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Abstract

We are interested in stochastic control problems coming from mathematical finance
and, in particular, related to model uncertainty, where the uncertainty affects both
volatility and intensity. This kind of stochastic control problems is associated to a
fully nonlinear integro-partial differential equation, which has the peculiarity that the
measure (A(a, -)), characterizing the jump part is not fixed but depends on a parameter
a which lives in a compact set A of some Euclidean space RY. We do not assume that
the family (A(a,-)), is dominated. Moreover, the diffusive part can be degenerate. Our
aim is to give a BSDE representation, known as nonlinear Feynman-Kac formula, for
the value function associated to these control problems. For this reason, we introduce a
class of backward stochastic differential equations with jumps and partially constrained
diffusive part. We look for the minimal solution to this family of BSDEs, for which we
prove uniqueness and existence by means of a penalization argument. We then show
that the minimal solution to our BSDE provides the unique viscosity solution to our
fully nonlinear integro-partial differential equation.
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1 Introduction

Recently, [26] introduced a new class of backward stochastic differential equations (BSDEs)
with nonpositive jumps in order to provide a probabilistic representation formula, known
as nonlinear Feynman-Kac formula, for fully nonlinear integro-partial differential equations
(IPDEs) of the following type (we use the notation x.y to denote the scalar product in R%):

ov + sup [b(ﬂ:,a).Dmv + ltlr(UJT(:rz, a)Div) + f(z,a) (1.1)
ot acA 2

+ /E (v(t,z + B(z,a,e)) —v(t,z) — B(z,a,€e).Dyv(t,z))M(de)| = 0, on [0,T) x RY
U(Tvx) = g(.%'), S Rd7

where A is a compact subset of RY, E is a Borelian subset of R¥\{0}, and X is a nonnegative
o-finite measure on (E,B(FE)) satisfying the integrability condition [,,(1 A |e[*)A(de) < oco.
Notice that in [26] more general equations than (1.1) are considered, where the function
f = f(z,a,v,07(z,a)D,v) depends also on v and its gradient D,v. However, the case
f = f(x,a) is particularly relevant, as (1.1) turns out to be the Hamilton-Jacobi-Bellman
equation of a stochastic control problem where the state process is a jump-diffusion with
drift b, diffusion coefficient o (possibly degenerate), and jump size (3, which are all con-
trolled. A special case of (1.1) is the Hamilton-Jacobi-Bellman equation associated to the
uncertain volatility model in mathematical finance, which takes the following form:

0

8—7; +G(D2v) = 0, on[0,T) xR, o(T,z) = g(z), z€R?, (1.2)
where G(M) = %supcec[cM | and C is a set of symmetric nonnegative matrices of order
d. As described in [29], the unique viscosity solution to (1.2) is represented in terms of the

so-called G-Brownian motion B under the nonlinear expectation £(-) as follows:
v(t,z) = E(g(z+ By)).

It is however not clear how to simulate G-Brownian motion. On the other hand, when C
can be identified with a compact subset A of a Euclidean space R?, we have the probabilistic
representation formula presented in [26], which can be implemented numerically as shown
in [23] and [24]. We recall that the results presented in [26] were generalized to the case of
controller-and-stopper games in [7] and to non-Markovian stochastic control problems in
[15].

In the present paper, our aim is to generalize the results presented in [26] providing a
probabilistic representation formula for the unique viscosity solution to the following fully
nonlinear integro-PDE of Hamilton-Jacobi-Bellman type:

ov + sup [b(:ﬂ, a).Dyv + 1tr(JUT(:U, a)D2v) + f(z,a) (1.3)
at acA 2

+/ (v(t,z + B(z,a,e)) —v(t,x) — Bz, a,e).Dyv(t,z))A(a,de)| =0, on [0,T) x RY
E

o(f,x) = ga),  weR



where A is a transition kernel from (R?, B(R?)) into (E,B(E)), namely A(a,-) is a nonnega-
tive measure on (F,B(F)) for every a € R? and (-, E’) is a Borel measurable function for
every F' € B(E). We do not assume that the family of measures (A(a, -))qcre is dominated.
Moreover, the diffusion coefficient o can be degenerate.

