
HAL Id: hal-00991150
https://hal.science/hal-00991150

Submitted on 14 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High order Semi-Lagrangian particle methods for
transport equations: numerical analysis and

implementation issues
Georges-Henri Cottet, Jean-Matthieu Etancelin, Franck Pérignon, Christophe

Picard

To cite this version:
Georges-Henri Cottet, Jean-Matthieu Etancelin, Franck Pérignon, Christophe Picard. High order
Semi-Lagrangian particle methods for transport equations: numerical analysis and implementa-
tion issues. ESAIM: Mathematical Modelling and Numerical Analysis, 2014, 48 (4), pp.1029-1060.
�10.1051/m2an/2014009�. �hal-00991150�

https://hal.science/hal-00991150
https://hal.archives-ouvertes.fr

Mathematical Modelling and Numerical Analysis Will be set by the publisher

Modélisation Mathématique et Analyse Numérique

HIGH ORDER SEMI-LAGRANGIAN PARTICLE METHODS

FOR TRANSPORT EQUATIONS:

NUMERICAL ANALYSIS AND IMPLEMENTATION ISSUES.

G.-H. Cottet1, J.-M. Etancelin1, F. Perignon1 and C. Picard1

Abstract. This paper is devoted to the definition, analysis and implementation of semi-Lagrangian meth-
ods as they result from particle methods combined with remeshing. We give a complete consistency analysis
of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stabil-
ity analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical
illustrations. We also describe a general approach to implement these methods in the context of hybrid
computing and investigate their performance on GPU processors as a function of their order of accuracy.

AMS Subject Classification. — Please, give AMS classification codes —.

The dates will be set by the publisher.

1. Introduction

Particle methods are Lagrangian methods that have been designed for advection dominated problems,
with applications mostly in plasma physics [10], incompressible flows [4, 7, 16], or gas dynamics [20].
Following [12,13], particle methods are often associated with remeshing, in order to maintain the regularity
of the particle distribution and, as a consequence, to control the accuracy of the method in presence of
strong strain in the flow carrying the particles. Remeshing removes the grid free nature of particle methods
but maintains some of its features like conservation, locality, and stability. It not only guarantees accuracy
but also allows to combine in a seamless fashion particle methods with grid-based techniques, like domain
decomposition methods and fast FFT-based Poisson solvers for field evaluations [5, 22], multi-resolution
and adaptive mesh refinement [1, 2].

In practice particle remeshing occurs every few time steps. In that case, and as long as the remeshing
frequency does not increase when the discretization parameters tend to zero, Remeshed Particle Methods
(RPM in the sequel) can be viewed as conservative forward semi-lagrangian methods. Classical semi-
lagrangian methods for transport equations combine tracking of trajectories originating at grid points
and interpolation from the grid. Because they operate on local point values, semi-lagrangian methods
in general do not conserve mass, unless some specific treatment is done. By contrast, particle methods
transport masses which makes them inherently conservative.

Forward Semi Lagrangian methods have already been designed and used with success in plasma physics [9]
and geophysical flows [6]. Semi Lagrangian particles, as they come out of RPM, have some distinctive
features. First, the projection on the grid is explicit, based on explicit remeshing kernels, and does not
require to solve a linear system to recover grid values. The computational effort can thus be restricted
to the support of the solution and efficient parallel algorithms can be implemented. Moreover, remeshed

Keywords and phrases: Advection equations, particle methods, semi-lagrangian methods, GPU computing
1 Université Grenoble Alpes and CNRS, Laboratoire Jean Kuntzmann, BP 53 38041, Grenoble Cédex 9, France

c© EDP Sciences, SMAI 1999

2 TITLE WILL BE SET BY THE PUBLISHER

particle methods can be derived at any order in a systematic fashion, whereas the methods derived in [6,9]
seem to be restricted to first order in space [23]. One goal of this paper is indeed to derive remeshed particle
methods of arbitrary order, independently of any CFL condition, and to give a complete numerical analysis
of a large class of second and fourth order methods.

RPM only involve local operations and are therefore well adapted to parallel implementations. In [24] an
implementation of remeshed particle methods on GPU processors was described for the two-dimensional
Navier-Stokes equations with penalization to account for solid obstacles. In the present paper, follow-
ing [18], we consider implementations of two or three-dimensional RPM combined with directional split-
ting, that is where particles are pushed and remeshed successively in the three directions. Directional
splitting allows to use high order remeshing kernels, with large stencils, at a minimal cost. We in partic-
ular discuss how directional splitting impacts the memory management to optimize implementations of
RPM on GPU.

The outline of this paper is as follows. In Section 2 we give the definition of RPM, recall how remeshing
kernels are derived and produce a list of high order kernels. In Section 3 we give the numerical analysis
of RPM, based on the regularity and moment properties of the remeshing kernels. In Section 4 we
present numerical illustrations and refinement studies of RPM in one to three dimensions. Section 5 is
devoted to our implementation of RPM on GPU, in the context of a software library devoted to hybrid
computations where different solvers can be implemented on different platforms. Finally Section 6 is
devoted to concluding remarks and we give in the appendix the analytical formulas of the remeshing
kernels that are considered in the paper.

2. Remeshed particle methods

In all the sequel we consider advection equations in the following conservation form

∂u

∂t
+ div (au) = 0, x ∈ R

d, t > 0, (2.1)

where a is a given smooth velocity field.

2.1. Definition

In this paper we consider the case of uniform grids (we refer to [1, 2] for the design and applications
of adaptive RPM with variable grid-size). RPM consist of alternating particle motion and remeshing.
Particles are at the beginning of every time-step on a regular grid xi = i∆x, i ∈ Z

d, then move with the
following equation

xn+1
i = xi + ãni ∆t. (2.2)

In the above equation ãni denotes an evaluation of the velocity field at time tn = n∆t and location xi which
depends on the chosen time-stepping scheme. Remeshing follows, through interpolation with a remeshing
kernel Γ which satisfies Γ(−x) = Γ(x). If uni denotes the value approximating u(xi, tn), this gives the
following formula :

un+1
i =

∑

j

unj Γ

(
xn+1
j − xi
∆x

)
, i ∈ Z

d, n > 0. (2.3)

In traditional remeshing schemes for multidimensional problems, multidimensional kernels Γ are derived as
tensor products of 1D formulas. In the present study we follow the approach initiated in [18] which consists
of reducing the advection problem (2.1) into one-dimensional advection equations through directional
splitting. One the one hand, this approach has the drawback that increasing the order in time of the
method is less straightforward than for the original multidimensional problem. On the other hand, it offers
the advantage to significantly reduce the computational cost of the method if high order kernels, with large
stencils, are used. In short, if the kernel Γ involves a stencil with Ns grid points, in three dimensions a

TITLE WILL BE SET BY THE PUBLISHER 3

multidimensional remeshing method will cost O(N3
s) per particle, while a directional splitting will cost

O(3Ns) operations. For values of Ns & 6, a typical case we will consider in the sequel, the ratio is larger
than 10. Directional splitting also allows to derive limiting techniques to reduce oscillations [18] and, for
the numerical analysis of the method, one only needs to consider the case d = 1.

2.2. Derivation of remeshing kernels

We consider the equation (2.1) and its approximation formulas (2.2), (2.3) for d = 1. As will be clear from
the numerical analysis below, one key feature which controls the accuracy of RPM is the conservation of
momentum up to a given order p. More precisely, one seeks to satisfy for the scheme (2.3) the following
identity ∑

i

un+1
i xαi =

∑

i

uni x
α
i , 0 ≤ α ≤ p, (2.4)

for all sequences (uni). It is readily seen that this is equivalent to the following moments conditions for the
remeshing kernel Γ ∑

k∈Z

kαΓ(x− k) = xα, 0 ≤ α ≤ p, x ∈ R (2.5)

or, equivalently,
∑

k∈Z

(x− k)αΓ(x− k) =
{
1 if α = 0

0 if 1 ≤ α ≤ p , x ∈ R. (2.6)

Note that for α = 0 these conditions enforce the conservation of mass. Using these identities for a given
value of p and assuming that the kernel Γ remeshes particle weights among the p+ 1 nearest grid points,
one obtains a piecewise polynomial function of degree p. For p = 1 this gives the piecewise linear tent
function. With p = 2 one obtains a piecewise quadratic function, the so-called Λ2 formula, that has
been used with success in the first particle simulation of the Navier-Stokes equations using remeshing in
a systematic fashion [13].

This method to derive kernels is straightforward but has the drawback that it does not deliver smooth
kernels. The kernel Λ2 is not even continuous (this is the case more generally for kernels corresponding to
even values of p; for odd values, the kernels are continuous but their derivatives are discontinuous). This
lack of smoothness may result in a loss of accuracy or in oscillations, in particular if large time-steps are
used. In [18] local correction techniques where derived to guarantee at least first order for the kernel Λ2

and third order for the analogous kernel Λ4 corresponding to p = 4.

To derive smooth kernels, one option is to use extrapolation techniques starting from smooth B-splines.
If we denote by M1 the top-hat filter with support in [−1/2,+1/2], and by Mn its successive convolution:

Mn = M
(∗n)
1 ∈ Wn,∞(R), the idea is to derive linear combinations of Mn, xM ′

n, x2M ′′
n ,. . . to cancel the

successive continuous moments of Γ. More precisely, given an even integer p ≥ 2 and k > 1 + p/2, one

looks for coefficients α1, . . . , αp/2+1 such that Γ =
∑p/2

l=0 αl+1x
lM

(l)
k satisfies

∫
yαΓ(y) dy =

{
1 if α = 0,

0 if 1 ≤ α ≤ p. (2.7)

For symmetry reasons these conditions need only be enforced for even values of α. This leads to a square
linear system of size 1 + p/2 the coefficients of which only involve the even moments of Mk. With this
method, one for instance readily obtains the following kernels

Γ =
1

2
(3M4 + xM ′

4), (2.8)

and

Γ =
1

8
(15M8 + 9xM ′

8 + x2M ′′
8). (2.9)

4 TITLE WILL BE SET BY THE PUBLISHER

The first formula corresponds to a kernel of class C1, piecewise cubic, with a support of size 4 and p = 2. It
was derived under the name of M ′

4 in [19] and has been and still is extensively used in particle simulations,
in particular of vortex flows. The second formula corresponds to a kernel of class C4, piecewise polynomial
of degree 7, with a support of size 8 and p = 4.

The moment conditions (2.7) concern continuous moments of the kernel. To check that the discrete

moment conditions (2.6) are satisfied as well, one can use an equivalent condition using the Fourier
transform of the kernel [7, 29]. If

Γ̂(ξ) =

∫
Γ(y)e−iξy dy,

it can be shown ([7]) that the properties (2.5) are satisfied provided Γ̂ fulfills the following conditions:

Γ̂(ξ)− 1 has a zero of order p+ 1 at ξ = 0

Γ̂(ξ) has a zero of order p+ 1 at all ξ = 2πm,m 6= 0.

Since Γ̂(α) is proportional to yαΓ(y), the first condition above is clearly equivalent to the conditions (2.7).
Moreover one has

M̂1(ξ) =
sin (ξ/2)

ξ/2
and thus

M̂n(ξ) =

[
sin (ξ/2)

ξ/2

]n
.

As a result, the Fourier transform of the functions xlM
(l)
k has a zero of order k− l at all non zero multiple

of π. From these observations, one can easily check that the kernels (2.8), and (2.9) do satisfy the discrete
moment conditions (2.5) with p = 2 and p = 4 respectively.

