

1 1 1 1 2 2 1 2 2 2

3 3 4 3 5 3 4 4 1 4 3
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5 25 6 63 1810 25 69
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8
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8 8 2 8

9 9 5 9 10 10 5 10

, . $$ $ $ . , .

$$ $ $ . , . $$ $ $ .45, .44

,

, ,

x x x

x x x x x x

= ∩ =

= ∩ = = ∩ =

The analysis of these results shows that all the information embedded both in the process and

measurement models has been exploited. The measurement bias affecting y4  has been detected, isolated

and corrected. Some final estimations are directly issued from measurement model ( $$ , $$ $$x x x1 2 6or  for

example), the use of the process model cannot enhanced the first estimations (16). On the contrary, when

measurements are less accurate, the interval estimations are restricted by using of the process model ; it is

the case of $$ , $$ $$x x x3 5 7or  for example.

6 é Conclusion

The exposed technique represents an interesting alternative to the classical technique of data

reconciliation using the principle of the likelihood function maximisation based on the distribution of the

measurement errors. It requires very few theoretic hypotheses for its implementation and is essentially

based on a semi-empirical knowledge relative to the variable and parameter plausible confidence

domains. Future works will be dedicated to the extension of the proposed method to non linear system,

particularly to system described by both linear and bilinear equations
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