A motivation to the study of equation (1.3) comes from mathematical finance and, in
particular, from model uncertainty, when uncertainty affects both volatility and intensity.
This topic was studied by means of second order BSDEs with jumps (2BSDEJs) in [21]
and [22], to which we refer also for the wellposedness of these kinds of backward equations.
Model uncertainty is also strictly related to the theory of G-Lévy processes and, more
generally, of nonlinear Lévy processes, see [16] and [27]. In this case, the associated fully
nonlinear integro-PDE, which naturally generalizes equation (1.2), takes the following form:

ov 1
— + sup [b.Dﬂ) + —tr(cD?v 1.4
ot (he,F)co 2 ( ) 14

+/ (v(t, + z) —v(t, ) — Dyv(t, )21, <1y) Fdz)| = 0, on [0,7) x R
E
o(T,2) = ga),  weR

where © denotes a set of Lévy triplets (b, ¢, F); here b is a vector in R?, ¢ is a symmetric
nonnegative matrix of order d, and F is a Lévy measure on (R% B(R?)). From [16] and
[27], we know that the unique viscosity solution to equation (1.4) is represented in terms
of the so-called nonlinear Lévy process X under the nonlinear expectation £(-) as follows:

v(t,z) = E(g(z + X)).

If we are able to describe the set © by means of a parameter a which lives in a compact
set A of an Euclidean space R?, then (1.4) can be written in the form (1.3). Therefore, v
is also given by our probabilistic representation formula, in which the forward process is
possibly easier to simulate than a nonlinear Lévy process.

More generally, we expect that the viscosity solution v to equation (1.3) should represent
the value function of a stochastic control problem where, roughly speaking, the state process
X is a jump-diffusion process, which has the peculiarity that we may control the dynamics
of X changing its jump intensity, other than acting on the coefficients b, o, and g of the
SDE solved by X. We refer to this problem as a stochastic optimal control problem with
(non dominated) controlled intensity. Unfortunately, we did not find any reference in the
literature for this kind of stochastic control problem. For this reason, and also because
it will be useful to understand the general idea behind the derivation of our nonlinear
Feynman-Kac formula, we describe it here, even if only formally. Let (Q, F,P) be a complete
probability space satisfying the usual conditions on which a d-dimensional Brownian motion
W = (Wy)i>o is defined. Let F = (F;);>0 denote the usual completion of the natural
filtration generated by W and A the class of control processes a, i.e., of F-predictable
processes valued in A. Let also € be the canonical space of the marked point process on
Ry x E (see Section 2 below for a definition), with canonical right-continuous filtration
F" and canonical random measure 7’. Then, consider (2, F,F = (F;);>0) defined as Q :=
Ox Q) F:=F®F,, and F; := Ng=yFs @ Fh. Moreover, we set W(w) := W (@), 7(w,-)



=7/ (w,), and A = {a: a(w) = a(®), Yw € Q, for some & € A}. Suppose that for every
a € A we are able to construct a measure P* on (2, F) such that W is a Brownian motion
and 7 is an integer-valued random measure with compensator A(ay, de)dt on (2, F,F,P%).
Then, consider the stochastic control problem with value function given by (E® denotes the
expectation with respect to P)

T
v(t,z) = sup IEO‘[/ FXE™ ay)ds —|—g(X§lm’a)}, (1.5)
acA t

where X5%% has the controlled dynamics on (Q, F,F,P%)
dX$ = b(XS as)ds+o( XS, as)dWs +/ B(X, ag,e)m(ds, de)
E

starting from z at time t, with 7(dt,de) = w(dt,de) — A oy, de)dt the compensated mar-
tingale measure of 7. As mentioned above, even if we do not address this problem here,
we expect that the above partial differential equation (1.3) turns out to be the dynamic
programming equation of the stochastic control problem with value function formally given
by (1.5). Having this in mind, we can now begin to describe the intuition, inspired by [25]
and [26], behind the derivation of our Feynman-Kac representation formula for the HJB
equation (1.3) in terms of a forward backward stochastic differential equation (FBSDE).