The approach just presented leads to smooth and high order kernels. However the kernels derived in this
fashion do not necessarily satisfy the following interpolation property

Γ(i) =

{
1 if i = 0,

0 otherwise.
(2.10)

Indeed the so-called kernel M ′
4 given in (2.8) does satisfy this condition, but not the one derived in

(2.9) from M8. Property (2.10) is natural as it ensures that, if the velocity is zero, the exact solution
is algebraically conserved. Although this property does not enter the numerical analysis that follows, in
practice it seems to have some importance, in particular to represent accurately the smallest scales in
turbulent flows.

One can derive kernels which satisfy simultaneously and to any given order, regularity, moment conditions
and the interpolation property. For a sake of simplicity, in the following we restrict ourselves to kernels
with a stencil covering an even number 2Ms of grid points. We seek kernels Γ that have the following
properties:

P1: Γ has support in [−Ms,+Ms],
P2: Γ is even and piecewise polynomial of degree M in intervals of the form [i, i+ 1],
P3: Γ is of class Cr,
P4: Γ satisfies the moment properties (2.5) for a given value of p,
P5: Γ satisfies the interpolation property (2.10).

Such kernels are determined by Ms(M + 1) coefficients. The regularity property P3 imposes Ms(r + 1)
interface conditions at integer values, and [(r + 1)/2] conditions to express that derivatives of odd order
vanish at zero. The properties P4 and P5 impose p+1+Ms conditions. One reasonable constraint under
which one can expect to find kernels satisfying these conditions is therefore

Ms(M + 1) ≥ (r + 1)Ms + [(r + 1)/2] + p+ 1 +Ms.

TITLE WILL BE SET BY THE PUBLISHER 5

The Table 1 lists several kernels that have been obtained through this approach by symbolic calculations.
In this table, the kernels have been labelled by 2 indices that refer to the regularity and the order to which
moment conditions are satisfied, as we will see that these are the parameters which control the order of
accuracy of the RPM: Λp,r is a kernel in W r,∞(R) which satisfies (2.5). Λ4,2 corresponds to the kernel M ′

4

already mentioned. The kernel Λ4,2 was derived with this approach and used for the first time in [2] under
the name of M ′

6. For a sake of completeness, we have provided in the appendix the analytical formulas

Moments (p in 2.5) Regularity Nb of grid points in stencil Degree Support

Λ2,1 2 C1 4 3 [−2; 2]
Λ2,2 2 C2 4 5 [−2; 2]
Λ2,3 2 C3 4 7 [−2; 2]
Λ2,4 2 C4 4 9 [−2; 2]
Λ4,2 4 C2 6 5 [−3; 3]
Λ4,3 4 C3 6 7 [−3; 3]
Λ4,4 4 C4 6 9 [−3; 3]
Λ6,3 6 C3 8 7 [−4; 4]
Λ6,4 6 C4 8 9 [−4; 4]
Λ6,5 6 C5 8 11 [−4; 4]
Λ6,6 6 C6 8 13 [−4; 4]
Λ8,4 8 C4 10 9 [−5; 5]

Table 1. Kernels of various regularity, moment properties and complexity. In bold, the
kernels that are considered in the numerical experiments of Section 4 and for which ana-
lytical formulas are given in the appendix.

for the kernels which are considered in the numerical experiments of Section 4: Λ2,1, Λ2,2, Λ4,2, Λ4,4, Λ6,4,
Λ6,6 and Λ8,4.

3. Numerical Analysis

We consider in this section RPM with kernels satisfying the moment properties (2.5) and the following
regularity conditions :

Γ ∈W r+1,∞(R) and Γ ∈ C∞ (]l, l + 1[) , l ∈ Z. (3.1)

The RPM is defined by the formulas (2.2), (2.3) and we will denote by Tiu(·, tn) the result of the scheme
(2.3), at the grid point xi, starting from grid values u(xj , tn).

In this section we are interested by the stability and spatial accuracy of the method. For a sake of
simplicity we will therefore assume that a does not depend on time and that particles advance with an
explicit first-order Euler scheme. In this case we simply have ãnj = a(xj).

A striking feature of RPM, common with all semi-lagrangian methods, is that their stability does not rely
on CFL conditions. In this section we prove stability and consistency results under the condition

∆t ≤ M

‖a′‖L∞

(3.2)

for a given constant M < 1. This condition in particular ensures that particle trajectories cannot intersect.
The constant M is often called Lagrangian CFL number.

6 TITLE WILL BE SET BY THE PUBLISHER

3.1. Consistency

We will prove the following consistency result

Proposition 1. Assume that the condition (3.2) is satisfied, and that the moment and regularity conditions
(2.5), (3.1) hold for some r, p > 1. Let T > 0 and assume further that a and the solution u to equation
(2.1) belong to L∞

(
0, T ;W r+1,∞(R)

)
. Then, if we set β = inf (r, p), the following estimate holds

u
(
xi, t

n+1
)
= Ti (u (·, tn)) +O

(
∆t2

)
+O

(
∆t∆xβ +∆xβ+1 +∆tβ+1

)
. (3.3)

Moreover if every cell of size ∆x contains exactly one particle after an advection step, then β = p.

Proof. If we use the notation unj for u(xj , tn) and set j = i+ k we can write the following expansion

unj =

β∑

l=0

kl∆xl

l!
u(l)(xi) +O

(
∆xβ+1

)
, (3.4)

where u(l)(xi) stands for ∂lu/∂xl(xi, tn). Next, one can write xn+1
j = xi + k∆x+ ai+k∆t and therefore

Γ

(
xn+1
j − xi
∆x

)
= Γ(k + λi+k),

where λj is the local CFL number: λj = aj∆t/∆x. We then write λj = λi + (aj − ai)∆t/∆x and use the
following formula

(f ◦ g)(m)(x) =
m∑

|q|=1

cqf
q1+···+qm(g(x))

m∏

s=1

(
g(s)(x)

)qs

where q = (q1, . . . , qm) is a multi-index, |q| = q1 + 2q2 + · · · + mqm and cq are positive coefficients, to
obtain

Γ

(
xn+1
j − xi
∆x

)
=

β∑

m=0

(k∆x)m
m∑

|q|=1

cqΓ
(q1+···+qm)(k + λi) ν

q1+···+qm

m∏

s=1

(
a(s)(x)

)qs
(3.5)

+ O


(k∆x)β+1‖Γ‖β+1,∞‖a‖β+1,∞

∑

|q|=β+1

νq1+···+qβ+1


 .

In the above equation we have denoted by ν the ratio ∆t/∆x. Since q1 + · · ·+ qβ+1 ≤ |q| we have

∑

|q|=β+1

νq1+···+qβ+1 ≤ C
(
ν + νβ+1

)
.

TITLE WILL BE SET BY THE PUBLISHER 7

The remainder in (3.5) can thus be bounded by O
(
∆xβ+1 +∆xβ∆t+∆tβ+1

)
. Combining (3.4) and (3.5)

we obtain

Ti(u(·, tn)) =
∑

j

unj Γ

(
xn+1
j − xi
∆x

)
= (3.6)

∑

k

∑

0≤l+m≤β

(k∆x)l+mu
(l)(xi)

l!

m∑

|q|=1

cqΓ
(q1+···+qm)(k + λi) ν

q1+···+qm

m∏

s=1

(
a(s)(xi)

)qs

+O
(
∆xβ+1 +∆xβ∆t+∆tβ+1

)

=
∑

k

Ek(xi) +O
(
∆xβ+1 +∆xβ∆t+∆tβ+1

)
.

By differentiation, the moment conditions (2.5) yield

∑

k

kq
′

Γ(q)(k + x) = (−x)q′−qq′(q′ − 1) · · · (q′ − q + 1), for 0 ≤ q ≤ q′ ≤ β.

Using these identities with x = λi and observing that λ
l+m−(q1+···+qm)
i νq1+···+qm = di(∆t/∆x)

l+m where
di are coefficients only depending on a, we get

∑

k

Ek(xi) =
∑

0≤l+m≤β

O
(
∆tl+m

)
+O

(
∆xβ+1 +∆xβ∆t+∆tβ+1

)
. (3.7)

One can easily check that the zero and first order terms in the above expansion, corresponding to 0 ≤
l +m ≤ 1, result in

u(xi, tn)−∆t a(xi)∂u/∂x(xi, tn)−∆t a′(xi)u(xi, tn) = u(xi, tn)−∆t ∂(a u)/∂x(xi, tn).

We therefore finally obtain

Ti(u(·, tn)) = uni −∆t
∂(au)

∂x
(xi, tn) +O

(
∆t2

)
+O

(
∆xβ+1

)
+O

(
∆xβ∆t

)
(3.8)

= u(xi, t
n+1) +O

(
∆t2

)
+O

(
∆xβ+1 +∆xβ∆t+∆tβ+1

)
. (3.9)

To prove the second assertion of our proposition we observe that if, at the end of an advection step, every
cell within the stencil centered at the grid point xi contains exactly one particle, since particles cannot
cross this means that λj and λi lie in the same interval between successive integers. The kernel Γ is C∞
in such intervals and thus the expansion 3.5 is valid to any order. The coefficient β can therefore be taken
equal to p.

3.2. Stability

We start with the linear stability analysis and assume that the velocity field a is constant.

Linear stability

In this paragraph, we will show unconditional stability (with respect to λ = a∆t/∆x) for a certain class
of remeshing kernels. We set, for k ∈ Z,

αk(λ) = Γ(k + λ) , Ak(λ) =
∑

i

αi(λ)αi+k(λ). (3.10)

8 TITLE WILL BE SET BY THE PUBLISHER

In all the calculations that follow we will write αk and Ak for αk(λ) and Ak(λ), respectively, when there
is no ambiguity on the value of λ. We start with the following result

Lemma 2. If the kernel Γ satisfies (2.5) then

∑

k,l

(k − l)q αkαl = 0 ,
∑

k≥1

kq Ak = 0, if 1 ≤ q ≤ p, q even. (3.11)

Proof. We have
∑

k,l

(k − l)q αkαl =
∑

k,l

q∑

m=0

Cm
q k

m(−l)q−m αkαl.

By the moment properties (2.5)
∑

k,l k
m(−l)q−m αkαl = (−λ)mλq−m and thus

∑

k,l

(k − l)q αkαl =

q∑

m=0

Cm
q (−λ)mλq−m = 0.

The second identity readily follows, since A−k = Ak.

We consider the case of kernels involving stencils with an even number of points. We further restrict our
analysis to second order kernels involving 4 points (which means that the support of Γ is the interval
[−2,+2]) and fourth order kernels involving 6 points (the support of Γ is the interval [−3,+3]). The key
properties of the remeshing kernel that are needed to ensure stability are the moment conditions and a
sign and a decay properties for the kernel values. More precisely we will prove the following result

Proposition 3. Assume that the velocity field a is constant, and that the kernel Γ satisfies one of the
following conditions:

i: Γ satisfies (2.5) with p = 2, Γ has support in [−2,+2] and satisfies for all values of λ ∈ [0, 1]

A1 ≥ 0 , A2 ≤ 0 , A3 ≥ 0 , −A2 ≥ 6A3. (3.12)

ii: Γ satisfies (2.5) with p = 4, Γ has support in [−3,+3] and satisfies for all values of λ ∈ [0, 1]

A1 ≥ 0 , A2 ≤ 0 , A3 ≥ 0 , A4 ≤ 0 , A5 ≥ 0 , A3 ≥ −8A4. (3.13)

Then the remeshed particle method is unconditionally stable.

Before proceeding with the proof of this result, some comments are in order. For all the kernels that
are used in practice one has Γ(x) ≥ 0 for x ∈ [−1, 1] and Γ alternates sign in successive integer inter-
vals. The conditions (3.12), (3.13) therefore mean that the kernel decays fast enough. In the case i,
A2 = α−2α0 + α−1α1 and A3 = α−1α1. The condition −A2 ≥ 6A3 is thus satisfied as soon has α0 ≥ 6α1.
For the Λ2,1 kernel, this condition can easily be checked: one has, for λ ∈ [0, 1]

|α0/α1| =
2 + 2λ− 3λ2

(1− λ)λ = 2 +
2− λ2
(1− λ)λ ≥ 2 +

1

(1− λ)λ ≥ 6.

Similar calculations show that the other 2nd order kernels in the Table 1 satisfy this decay condition.
For 4th order, 6 points kernels, the analytic calculations are more involved, but it is possible to check by
symbolic calculations that the conditions (3.13) hold for the kernels that are indicated in Table 1. Our
result only covers 2nd and 4th order kernels. However one can conjecture from the proof that will be given
below that it extends to higher order kernels, with larger stencils, under an appropriate decay condition
for the coefficients Ak.

We now proceed with the proof of Proposition 3 and begin with the case i.

TITLE WILL BE SET BY THE PUBLISHER 9

We define by I the integer such that λ = a∆t/∆x ∈ [I, I + 1[and we set µ = λ − I ∈ [0, 1[. We write
j = i− I + k and set vi = uni−I . The scheme (2.3) now reads

un+1
i =

∑

k

vi+kΓ(k + µ). (3.14)

Since the support of Γ is in [−2,+2], the coefficients αk(µ) vanish if k ≤ −3 or k ≥ 2. Using (3.10) we
obtain
∑

i

|un+1
i |2 =

∑

i

∑

−2≤k,l≤1

vi+k vi+l αk(µ)αl(µ) =
∑

i

v2i
∑

k

α2
k + 2

∑

i

∑

−2≤k<l≤1

vi+k vi+l αk αl. (3.15)

We then write
2vi+k vi+l = v2i+k + v2i+l − |vi+k − vi+l|2.

The conservation of the first moment gives

1 =

(∑

k

αk

)2

=
∑

k

α2
k + 2

∑

−2≤k<l≤1

αk αl,

and therefore ∑

i

∣∣un+1
i

∣∣2 =
∑

i

v2i −
∑

i

Si (3.16)

where Si =
∑

−2≤k<l≤1 αk αl|vi+k − vi+l|2.
Since obviously

∑
i v

2
i =

∑
i |uni |2, it remains to prove that

∑
i Si ≥ 0. Using the change of index l = k+m

for l > k and the notations in (3.10) allows to write

∑

i

Si =
∑

k

∑

1≤m≤3

αk αk+m

∑

i

|vi+m − vi|2 =
∑

1≤m≤3

Am

∑

i

|vi+m − vi|2.

We set δi = vi+1 − vi to rewrite the above expression as

∑

i

Si = A1

∑

i

δ2i +A2

∑

i

(δi + δi+1)
2 +A3

∑

i

(δi + δi+1 + δi+2)
2. (3.17)

Expanding the above sums we obtain

∑

i

Si = (A1 + 2A2 + 3A3)
∑

i

δ2i + (2A2 + 4A3)
∑

i

δiδi+1 + 2A3

∑

i

δiδi+2.

We again write 2δiδi+1 = δ2i + δ2i+1 − |δi − δi+1|2 and a similar identity for 2δiδi+2 to obtain

∑

i

Si = (A1 + 4A2 + 9A3)
∑

i

δ2i − (A2 + 2A3)
∑

i

|δi − δi+1|2 −A3

∑

i

|δi − δi+2|2.

By (3.11) with q = 2 we get A1 + 4A2 + 9A3 = 0. If we set ηi = δi − δi+1 we thus have

∑

i

Si = −(A2 + 2A3)
∑

i

|ηi|2 −A3

∑

i

|ηi + ηi+1|2.

Since A3 > 0 and |ηi + ηi+1|2 ≤ 4(η2i + η2i+1) we can write

∑

i

Si = −(A2 + 6A3)
∑

i

|ηi|2 ≥ 0,

provided the decay property (3.12) is satisfied.

10 TITLE WILL BE SET BY THE PUBLISHER

We now turn to the second assertion of the proposition. We start from (3.15) and obtain an estimate
similar to (3.17), with m = 5 instead of 3 since the kernel has now a support of size 6, yields:

∑

i

Si =
∑

k

∑

1≤m≤3

αk αk+m

∑

i

|vi+m − vi|2 =
∑

1≤m≤5

Am

∑

i

|vi+m − vi|2 (3.18)

We set δi = vi+1 − vi and obtain:

∑

i

Si = A1

∑

i

δ2i +A2

∑

i

(δi + δi+1)
2 +A3

∑

i

(δi + δi+1 + δi+2)
2

+A4

∑

i

(δi + δi+1 + δi+2 + δi+3)
2 +A5

∑

i

(δi + δi+1 + δi+2 + δi+3 + δi+4)
2

= (A1 + 2A2 + 3A3 + 4A4 + 5A5)
∑

i

δ2i + (2A2 + 4A3 + 6A4 + 8A5)
∑

i

δiδi+1

+(2A3 + 4A4 + 6A5)
∑

i

δiδi+2 + (2A4 + 4A5)
∑

i

δiδi+3 + 2A5

∑

i

δiδi+4.

Rewriting double products as above and introducing ηi = δi − δi+1, we obtain

∑

i

Si = (A1 + 4A2 + 9A3 + 16A4 + 25A5)
∑

i

δ2i

−(A2 + 2A3 + 3A4 + 4A5)
∑

i

η2i − (A3 + 2A4 + 3A5)
∑

i

(ηi + ηi+1)
2

−(A4 + 2A5)
∑

i

(ηi + ηi+1 + ηi+2)
2 −A5

∑

i

(ηi + ηi+1 + ηi+2 + ηi+3)
2.

By (3.11) with q = 2 we have A1 + 4A2 + 9A3 + 16A4 + 25A5 = 0. Expanding the remaining squares in
the above identity we get

∑

i

Si = −(A2 + 4A3 + 10A4 + 20A5)
∑

i

η2i − 2(A3 + 4A4 + 10A5)
∑

i

ηiηi+1

−2(A4 + 2A5)
∑

ηiηi+2 − 2A5

∑
ηiηi+3.

We again write 2ηiηi+1 = η2i + η2i+1 − |ηi − ηi+1|2 and similar identities for the other double products to
obtain

∑

i

Si = −(A2 + 6A3 + 20A4 + 50A5)
∑

i

η2i

+ (A3 + 4A4 + 10A5)
∑

i

(ηi − ηi+1)
2 + (A4 + 4A5)

∑

i

(ηi − ηi+2)
2 +A5

∑

i

(ηi − ηi+3)
2

Subtracting (3.11) with q = 4 from the corresponding identity with q = 2 yields A2+6A3+20A4+50A5 = 0.
Moreover, since A4 ≤ 0 and A5 ≥ 0 we can write

(A4 + 4A5)
∑

i

(ηi − ηi+2)
2 ≥ A4

∑

i

(ηi − ηi+2)
2 ≥ 4A4

∑

i

(ηi − ηi+i)
2.

Therefore ∑

i

Si ≥ (A3 + 8A4)
∑

i

(ηi − ηi+i)
2 ≥ 0,

provided the decay property (3.13) is satisfied. This concludes our proof in the case of a constant velocity
field.

TITLE WILL BE SET BY THE PUBLISHER 11

General case

We now consider the general case of a smooth, non-constant, velocity field a.

Proposition 4. Assume that the velocity field a is in W 1,∞(R) and that the assumptions of Proposition 3
are satisfied. Assume in addition that the kernel Γ satisfies the interpolation property (2.10). Then there
exists a constant C, independent of ∆t and ∆x, such that

∑

i

∣∣un+1
i

∣∣2 ≤ (1 + C∆t)
∑

i

|uni |2 (3.19)

Proof. We will only give the proof in the case of a second order method corresponding to the case i of
Proposition 3. The proof in the case of ii follows along the same lines.

The local Courant number λ can now vary from one particle to the next. To start with we will first
consider the case when this number remains in the same integer interval, that is we make the assumption
that

∃ I ∈ Z such that, ∀i ∈ Z, λi = a(xi, tn)∆t/∆x ∈ [I, I + 1].

We proceed like in the proof of Proposition 3. We set µj = λj − I ∈ [0, 1[, vi = uni−I and j = i − I + k,
and the scheme (3.14) becomes

un+1
i =

∑

k

vi+kΓ(k + µj) =
∑

k

vi+kαk(µj). (3.20)

We first observe that, by the regularity of the velocity field a,

|λj − λj′ | = O
(
|j − j′|∆t

)

and, since Γ ∈W 1,∞(R), for −2 ≤ k < l ≤ 1, j = i− I + k, j′ = i− I + l

αk(µj) = αk(µj′) +O(∆t). (3.21)

In particular αk(µj) = αk(µi−I) +O(∆t) if j = i− I + k with k ∈ [−2, 1]. This allows to write

∑

i

|un+1
i |2 =

∑

i


 ∑

−2≤k≤1

vi+kαk(µi−I)



2

+O
(
∆t|v|2

)
,

where we have used the notation |v|2 =
∑

i |vi|2. Proceeding like in estimates (3.16), (3.17) we can write :

∑

i

|un+1
i |2 = O

(
∆t|v|2

)
+

∑

i

[∑

k

|vi+k|2α2
k(µi−I) +

∑

k<l

(
|vi+k|2 + |vi+l|2 − |vi+k − vi+l|2

)
αk(µi−I)αl(µi−I)

]
. (3.22)

12 TITLE WILL BE SET BY THE PUBLISHER

Using again (3.21) and setting j = i+ k we have

∑

i

∑

k

|vi+k|2α2
k(µi−I) =

∑

j

∑

k

|vj |2α2
k(µj−I) +O

(
∆t|v|2

)
,

∑

i

∑

k<l

|vi+k|2αk(µi−I)αl(µi−I) =
∑

j

∑

k<l

|vj |2αk(µj−I)αl(µj−I) +O
(
∆t|v|2

)
,

∑

i

∑

k<l

|vi+l|2αk(µi−I)αl(µi−I) =
∑

j

∑

k<l

|vj |2αk(µj−I)αl(µj−I) +O
(
∆t|v|2

)
,

∑

i

∑

k<l

|vi+k − vi+l|2αk(µi−I)αl(µi−I) =
∑

j

∑

m

Am(µj−I)|vj − vj+m|2 +O
(
∆t|v|2

)
.

This allows us to rewrite the summation in the right hand side of (3.22) as

∑

j

|vj |2
[∑

k

α2
k(µj−I) + 2

∑

k<l

αk(µj−I)αl(µj−I)

]
−
∑

j

∑

m

Am(µj−I)|vj − vj+m|2 +O
(
∆t|v|2

)
.

By the conservation of the first moment we have

∑

k

α2
k(µj−I) + 2

∑

k<l

αk(µj−I)αl(µj−I) = 1

and, like for the constant velocity case, it only remains to check the sign of S =
∑

j

∑
mAm(µj−I)|vj − vj+m|2.

We proceed like in the constant velocity case and set δi = vi+1 − vi and ηi = δi+1 − δi. We expand the
squares in S using the fact that

δ2i+1A2(µi−I) = δ2i+1A2(µi+1−I) +O(∆t)
(
|vi+2|2 + |vi+1|2

)

and similar expressions for δ2i+1A3(µi−I) and δ2i+2A3(µi−I). This leads to

S = |v|2O(∆t) +
∑

i

δ2i [A1(µi−I) + 4A2(µi−I) + 16A3(µi−I)]−
∑

i

η2i [A2(µi−I) + 2A3(µi−I)]

−
∑

i

(ηi + ηi+1)
2A3(µi−I).

(3.23)

We next write

(ηi + ηi+1)
2A3(µi−I) ≤ 2

(
η2iA3(µi−I) + η2i+1A3(µi+1−I)

)
+ C∆t

(
|vi+3|2 + |vi+2|2 + |vi+1|2

)
.

Due to (3.11), under the condition (3.12), (3.23) finally yields

S ≥ −C∆t|v|2

and therefore ∑

i

|un+1
i |2 ≤

∑

i

|uni |2 + C∆t.

We finally turn to the general case, when neighboring particles can have their local CFL numbers in
different integer intervals. We can always group particles in subsets where the CFL numbers are in the
same integer interval. For I ∈ Z, we set

JI = { j ∈ Z such that λj ∈ [I, I + 1[}.

TITLE WILL BE SET BY THE PUBLISHER 13

We can rewrite the remeshed particle method as

un+1
i =

∑

I

∑

j∈JI

unj Γ(λj + j − i) =
∑

I

SI(i) (3.24)

The next step is to take the square of the above identity. The key point is to observe that, by the
interpolation property (2.10), double products of the form SI(i)SI′(i) with I 6= I ′ are of order ∆t. We
indeed observe that, due to the regularity of a, we have

|λj − λj′ | ≤ C∆t|j − j′|

and therefore, if the kernel Γ has a support of size 2Ms and if ∆t is small enough

Γ(λj + j − i)Γ(λj′ + j′ − i) 6= 0⇒ |j − j′| ≤ 2Ms + 1. (3.25)

Next, again in view of the regularity of a, if two neighboring particles have indices which belong to a
different set JI this implies that their local CFL number is close to an integer value. More precisely

[
j ∈ JI , j′ ∈ JI′ , I 6= I ′, |j − j′| ≤ 2Ms + 1

]
⇒

∃(K,K ′) ∈ Z
2,K 6= K ′such that j + λj = K +O(∆t), j′ + λj′ = K ′ +O(∆t).

By the interpolation property (2.10) and the regularity of Γ this implies

[
j ∈ JI , j′ ∈ JI′ , I 6= I ′, |j − j′| ≤ 2Ms + 1

]
⇒ Γ(λj + j − i)Γ(λj′ + j′ − i) = O(∆t).

Combined with (3.25) this shows that, for I 6= I ′,

SI(i)SI′(i) ≤ C∆t
∑

j∈JI
⋃

JI′

|unj |2. (3.26)

It remains now to sum over i the above identities. To identify the indices j which, for a given index i,
contribute to the sum SI(i), we denote by φ the application such that

φ(x) = x+ a(x)∆t.

In view of (3.2) we have 0 < 1−M ≤ φ′(x) ≤ 1 +M . φ is thus one-to-one and its inverse φ−1 is strictly
increasing. If we set ψ(i) = φ−1(i∆x)/∆x, the indices j which contribute to SI(i) must satisfy

i∆x−Ms∆x ≤ j∆x+ aj∆t ≤ i∆x+Ms∆x

which yields

ψ(i−Ms) ≤ j ≤ ψ(i+Ms).

If a particle j contributes to two different terms SI(i) and SI(i
′) with, say, i < i′ this means that

ψ(i′ −Ms) ≤ j ≤ ψ(i+Ms)

and therefore

|i′ − i| ≤Ms.

As a result, a given particle of index j contributes to at most 2Ms sums SI(i). One can thus deduce from
(3.26) that, for a certain constant C independent of ∆t and ∆x

∑

i

∑

I 6=I′

SI(i)SI′(i) ≤ C∆t|un|2,

14 TITLE WILL BE SET BY THE PUBLISHER

and, from (3.24), ∑

i

|un+1
i |2 ≤

∑

i

∑

I

S2
I (i) + C∆t|un|2. (3.27)

Finally, if we set

wI
j =

{
unj if j ∈ JI
0 otherwise,

by the preceding proof in the case when I takes a constant value, we have

∑

i

S2
I (i) ≤ (1 + C∆t)|wI |2

and ∑

I

∑

i

S2
I (i) ≤ (1 + C∆t)

∑

I

|wI |2.

In view of (3.27) this leads to ∑

i

|un+1
i |2 ≤ |un|2 + C∆t|un|2

and our proof is completed.

Remark. For CFL ≤ 1, Remeshed Particle Methods reduce to finite-difference schemes [8]. The conver-
gence analysis above contains thus as a by-product a convergence proof of a class of conservative second
and fourth order finite-difference schemes.

4. Numerical illustrations

In this section we compare the accuracy of the various kernels considered above in 1D, 2D and 3D smooth
flows. The reference [15] deals with remeshed particle methods using the Λ4,2 kernel in the context of the
transport of passive scalar in turbulent flows. It in particular emphasizes the efficiency of this method
in the case of high Schmidt numbers, that is when the diffusivity of the scalar is small compared to the
viscosity of the flow. The extension of this work to higher order kernels introduced in the present paper
will be reported in a future work.

We first consider a 1D advection equation in the interval [−1,+1] with periodic boundary condition. The
velocity a and the initial condition u0 are given by

a(x) = 1 + sin (πx)/2 , u0(x) = sin (πx) (4.1)

This flow induces compression and dilatation which successively increase and decrease the value of the
solution. The exact solution is given by the following formula :

u(x(t), t) = u0(x0)
2 + sin 2πx0
2 + sin 2πx(t)

where x(t) is the trajectory with origin x0 associated to the velocity field a, given by

arctan [tan (πx(t)) + 1/2] = arctan [tan (πx0) + 1/2] + tπ
√
3/2.

The solutions are periodic in time with period T = 4/
√
3.

Figure 1 shows the solution at initial time and t =
√
3. For this case we compare in Figure 2 the results

obtained with the kernels Λ2,1, Λ4,2, Λ2,2 and Λ4,4. In all cases, and throughout this section, particles
where pushed with a fourth order Runge-Kutta time-stepping. The number of grid points ranged from
128 to 4096. For the purpose of this refinement study, we had to choose a constant value for the ratio
∆t/∆x. We fixed a CFL value of 12. This value corresponds, for the coarsest resolution considered in

TITLE WILL BE SET BY THE PUBLISHER 15

Figure 1. Advection equation with data (4.1). Initial condition (solid curve) and solution
at t =

√
3 (dashed curve).

this test, to a constant M in (3.2) equal to 0.7. The error is measured in the maximum norm. The
numerical analysis above indicates that the two last kernels should deliver respectively second and fourth
order methods, while the two first kernels, because of their lack of regularity, should be limited to first
and second order, respectively. One can indeed observe that, for a given number of conserved moments,
increasing the regularity does improve the accuracy of the RPM. However it is interesting to note that
the kernel Λ2,1 already gives a second order method. The reason is that, in this example, zones where the
solution undergoes large variations, and thus where numerical errors are likely to be larger, only rarely
correspond to grid points where the local CFL numbers cross integer values.

To illustrate next the directional splitting which we use to address multidimensional problems, we first con-
sider the classical two-dimensional case of a an off-centered circle strained in an incompressible rotational
flow. More precisely, the computational box is the square [0, 1]2. The velocity field is given by

a(x1, x2, t) = f(t)
(
− sin2(πx1) sin(2πx2), sin(2πx1) sin

2(πx2)
)

(4.2)

The initial condition is a sign function whose zero level set is a circle of radius 0.15 and centered at the
point (0.5, 0.15). The function f(t) is introduced to allow the solution to eventually return to the initial
condition. We take f(t) = cos(πt/12), and compare the computed solution at time t = 12 with the initial
condition. In this experiment, like in the 3D case below, we use the classical second order Strang formula
for the dimensional splitting, that is we successively push and remesh particles in the x1, x2, x2 and
x1 directions for ∆t/2. It is indeed possible to derive and use higher order splitting methods, but our
choice of a second order splitting was made for a practical reason – fourth order splitting methods are
more demanding in terms of CPU and memory requirement. Furthermore, although second order splitting
limits the theoretical order of convergence to 2, one can still see the benefit of using higher order kernels.
Using a 6th order kernel in this example indeed yields an effective order of convergence close to 6. In
this experiment the number of grid points in each direction ranged form 32 to 512. Like in the previous
experiment, for the purpose of this refinement study, the CFL number was kept constant, equal to 12.
The average order of convergence is shown on the right picture of Figure 3. In this experiment the kernels
Λ2,2, Λ4,4 and Λ6,6 would give similar results to the kernels Λ2,1, Λ4,2 and Λ6,4 respectively. Figure 4 shows
the solution obtained with N = 256 grid points in each direction and the kernels Λ2,1 and Λ6,4, at t = 6
and t = 12, compared to the exact solution. At t = 6, which is the time of maximal stretching for this
experiment, the exact solution was obtained by a front tracking method using 10000 markers. This study

16 TITLE WILL BE SET BY THE PUBLISHER

0,001 0,01

DX

1e-07

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

E
rr

o
r

in
 m

a
x
im

u
m

 n
o
rm

Kernel Order of convergence

Λ2,1 2.35
Λ2,2 3.15
Λ4,2 3.45
Λ4,4 4.25

Figure 2. Refinement study for the 1D advection equation (4.1) and several first to fourth
order RPM and CFL value equal to 12. Left picture : black-circle curve : kernel Λ2,1; red-
square : kernel Λ2,2; blue-diamond : kernel Λ4,2; green-triangle : Λ4,4; dashed lines indicate
slopes corresponding to second and fourth order convergence. Right table: average order
of convergence for these RPM.

Kernel Order of convergence

Λ2,1 1.87
Λ4,2 3.17
Λ6,4 5.92

Figure 3. Refinement study for the 2D advection field (4.2). CFL value is equal to 12.
Left picture : black-circle curve : kernel Λ2,1; red-square : kernel Λ4,2; blue-triangle : kernel
Λ6,4; dashed lines indicate slopes corresponding to second and fourth order convergence.
Right table: average order of convergence for these RPM.

clearly shows the gain obtained in his case by using high order kernels, even though the theoretical order
of convergence is limited by that of the dimensional splitting.

As already stressed, one distinctive feature of Semi Lagrangian Particles are that their stability and the
spatial order of convergence is not constrained by a CFL condition. To illustrate this property, we repeated

TITLE WILL BE SET BY THE PUBLISHER 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 4. Interface u = 0 for the advection field (4.2) with Nx = Ny = 256. Top-left:
t = 6, kernel Λ2,1; Top-middle: t = 6, kernel Λ6,4; Top-right: exact front-tracking solution;
Bottom-left: t = 12, kernel Λ2,1; Bottom-right: t = 12, kernel Λ6,4. On the bottom pictures
the red curve represents the exact (initial) interface at t = 12.

the above experiment wit 256 points in each direction and a CFL number equal to 30. These grid resolution
and time-step give a value of the constant M in (3.2) equal to 0.35. Figure 5 shows the zero level set at
times 6 and 12. Although one cannot expect the same overall accuracy as in the previous experiment with
such a large time-step, the interface appears to remain rather well captured.

We now turn to a 2D example where the kernel regularity seems to be more important than in the previous
cases. We consider an expansion field given by

a(x1, x2) = (x1/r, x2/r), r =
√
x21 + x22, (4.3)

and the initial value of u is an axisymmetric function supported in an annulus:

u0(r) =

{
C[(r − ra)(r − rb)]4 if ra ≤ r ≤ rb ,
0 otherwise.

with ra = 0.1, rb = 0.25 and C = [2/(ra − rb)]8.
The exact solution at time t is given by u(r, t) = u0(r − t)(r − t)/r. Figure 6 shows the result of a
refinement study for the kernels Λ2,1, Λ2,2, Λ4,2 and Λ4,4. In that case areas where the local CFL number
cross integer values are aligned with the flow directions. As a result the kernel Λ2,1 only gives first order
convergence, while Λ2,2 is close to the second order accuracy predicted by our analysis. Note that increasing
the order and regularity of the kernel improves the convergence but does not allow to reach fourth order.
In this example the second order time-splitting limits the observed overall accuracy.

18 TITLE WILL BE SET BY THE PUBLISHER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 5. Same experiment as in Figure 4 with Nx = Ny = 256, the kernel Λ6,4 and
CFL = 30. Left picture : interface at t = 6, right picture : interface at t = 12 (red curve
is the exact solution).

0,001 0,01 0,1

DX

1e-05

0,0001

0,001

0,01

0,1

1

E
rr

o
r

in
 m

a
x
im

u
m

 n
o
rm

Kernel Order of convergence

Λ2,1 1.08
Λ2,2 1.83
Λ4,2 2.01
Λ4,4 2.52

Figure 6. Refinement study for the radial test case (4.3). Left picture : black-circle
curve : kernel Λ2,1; red-square : kernel Λ2,2; blue-diamond : kernel Λ4,2; green-triangle :
Λ4,4; dashed lines indicate slopes corresponding to second and fourth order convergence.
Right table: average order of convergence for these kernels. The CFL number is equal to
4.

TITLE WILL BE SET BY THE PUBLISHER 19

0 1 2 3 4

Time

0,011

0,012

0,013

0,014

0,015

V
o
lu

m
e
 i

n
si

d
e
 i

so
su

rf
a
c
e
 u

=
0
.5

Figure 7. Volumes inside the interface u = 0.5 for the test case (4.4)-(4.6) with CFL = 30
and 256 grid points in each direction. Green-circle curve: kernel Λ2,1; red-square curve:
kernel Λ4,2; green-diamond curve: kernel Λ8,4.

We close this section with a 3D version case suggested in [17] and often used to validate level set methods.
In this example the computational box is the unit cube and the initial condition is a sphere of radius 0.15
centered around the point with coordinates (0.35, 0.35, 0.35). This sphere is advected with the velocity
field

a1(x1, x2, x3) = 2 sin2(πx1) sin(2πx2) sin(2πx3), (4.4)

a2(x1, x2, x3) = − sin(2πx1) sin
2(πx2) sin(2πx3), (4.5)

a3(x1, x2, x3) = − sin(2πx1) sin(2πx2) sin
2(πx3). (4.6)

This motion wraps the sphere into thinner and thinner surfaces difficult to capture. In this case we want
also to illustrate the fact that RPM only need particles in the support of the advected quantity. To
capture the sphere we use a color function (1 inside the sphere, 0 outside). At the end of the remeshing
step, particles are created only when their strength is above 0.001. In this experiment, we use 256 grid
points in each direction. The CFL number is equal to 30, which corresponds to the same value of M
as in the 2D case (4.2). The number of particles roughly varies between 1.5%, at t = 0, and 10%, at
t = 4, of the total number of grid points inside the computational box. Due to the cut-off used in the
remeshing step, the total mass was not algebraically conserved. However, in the present experiments the
deviation did not exceed 0.1% of the total mass. Figure 7 shows the evolution of the volume inside the
interface (this volume should remain constant at all times) obtained with the kernels Λ2,1, Λ4,2 and Λ8,4.
Figure 8 show the interface u = 0.5 at time t = 4, with the kernels Λ2,1 and Λ8,4. These results confirm
the gain in accuracy that can be obtained by using high order kernels. The next section will discuss the
computational complexity associated with these kernels.

5. Remeshed Particle Methods and software engineering

One challenge in High Performance Computing is to develop algorithms that are able to take advantage of
clusters made of emerging exascale hardware. These clusters are hybrid architectures which combine many
heterogeneous distributed processors and accelerators. A natural idea is to match models, algorithms and

20 TITLE WILL BE SET BY THE PUBLISHER

Figure 8. Isosurface u = 0.5 at t = 4.0 for the test case of the sphere in the flow (4.4)-(4.6)
with N = 256 and CFL = 30. Left picture: kernel Λ2,1 ; right picture: kernel Λ8,4.

physical scales resolved by these algorithms to the specific features of the processors involved in these
architectures.

A typical example is the case of turbulent transport in incompressible flows. Hybrid algorithms can be
designed to resolve in an optimal fashion the minimal scales present in the flow and in the advected
scalar [15]. Moreover in these hybrid approaches the different algorithms can have different parallel
scalability and it may be advantageous to distribute these algorithms to different type of processors. The
local nature of RPM make these methods well suited for highly parallel processors, like GPUs, and one
may envision simulations of transport at high Schmidt numbers in turbulent flows (that is when the scalar
smallest scales extend much beyond those of the flows) at very high resolution at a cost that does not
exceed that of the flow solver at a much lower resolution.

To be able to implement hybrid algorithms on hybrid architectures, one needs to develop high level
frameworks and libraries with a high level description which allows to distribute different solvers and grids
to different parts of the clusters in a seamless fashion.

In this section we first outline the general approach followed for this framework. We then go into more
details for a specific branch of this framework, namely the implementation on GPU of RPM. We detail
the performance of the different kernels associated to the different parts of the algorithm and the overall
performance of the GPU implementation of RPM. We in particular focus on the complexity of the RPM
using various high order kernels that have been derived and analyzed in the previous section.

5.1. Library description

In this library we use object oriented programming techniques to reach a high level of modularity, with a
strong focus on usability and flexibility. The goal is to enable the user to launch indifferently sequential,
parallel or hybrid numerical simulations. We use Python as an abstraction framework.

Our library currently provides two levels of parallelism, MPI and OpenCL. However, thanks to the
modularity it would also be possible to implement other parallelism paradigms such as task parallelism.

In order to achieve good portability, the computational frameworks are written using OpenCL C whenever
it will enable good performances on the target architecture. OpenCL is an open standard for parallel
programming of heterogeneous systems [21]. It provides application programming interfaces to address
hybrid platforms containing many CPUs and GPUs and a programming language based on C99 to write

TITLE WILL BE SET BY THE PUBLISHER 21

instructions executed concurrently on the OpenCL devices. This framework is used through the PyOpenCL
python interface to OpenCL [11].

In OpenCL applications, the program, that executes on the host system, must send OpenCL kernels to
available devices in a command queue. The execution model of the application defines the devices and
queues management. A given kernel contains an executable code that concurrently runs on a device
compute units which are called work-items. A memory model needs to be explicitly defined to manage
data layout in the memory hierarchy. Details of these models, such as the number of work-items in a
work-group or the memory access patterns, have a very strong impact on the program efficiency.

The high level of abstraction of Python allows to conceal from the user the parallel paradigms and the
low level implementations of the numerical algorithms. It will participate in our goal to develop a library
that is portable to various kind of hybrid architectures of modern computers.

Mathematics Problem description

Numerical methods RKn Λp,r . . . FD FFT

Algorithms
CPU (topology,
storage, . . .)

GPU (work space,
vector types, . . .)

(a) Functional view

User interface Python

HPC MPI OpenCL

Computations Fortran/C Python OpenCL

(b) Programming view

Figure 9. Application layout.

Figure 9a shows the global design of the library from a functional point of view using concepts from [14].
In this work, a methodology is proposed for the design of object oriented codes. It relies on a distinction
of components in different fields: abstract mathematical concepts are independent of their implementation
and of the numerical methods. In order to use the library, the user only needs to describe his problem with
high level components – mathematical operators, problem variables and physical domain description. The
resolution is performed using default options (Mathematics level). The user chooses the available numer-
ical methods (Numerical methods level) and algorithms (Algorithms level), or develop his own modules,
depending on his needs. Thanks to the flexibility and modularity of Python, new modules are readily
available in the library (User interface level) through its programming layers, illustrated on Figure 9b.
In order to add his modules written in a common programming language (Computations level), the user
needs to develop a small Python interface. The module may use a parallel paradigm (HPC level). This
design of the library allowed us to easily verify and optimize all the kernels presented below.

5.2. Implementation on GPU

The literature contains several GPU implementations of mesh-free particle methods. In the context of
Smoothed Particles Hydrodynamics (SPH) for gas dynamics, [30] presents an implementation on multi-
GPUs cluster for 32 millions of particles distributed on 4 GPUs. A mesh-free solver for incompressible
flows using a Fast Multipole Method accelerated on a large number GPU is presented in [32]. These
authors report reference a 0.5 petaflop/s computation for 20483 particles distributed on 2048 cards for
homogeneous isotropic turbulence simulations.

The advection equation is a key component in the simulation of gas dynamics. In [31], the authors
show that porting the resolution of Knudsen gases by particle methods to the GPGPU results in an
important speedup in the simulations. Remeshed vortex methods have also been ported on GPU within
the Parallel Particle Mesh library [28]. The implementation presented in [26] is devoted to two-dimensional
incompressible flows in vorticity formulation, using a multigrid finite-difference solver for the Poisson
equation and the Λ2,1 remeshing formula for the advection. This reference reports performances in single
precision floating point from 25 frames/iterations per seconds (FPS) with 10242 particles – for their
fastest solver, Euler time stepping and coarse multigrid – to 3 FPS – for their most accurate, fourth order

22 TITLE WILL BE SET BY THE PUBLISHER

Runge-Kutta time stepping and accurate multigrid. In [24], penalization was added to deal with complex
boundaries and a FFT solver was used instead of the multi-grid solver. The hand coded interpolation
between the Cartesian grid and the particles was dropped in favor of OpenGL shaders with improved
performances. For 10242 particles the full Navier-Stokes solver reached 22 FPS in single precision, which
represents a speedup against a similar CPU solver of about 30.

As particle-mesh interpolations are core functions in RPM, some works have been devoted to these opera-
tions. In [3,25] an implementation based on OpenCL Images objects, allowed to obtain, for a 4096× 2048
problem size, a maximum speedup of 45 against a single-threaded CPU implementation, in double pre-
cision, and 150 in single precision. The speedup drops to 2.8 when comparing to a multi-threaded CPU
version (9.4 in single precision). In [3], an efficient data structure enables interesting performances on GPU
for tensorial particle-mesh interpolations in 2D and 3D. This reference reports that linear interpolation
exhibits lower speedups than higher order schemes and that 3D interpolations are more efficient than their
2D counterparts.

The method presented in this article differs from the previous works by the fact that we use a dimensional
splitting and higher order remeshing formulas. The dimensional splitting reduces 2D and 3D problems to
a collection of 1D problems. The complexity will therefore remain linear with the stencil width, but this
strategy has some implications that we will see below in the memory management.

In this work, we intend to produce an efficient GPU implementation of the particle advection and remeshing
steps that will be used, in future work, as part of a fluid solver. The following results will demonstrate
that high order remeshing formulas can be implemented in an efficient way. As in the previous section,
particles are advanced with a fourth order Runge-Kutta method. The velocity field is given at grid points
at the beginning of each time-step and is linearly interpolated at particle locations corresponding to
the intermediate Runge-Kutta sub-steps. We use a second order time-splitting which for each time-step
alternates advection successively along the directions x, y, z, y, x. The time-step of the advection is ∆t/2
in the x and y directions and ∆t in the z direction.

5.2.1. From method to algorithm

In order to better understand the library performances and behavior with respect to the number of
particles, we analyze the computational complexity of the algorithm. The complexity C is given for one
advection and one remeshing step for Nd particles, where N is the number of particles in one direction
and d is the number of directions. C depends on several parameters: c, the number of scalar quantities or
vector components carried by particles; the order of the dimensional splitting (second order in our case);
Ns, the remeshing stencil width; and p, the polynomial degree of the formula :

C(Ns, p, c) = (CA + CR(Ns, p, c))(2d− 1)Nd = O
(
Nd
)

[Operations], (5.1)

where CA and CR represent the advection and remeshing complexity for one particle. Advection with a
fourth order Runge-Kutta scheme and linear velocity interpolation leads to the following estimate

CA = 4× 2 + 3︸ ︷︷ ︸ + 3× 9︸ ︷︷ ︸ + 5︸︷︷︸ = 43 [Operations].

positions computation linear interpolations weights combination
(5.2)

The complexity of remeshing algorithms takes into account the polynomial evaluations, performed with
the Horner’s rule rearrangements. The total amount of operations corresponds to Ns polynomials of degree
p, c linear combinations of the Ns elements and the Ns grid point indices.

CR(Ns, p, c) = Ns(2p+ 1)︸ ︷︷ ︸ + 2Nsc︸ ︷︷ ︸ + 3 +Ns︸ ︷︷ ︸ = 2Ns(p+ c+ 1) + 3 [Operations].

Horner’s rule linear combinations grid indices

(5.3)

TITLE WILL BE SET BY THE PUBLISHER 23

Similarly, we study the memory access complexity. We obtain the following evaluations

MA = (3× 2 + 1︸ ︷︷ ︸ + 1︸︷︷︸)P = 8P [Bytes],

read velocity write particle position
(5.4)

MR(Ns, c) = (1︸︷︷︸ + (1 +Ns)c︸ ︷︷ ︸)P = ((1 +Ns)c+ 1)P [Bytes],

read particle position read and write particle quantity

(5.5)

D(c) = 2cP︸︷︷︸ [Bytes],

read and write
(5.6)

M(Ns, c) = (D(c)+MA +MR(Ns, c))(2d− 1)Nd = P ((1 +Ns)c+ 5)(2d− 1)Nd [Bytes], (5.7)

where P equals to the size of a floating point number in bytes (4 bytes for single precision or 8 bytes for
double precision). D(c) denotes the memory complexity of a copy or a transposition. In this expression,
reading and writing access are supposed to be equivalent.

These complexities do not take into account the algorithms optimization for targeted platforms. For
instance, vectorized access or fma operations are not considered here.

As already mentioned semi-Lagrangian particle methods can be viewed as an alternative to forward semi-
Lagrangian methods developped in [9]. The use of explicit remeshing kernels significantly increase the
parallel efficiency of the method. In the method described in [9], one needs to solve for each 1D problem
a periodic tridiagonal system. [33] compares various implementations for solving tridiagonal systems on
GPU. They show that a cyclic reduction algorithm requires at least log2N − 2 algorithmic steps and 5N
accesses to global memory. For the Λ4,2 formula, with stencils using 6 points, the remeshing algorithm only
requires 1 algorithmic step, and 2N accesses to global memory. For problems with at least 64 particles
in one direction, the semi-Lagrangian particle methods proposed in this paper require minimal access to
global and shared memories.

5.2.2. From algorithm to GPU implementation

The choice of the OpenCL execution model constrained us to an in-order OpenCL kernels call sequence.
The main bottleneck of this model is the host-device data transfer rate. The data should stay on the
device as long as possible. However, host-device transfers are mandatory for regular checkpointing and
shared computations between CPU and GPUs or multiple GPUs. The index space for calling OpenCL
kernels follows the intrinsic dimension decomposition of the method: each work-group is in charge of a 1D
problem. The kernels performances are strongly connected to the layout of work-items in each work-groups.
Section 5.3 will detail the different strategies for the work-items layout.

The computation of one splitting step requires only the velocity component and the 1D coordinate of the
particles in the corresponding direction. The velocity field needs to be stored as structured arrays. The
maximum bandwidth for accessing global memory is reached for contiguous data. Arrays are thus stored
contiguously in the direction of use. Figure 10 illustrates the storage of the velocity components with
respect to the grid layout for a 2D problem. This setup imposes the advected quantities to be transposed
when alternating splitting directions.

Algorithm 1 summarizes the GPU implementation, where each part of the inner loop is performed using
an OpenCL kernel.

24 TITLE WILL BE SET BY THE PUBLISHER

(1,1) (1,2) · · · (1,N)

(2,1) (2,2) · · · (2,N)

.

.

.
.
.
.

. . .
.
.
.

(N ,1) (N ,2) · · · (N ,N)

x

y

2D grid

Vx (1,1) (2,1) · · · (N ,1) (1,2) (2,2) · · · (N ,2) · · · (1,N) · · · (N ,N)

Vy (1,1) (1,2) · · · (1,N) (2,1) (2,2) · · · (2,N) · · · (N ,1) · · · (N ,N)

Storage

Figure 10. Velocity field storage.

Algorithm 1: Particle method

while t 6 Tend do
Computation of velocity field aG {on grid G} ;
{Solve 1D problems in each direction};
foreach splitting direction do

Initialize particles ;
Compute particle positions {from corresponding velocity component} ;
Compute particle remeshing {in corresponding direction to grid G};

t← t+ dt

5.3. Description of the OpenCL kernels

All our tests were performed on a NVIDIA Tesla K20m. The main specifications of this device are given
in Table 2. Obviously, the global and local memory sizes and work-group size set some limits in our
performance analysis. Each kernel used in Algorithm 1 must be studied separately to obtain the most
efficient execution model characteristics such as e.g. work-group size, work-item workload and memory
levels usage. We considered single and double precision implementation of the various remeshing kernels
considered in the previous sections. Depending on the type of kernels, different optimizations – concerning
OpenCL vector types, built-in functions, temporary private variables, bank conflicts avoidance, . . . – were
tested.

Device OpenCL version 1.1 Global memory Size 4 GB
Compute units 13 Bandwidth 208 GB/s
Maximum work-items [1024,1024,64] Bus width 320 bit
Work-group size 1024 Max. allocation 1 GB

Clock rate 705 MHz Local memory Size 48 KB

Host Connection type PCIe 2.1 ×16 Processing power Double Precision 3.52 TFlops
Bandwidth 8 GB/s Single Precision 1.17 TFlops

Table 2. NVIDIA Tesla K20m main features.

5.3.1. Memory management related to method and hardware

From the data on the grid, we update the advected quantities on particles. Data initialization depends on
the alternating splitting direction in which advection and remeshing are performed. Computation efficiency
requires the data to be contiguous in the working direction. Therefore, one needs to change the data layout

TITLE WILL BE SET BY THE PUBLISHER 25

in memory for each direction. Data initialization consists in transpositions except in the cases of unchanged
successive directions where a simple copy is sufficient. For a 2D problem, efficient transposition algorithms
on GPU have been designed in [27]. This algorithm reaches 96 percent performance of the simple copy
bandwidth for a 20482 square matrix in single precision. We implemented this algorithm and extended
it to 3D. In order to achieve good performances, global memory access should be contiguous, fit the bus
width and avoid memory camping. Memory camping occurs when successive work-groups operate on the
same global memory page. It affects global efficiency of the algorithm and should be avoided as much as
possible. Each work-group is handling a subset of the data, called a tile, which is stored in local memory.
The tile is transposed locally, requiring bank conflict free access.

We denote by XY transposition the transposition operating on the first and second directions in which
the data are contiguous. Similarly, XZ transposition operates on the first and third directions.

The XY transposition follows [27] except that, in 3D, it is performed on every slices along Z direction.
Figure 11a illustrates this transformation. Each work-group loads a tile (grey square) into local memory
(red). Each work-item transposes its own subset of data by writing data to their correct positions (green).
Contiguous access in global memory is ensured by use of the tile and the bus width is filled up by wrapping
elements into OpenCL vector types. Memory camping is avoided by roaming the global memory arrays
diagonally – in dashed lines in the Figure. Finally a one row padding is used in tiles to avoid bank conflicts.

Similarly, XZ transpositions are performed along slices in Y direction. The work of [27] is extended to
deal with 3D data. Using same conventions as previously, Figure 11b sketches this transformation. To
avoid memory camping, the global memory is roamed in XZ planes. Because of the larger strides when
going along Z direction than in Y, we used a cubic tile to reduce the number of large strides.

Input

Tile

Output

X Y

(a) XY transposition

Input

Tile

Output

X Y

Z

(b) XZ transposition

Figure 11. Transposition kernels.

Performances of the kernels associated to copy and transposition are presented on Figures 12a and 12b.
These results concern fully optimized kernels and the best configurations. From Figure 12a we conclude
that using 256 work-items in work-groups lead to performances close to 72 percent of the theoretical
bandwidth. The remaining gap can be explained by the presence of the NVIDIA Error Correction Code
(ECC) that checks and eventually corrects bit errors in data storage and transmissions. The performances
should increase when disabling ECC because it uses a significant part of the bandwidth and 12.5 percent
of the memory1 to work. One can notice that the performance of the XY transposition is better in 3D
than in 2D, very close to the performance of the copies for work-group size up to 512. This is due to
smaller stride when moving work-group diagonally in 3D. In the optimal configuration, with respect to
the work-group size, the XZ transposition exhibits performances similar to the 2D XY transposition.

5.3.2. Advection

This kernel computes the particles positions by means of a Runge-Kutta scheme and a 2D or 3D linear
interpolation of velocities on particles from known grid values. As suggested by (5.4), the fourth order
Runge-Kutta method requires 8 reads in the velocity field. We bring it to a single read using local

1From http://www.nvidia.com/object/tesla-servers.html

http://www.nvidia.com/object/tesla-servers.html

26 TITLE WILL BE SET BY THE PUBLISHER

150

100

32 64 128 256 512 1024

B
a
n
d
w

id
th

(G
B

y
te

s/
se

c)

Work-Group size

2D SP
2D DP

3D SP
3D DP

(a) Copy kernels

150

100

32 64 128 256 512 1024

B
a
n
d
w

id
th

(G
B

y
te

s/
se

c)

Work-Group size

2D SP
2D DP

3D XZ SP
3D XZ DP

3D XY SP
3D XY DP

(b) Transposition kernels

Figure 12. Performances of Copy, XY and XZ transpositions kernels for 2D and 3D,
single (SP) and double precision (DP).

memory as a cache as illustrated on Figure 13. After filling up the cache, each work-group performs the
computations from this local buffer. Results are directly stored contiguously in global memory. Using
local memory, (5.4) becomes:

MA,GPU = 2P [Bytes] (5.8)

RK +

interpolation

Velocity component Cache Particle position

Figure 13. Advection algorithm.

Benchmarks for this kernel are shown on Figure 14a. The maximum work-group size allowed on the device
is 1024, as given in Table 2. Performances increase with the work-group size until they reach a plateau
around 128 work-items in 3D and 512 in 2D. Note that constraints on the global memory size and the bus
width limits 3D cases to small work-group sizes.

0.1

1

10

4 8 16 32 64 128 256 512 1024

T
im

e
p
er

p
ar

ti
cl

e
(n

s/
p
ar

t)

Work-Group size

40962 SP
40962 DP
20482 DP

2563 SP
2563 DP

(a) Advection kernels (RK4)

0.1

1

10

4 8 16 32 64 128 256 512 1024

T
im

e
p
er

p
ar

ti
cl

e
(n

s/
p
ar

t)

Work-Group size

40962 SP
40962 DP
20482 DP

2563 SP
2563 DP

(b) Remeshing kernels (Λ2,1)

0.1

1

10

4 8 16 32 64 128 256 512 1024

T
im

e
p
er

p
ar

ti
cl

e
(n

s/
p
ar

t)

Work-Group size

40962 SP
20482 DP

2563 SP
2563 DP

(c) Monolithic kernels (RK4 + Λ2,1)

Figure 14. Benchmarks for computational kernels in single (SP) and double precision (DP).

TITLE WILL BE SET BY THE PUBLISHER 27

Particle quantity Particle position Grid quantityCache

Λp,r

Figure 15. Remeshing algorithm.

5.3.3. Remeshing

Remeshing particles on the grid involves particle positions and strengths that are read once in global
memory. Each work-group computes new quantities on the grid in a local buffer to avoid multiples writes
in global memory, as shown on Figure 15. Again, the number of global memory access decreases and (5.5)
becomes:

MR,GPU = (2c+ 1)P [Bytes] (5.9)

In case of large velocity gradients, it may happen that several particles have the same remeshing points.
To avoid concurrent writings, compute load is organized so that any pair of work-items do not remesh
contiguous particles.

As for the advection benchmarks, Figure 14b shows that performances increase with the work-group size
until it reaches a plateau.

5.3.4. Monolithic advection and remeshing

RK +

interpolation

Velocity component

Particle quantity

Grid quantityCache

Cache
Λp,r

Figure 16. Monolithic advection and remeshing algorithm.

This kernel combines the advection and the remeshing computations in a single kernel. The particle
positions are computed directly by the kernel, which reduces global memory occupation. The number
of OpenCL kernels launching is also reduced. However, it requires more local memory, as illustrated on
Figure 16. For this kernel, the global memory complexity, given by (5.7) is reduced to:

MGPU,Monolithic(Ns, c) = P (2c+ 1)(2d− 1)Nd [Bytes] (5.10)

instead of:

MGPU(Ns, c) = P (2c+ 3)(2d− 1)Nd [Bytes] (5.11)

for separate kernels.

Again similar performances are obtained for monolithic kernel where results are close to the sum of the
separate ones. Because of local memory limitations to 48 kBytes, we were not able to compute the 40962

double precision case (which would require 64 kBytes).

28 TITLE WILL BE SET BY THE PUBLISHER

5.4. Performances

The whole code is profiled with the best configurations determined by the previous benchmarks. In this
section, for a sake of simplicity we have restricted the discussion to calculations with double precision
arithmetic.

Figure 17 gives the global performances for 2D and 3D problems and different remeshing formulas. The
measured time includes kernel execution and OpenCL host code such as queue management, kernels
launching, profiling events, Figure 17a shows that the time needed to compute one step for one particle
is nearly constant, especially for small problems. This is consistent with (5.1), since the complexity per
particle and per iteration, (CA+CR(Ns, p, c))(2d−1), does not depend on the problem size. The variations
are due to built-in mechanisms of the device depending on the memory occupancy. In 3D, Figure 17a
shows that, except for the 643 resolution, the computational time is also constant.

Similarly, the global complexity, C(Ns, p, c), in (5.1) grows linearly with the problem size, Nd. This
linearity is observed for the time per iteration on Figures 17b and 17d. For the 2563 and 40962 resolutions,
performances range from 10 to 20 FPS.

2

3

4

5

6

10242 20482 40962 81922T
im

e
p
er

p
ar

ti
cl

e
p
er

it
er

at
io

n
(n

se
c)

Λ2,1

Λ2,2

Λ4,2

Λ4,4

Λ6,4

Λ6,6

(a) Time per particle and per iteration (2D)

0.002

0.01

0.1

0.3

10242 20482 40962 81922

T
im

e
p
er

it
er

at
io

n
(s

ec
)

Λ2,1

Λ2,2

Λ4,2

Λ4,4

Λ6,4

Λ6,6

(b) Time per iteration (2D)

2

5

10

20

643 1283 2563 5123T
im

e
p
er

p
ar

ti
cl

e
p
er

it
er

at
io

n
(n

se
c)

Λ2,1

Λ2,2

Λ4,2

Λ4,4

Λ6,4

Λ6,6

(c) Time per particle and per iteration (3D)

0.002

0.01

0.1

0.5

643 1283 2563 5123

T
im

e
p
er

it
er

at
io

n
(s

ec
)

Λ2,1

Λ2,2

Λ4,2

Λ4,4

Λ6,4

Λ6,6

(d) Time per iteration (3D)

Figure 17. Overall performances for different problem sizes in double precision. (lower is
better). Times are averaged over 20 independent executions.

We provide on Figure 18 profiling details for the largest cases, corresponding to the 2563 and 40962

particles. As expected, most of the time is devoted to particle remeshing. Remeshing times are grouped
with respect to the stencil width. Table 3 exhibit the remeshing computational time per particle averaged
– from data on Figures 17a and 17c – on different problem sizes together with the arithmetic complexity –
from (5.3) – and the stencil width for the different remeshing formulas. In the Ratio columns, we compute
the costs using the Λ2,1 formula as a reference. We observe that the cost of remeshing depends mostly

TITLE WILL BE SET BY THE PUBLISHER 29

on the stencil width and only slightly on the polynomial computational complexity. The reason is that
memory access are a bottleneck for remeshing kernels and this confirms the efficiency of GPU to accelerate
algorithms with high computational intensity. The number of arithmetic operation plays only a marginal
role in performances. Note that if the traditional tensor-product formulas were used in 3D, instead of the
directional splitting used here, the ratio between the kernels Λ6,6 and Λ2,1 would be of order 8 instead of
2.

0

0.02

0.04

0.06

0.08

0.1

2D 40962 3D 2563

C
om

p
u
ta

ti
on

al
ti

m
e

(s
ec

)

copy

transpose XY

transpose XZ

advection RK4

remeshing Λ2,1

remeshing Λ2,2

remeshing Λ4,2

remeshing Λ4,4

remeshing Λ6,4

remeshing Λ6,6

Figure 18. Code profiling of one time step for different problem sizes in double precision.

Arithmetics Stencil 2D Time 3D Time

Formula CR(Ns, p, c) Ratio Points Ratio Average Ratio Average Ratio

Λ2,1 43 1 4 1 3.13 1.00 3.88 1.00
Λ2,2 59 1.37 4 1 3.17 1.01 3.99 1.03
Λ4,2 87 2.02 6 1.5 4.22 1.35 5.81 1.50
Λ4,4 135 3.14 6 1.5 4.49 1.43 6.28 1.62
Λ6,4 179 4.16 8 2 5.22 1.67 7.88 2.03
Λ6,6 243 5.65 8 2 5.62 1.79 8.78 2.26

Table 3. Influence of remeshing formulas on performances. Times are averaged among
the different runs reported in Figure 17b for the 2D cases and Figure 17c for the 3D cases.

The dimensional splitting is also advantageous from the point of view of memory access. The number of
operations required for a tensorial formula is of order N3

s instead of 5Ns for the splitting. In a tensor-
product remeshing algorithm, 2N3

s particles would need to be transferred to and from the global memory.
Cache optimization allows to reduce the number of transfer per particle, but due to the limited size of
the shared memory, this reduction is limited. For instance, with the GPU described in Table 2, one
can only load 123 particles in shared memory. This limitation would cause the number of transfers with
global memory performed at each particle location to increase. This would significantly impact the overall
performance of the remeshing step.

Our benchmarks showed that the computational time remains linear with the stencil width. Increasing
the order of the numerical method enables us to leverage the processing power of the GPU. From an
applicative point of view, the accuracy of the results is improved either by increasing the problem size or
increasing the numerical order of the method while keeping the problem size constant, which allows to
relax the constraints due to the global memory size on the GPU. Note that the remeshing formulas involve
algebraic fractions for the polynomials coefficients whose numerator and denominator are increasing with
the order. In the present implementation, we kept this coefficients under their rational form but this could
introduce numerical errors if high order kernels are used.

30 TITLE WILL BE SET BY THE PUBLISHER

Unlike in [3], for an equivalent number of particles our 3D and 2D implementations exhibit similar perfor-
mances, as they both rely on 1D problems. The global efficiency of our implementations could be further
improved by gathering 1D problems to better fit the device characteristics. To conclude this section and
give an idea of the compared efficiency of GPU and multi-threaded CPU implementations of the particle
method, let us mention that the algorithm just described yields speedups ranging between 20 and 25,
depending on the remeshing formula, against the optimized Fortran MPI code used in [15] running on 8
Xeon E5-2640 cores.

6. Conclusion

In this paper we have discussed and analyzed remeshed particle methods, from the point of view of forward
semi-Lagrangian methods. We have given a systematic consistency analysis of these methods, based on the
regularity and moment properties of the remeshing kernels. These consistency results are supplemented
by a stability analysis valid for a class of second order and fourth order methods, under a Lagrangian CFL
condition which is independent of the grid size.

Remeshed particle methods are designed to deal with advection dominated problems and we have outlined a
general computational framework in which they can be combined with other numerical methods for hybrid
calculations. In this context, GPU are ideally suited to the local nature of RPM. We have presented a
strategy to optimize the efficiency of RPM on GPU and discussed the complexity of theses algorithms
in function of the kernel accuracy. Our results show in particular that, for a given number of conserved
moments, increasing the smoothness of the kernels can improve the accuracy of the RPM without added
computational complexity. The performance of the algorithms for a linear transport equation in double
precision ranges between 10 and 20 FPS for grid resolutions of 40962 in 2D or 2563 in 3D resolutions and
kernels with order of accuracy varying between 1 and 6.

Although the focus in this paper was the implementation on GPU of particle methods, the framework we
have described is designed with hybrid architectures in mind. Multi-CPUs and multi-GPUs implementa-
tions of semi-Lagrangian particle methods are the topic of ongoing work.

Appendix

For a sake of completeness, we give here the analytical formulas for the kernels used in this work.

Λ2,1(x) =





1− 5
2 |x|2 + 3

2 |x|3 0 6 |x| < 1

2− 4|x|+ 5
2 |x|2 − 1

2 |x|3 1 6 |x| < 2

0 2 6 |x|

Λ2,2(x) =





1− |x|2 − 9
2 |x|3 + 15

2 |x|4 − 3|x|5 0 6 |x| < 1

−4 + 18|x| − 29|x|2 + 43
2 |x|3 − 15

2 |x|4 + |x|5 1 6 |x| < 2

0 2 6 |x|

Λ4,2(x) =





1− 5
4 |x|2 − 35

12 |x|3 + 21
4 |x|4 − 25

12 |x|5 0 6 |x| < 1

−4 + 75
4 |x| − 245

8 |x|2 + 545
24 |x|3 − 63

8 |x|4 + 25
24 |x|5 1 6 |x| < 2

18− 153
4 |x|+ 255

8 |x|2 − 313
24 |x|3 + 21

8 |x|4 − 5
24 |x|5 2 6 |x| < 3

0 3 6 |x|

TITLE WILL BE SET BY THE PUBLISHER 31

Λ4,4(x) =





1− 5
4 |x|2 + 1

4 |x|4 − 100
3 |x|5 + 455

4 |x|6 − 295
2 |x|7 + 345

4 |x|8 − 115
6 |x|9 0 6 |x| < 1

−199 + 5485
4 |x| − 32975

8 |x|2 + 28425
4 |x|3 − 61953

8 |x|4 + 33175
6 |x|5

−20685
8 |x|6 + 3055

4 |x|7 − 1035
8 |x|8 + 115

12 |x|9 1 6 |x| < 2

5913− 89235
4 |x|+ 297585

8 |x|2 − 143895
4 |x|3 + 177871

8 |x|4 − 54641
6 |x|5

+19775
8 |x|6 − 1715

4 |x|7 + 345
8 |x|8 − 23

12 |x|9 2 6 |x| < 3

0 3 6 |x|

Λ6,4(x) =





1− 49
36 |x|2 + 7

18 |x|4 − 3521
144 |x|5 + 12029

144 |x|6 − 15617
144 |x|7 + 1015

16 |x|8 − 1015
72 |x|9 0 6 |x| < 1

−877
5 + 72583

60 |x| − 145467
40 |x|2 + 18809

3 |x|3 − 54663
8 |x|4 + 390327

80 |x|5
−182549

80 |x|6 + 161777
240 |x|7 − 1827

16 |x|8 + 203
24 |x|9 1 6 |x| < 2

8695− 656131
20 |x|+ 3938809

72 |x|2 − 158725
3 |x|3 + 2354569

72 |x|4 − 9644621
720 |x|5

+523589
144 |x|6 − 454097

720 |x|7 + 1015
16 |x|8 − 203

72 |x|9 2 6 |x| < 3

−142528
5 + 375344

5 |x| − 3942344
45 |x|2 + 178394

3 |x|3 − 931315
36 |x|4 + 5385983

720 |x|5
−1035149

720 |x|6 + 127511
720 |x|7 − 203

16 |x|8 + 29
72 |x|9 3 6 |x| < 4

0 4 6 |x|

Λ6,6(x) =





1− 49
36 |x|2 + 7

18 |x|4 − 1
36 |x|6 − 46109

144 |x|7 + 81361
48 |x|8 − 544705

144 |x|9 + 655039
144 |x|10

−223531
72 |x|11 + 81991

72 |x|12 − 6307
36 |x|13, 0 6 |x| < 1

−44291
5 + 1745121

20 |x| − 15711339
40 |x|2 + 32087377

30 |x|3 − 7860503
4 |x|4 + 38576524

15 |x|5
−24659323

10 |x|6 + 84181657
48 |x|7 − 74009313

80 |x|8 + 17159513
48 |x|9

−7870247
80 |x|10 + 438263

24 |x|11 − 81991
40 |x|12 + 6307

60 |x|13, 1 6 |x| < 2

3905497− 424679647
20 |x|+ 3822627865

72 |x|2 − 2424839767
30 |x|3 + 3009271097

36 |x|4
−930168127

15 |x|5 + 305535494
9 |x|6 − 9998313437

720 |x|7 + 203720335
48 |x|8 − 137843153

144 |x|9
+22300663

144 |x|10 − 6126883
360 |x|11 + 81991

72 |x|12 − 6307
180 |x|13, 2 6 |x| < 3

−255622144
5 + 971097344

5 |x| − 15295867328
45 |x|2 + 5442932656

15 |x|3 − 2372571796
9 |x|4

+2064517469
15 |x|5 − 9563054381

180 |x|6 + 2210666335
144 |x|7 − 796980541

240 |x|8
+76474979

144 |x|9 − 43946287
720 |x|10 + 343721

72 |x|11 − 81991
360 |x|12 + 901

180 |x|13 3 6 |x| < 4

0 4 6 |x|

Λ8,4(x) =





1− 205
144x

2 + 91
192x

4 − 6181
320 x

5 + 6337
96 x

6 − 2745
32 x

7 + 28909
576 x

8 − 3569
320 x

9 0 6 |x| < 1

−154 + 12757
12 x− 230123

72 x2 + 264481
48 x3 − 576499

96 x4 + 686147
160 x5

−96277
48 x6 + 14221

24 x7 − 28909
288 x

8 + 3569
480 x

9 1 6 |x| < 2
68776

7 − 1038011
28 x+ 31157515

504 x2 − 956669
16 x3 + 3548009

96 x4 − 2422263
160 x5

+197255
48 x6 − 19959

28 x7 + 144545
2016 x

8 − 3569
1120x

9 2 6 |x| < 3

−56375 + 8314091
56 x− 49901303

288 x2 + 3763529
32 x3 − 19648027

384 x4 + 9469163
640 x5

−545977
192 x6 + 156927

448 x7 − 28909
1152 x

8 + 3569
4480x

9 3 6 |x| < 4
439375

7 − 64188125
504 x+ 231125375

2016 x2 − 17306975
288 x3 + 7761805

384 x4 − 2895587
640 x5

+129391
192 x6 − 259715

4032 x
7 + 28909

8064 x
8 − 3569

40320x
9 4 6 |x| < 5

0 5 6 |x|

32 TITLE WILL BE SET BY THE PUBLISHER

Acknowledgements

The authors are grateful to M. Bergdorf, D. Rossinnelli and P. Koumoutsakos for enlightening discussions
on GPU implementation and the derivation of high order kernels. The first author gratefully acknowledges
support from Institut Universitaire de France. This research has been partially supported by the Agence
Nationale pour la Recherche (ANR) under Contracts No. ANR-2010-COSI-0009 and ANR-2010-JCJC-
091601.

References

[1] M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle methods for convection-diffusion equa-
tions. SIAM Multiscale Modeling and Simulation, 4:328–357, 2005.

[2] M. Bergdorf and P. Koumoutsakos. A lagrangian particle-wavelet method. SIAM Multiscale Modeling and Simulation,
5:980–995, 2006.

[3] F. Büyükkeçeci, O. Awile, and I. Sbalzarini. A portable opencl implementation of generic particle-mesh and mesh-particle
interpolation in 2d and 3d. Parallel Computing, 39(2):94–111, February 2013.

[4] A. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech., 57:785–796, 1973.
[5] C. Cocle, G. Winckelmans, and G. Daeninck. Combining the vortex-in-cell and parallel fast multipole methods for

efficient domain decomposition simulations. J. Comp. Phys., 227:9091–9120, 2008.
[6] C. Cotter, J. Frank, and S. Reich. The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc.,

133:251–260, 2007.
[7] G.-H. Cottet and P. Koumoutsakos. Vortex methods. Cambridge University Press, 2000.
[8] G.-H. Cottet and L. Weynans. Particle methods revisited: a class of high order finite-difference methods. C. R. Math.,

343(1):51–56, July 2006.
[9] N. Crouseilles, T. Respaud, and E. Sonnendrücker. A forward semi-lagrangian method for the numerical solution of the

vlasov equation. Comput. Phys. Comm., 180:1730–1745, 2009.
[10] R Hockney and J Eastwood. Simulation Using Particles. Inst. Phys. Publ., 1988.
[11] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA and PyOpenCL: A Scripting-Based

Approach to GPU Run-Time Code Generation. Parallel Computing, 38(3):157–174, 2012.
[12] P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex. J. Comp. Phys., 138:821–857, 1997.
[13] P. Koumoutsakos and A. Leonard. High resolution simulation of the flow around an impulsively started cylinder using

vortex methods. J. Fluid Mech., 296:1–38, 1995.
[14] S. Labbé, J. Laminie, and V. Louvet. Méthodologie et environnement de développement orientés objets: de l’analyse

mathématique à la programmation. MATAPLI, 70:79–92, 2003.
[15] J.-B. Lagaert, G Balarac, and G.-H. Cottet. Hybrid spectral particle method for turbulent transport of passive scalar.

J. Comp. Phys., 260:127–142, 2014.
[16] A. Leonard. Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech., 17:523–

559, 1985.
[17] R.J. LeVeque. High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal.,

33:627–665, 1996.
[18] A. Magni and G.-H. Cottet. Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys.,

231(1):152–172, 2012.
[19] J. Monaghan. Extrapolating b splines for interpolation. J. Comput. Phys., 60:253–262, 1985.
[20] J. Monaghan. An introduction to sph. Comp. Phys. Commun, 48:89–96, 1988.
[21] A. Munshi. The OpenCL Specification. Khronos OpenCL Working Group, 2011.
[22] M. Ould-Salihi, G.-H. Cottet, and M. El Hamraoui. Blending finite-difference and vortex methods for incompressible

flow computations. SIAM J. Sci. Comp., 22:1655–1674, 2000.
[23] T. Respaud and E. Sonnendrücker. Analysis of a new class of forward semi-lagrangian schemes for the 1d vlasov-poisson

equations. Numer. Math., 118:329–366, 2011.
[24] D. Rossinelli, M. Bergdorf, G.H. Cottet, and P. Koumoutsakos. GPU accelerated simulations of bluff body flows using

vortex methods. J. Comput. Phys., 229(9):3316–3333, May 2010.
[25] D. Rossinelli, C. Conti, and P. Koumoutsakos. Mesh-particle interpolations on graphics processing units and multicore-

central processing units. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 369(1944):2164–2175, 2011.
[26] D. Rossinelli and P. Koumoutsakos. Vortex methods for incompressible flow simulations on the GPU. The Visual Com-

puter, 24(7-9):699–708, May 2008.
[27] G. Ruetsch and P. Micikevicius. Optimizing matrix transpose in cuda. NVIDIA CUDA SDK Application Note, 2009.
[28] I. Sbalzarini, J. Walther, M. Bergdorf, S. Hieber, E. Kotsalis, and P. Koumoutsakos. PPM–a highly efficient parallel

particle–mesh library for the simulation of continuum systems. Journal of Computational Physics, 215(2):566–588, 2006.

TITLE WILL BE SET BY THE PUBLISHER 33

[29] I. Schoenberg. Contribution to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math.,
4:45–99, 1946.

[30] D. Valdez-Balderas, J. Dominguez, B.. Rogers, and A. Crespo. Towards accelerating smoothed particle hydrodynamics
simulations for free-surface flows on multi-gpu clusters. Journal of Parallel and Distributed Computing,, 73:1483–1493,
2012.

[31] Florian De Vuyst and Francesco Salvarani. Gpu-accelerated numerical simulations of the knudsen gas on time- dependent
domains. Computer Physics Communications, 184(3):532 – 536, 2013.

[32] R. Yokota, L. Barba, T. Narumi, and K. Yasuoka. Petascale turbulence simulation using a highly parallel fast multipole
method. Computer Physics Communications, 184(3):445 – 455, 2013.

[33] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal solvers on the gpu. SIGPLAN Not., 45(5):127–136,
January 2010.

	1. Introduction
	2. Remeshed particle methods
	2.1. Definition
	2.2. Derivation of remeshing kernels

	3. Numerical Analysis
	3.1. Consistency
	3.2. Stability

	4. Numerical illustrations
	5. Remeshed Particle Methods and software engineering
	5.1. Library description
	5.2. Implementation on GPU
	5.3. Description of the OpenCL kernels
	5.4. Performances

	6. Conclusion
	Appendix
	Acknowledgements
	References