The fundamental idea concerns the randomization of the control, which is achieved
introducing on (Q, F,P) a ¢g-dimensional Brownian motion B = (By);>0, independent of
W. Now F denotes the usual completion of the natural filtration generated by W and B.
We also set B(w) := B(®), for all w € €, so that B is defined on €. Since the control lives
in the compact set A C R?, we can not use directly B to randomize the control, but we need
to map B on A. More precisely, we shall assume the existence of a surjection h: R4 — A
satisfying h € C%(R? A) (e.g., the existence of such a function h is guaranteed when A is a
ball in RY). Then, for every (t,z,a) € [0,T] x R? x R?, we consider the forward stochastic
differential equation in R? x RY:

X, = x —i—/ b(X,, I )dr —i—/ o(Xy, L) dW, —i—/ / B(X,—, I, e)w(dr,de), (1.6)
t t t JE
I, = h(a+ Bs— By), (1.7)

for all t < s < T, where 7(ds,de) = n(ds,de) — A(Is, de)ds is the compensated martingale
measure of m, which is an integer-valued random measure with compensator (I, de)ds.
Unlike [26], we used a Brownian motion B to randomize the control, instead of a Poisson
random measure ; on Ry x A. From one hand, the Poisson random measure turns out to
be more convenient to deal with a general compact set A, since p is already supported by
R, x A, so that we do not have to impose the existence of a surjection h from the entire
space RY onto A, as we did here. On the other hand, the choice of a Brownian motion B
is more convenient to derive a martingale representation theorem for our model. Indeed,
in contrast with [26], the intensity of the measure 7 depends on the process I, therefore it
is natural to expect a dependence between 7 and the noise used to randomize the control.
The advantage of B with respect to u is given by the fact that B is orthogonal to m, since B



is a continuous process (see the bottom of page 183 in [20] for a definition of orthogonality
between a martingale and a random measure). Thanks to this orthogonality we are able
to derive a martingale representation theorem in our context, which is essential for the
derivation of our nonlinear Feynman-Kac representation formula.

Let us focus on the form of the stochastic differential equation (1.6)-(1.7). We observe
that the jump part of the driving factors in (1.6) is not given, but depends on the solution
via its intensity. This makes the SDE (1.6)-(1.7) nonstandard. These kinds of equations
were firstly studied in [19] and have also been used in the financial literature, see e.g. [4],
[9], [10], [11], [13]. Notice that in [4], [9], and [10], A is absolutely continuous with respect
to a given deterministic measure on (E,B(FE)), which allows to solve (1.6)-(1.7) bringing
it back to a standard SDE, via a change of intensity “a la Girsanov”. On the other hand,
in the present paper, we shall tackle the above SDE solving firstly equation (2.2) for any
(t,a) € [0,T] x RY, then constructing a probability measure P“® on (€, F) such that the
random measure 7 (dt, de) admits A(I5*, de)ds as compensator, and finally addressing (2.1).
In the appendix, we also prove additional properties of m and (X, I). More precisely, we
present a characterization of 7w in terms of Fourier and Laplace functionals, which shows
that 7 is a conditionally Poisson random measure (also known as doubly stochastic Poisson
random measure or Cox random measure) relative to o(I, bos > 0). Moreover, we study
the Markov properties of the pair (X, I).

Regarding the backward stochastic differential equation, as expected, it is driven by the
Brownian motions W and B, and by the random measure 7, namely it is a BSDE with
jumps with terminal condition g(X%"*) and generator f(X"® I"®), as it is natural from
the expression of the HJB equation (1.3). The backward equation is also characterized
by a constraint on the diffusive part relative to B, which turns out to be crucial and
entails the presence of an increasing process in the BSDE. In conclusion, for any (¢,z,a) €
[0, 7] x R? x RY, the backward stochastic differential equation has the following form:

Y, = g(Xp"%) + /th“It“)dr—i—KT—K /ZdW

—/ V,.dB, / / 7(dr,de), t<s<T,Pa.s. (1.8)

Vsl = 0 ds @ dP"* a.e. (1.9)

and

We refer to (1.8)-(1.9) as backward stochastic differential equation with jumps and partially
constrained diffusive part. Notice that the presence of the increasing process K in the
backward equation does not guarantee the uniqueness of the solution. For this reason,
we look only for the minimal solution (Y,Z,V,U, K) to the above BSDE, in the sense
that for any other solution (Y,Z,V,U, K) we must have Y < Y. The existence of the
minimal solution is based on a penalization approach as in [26]. We can now write down
the nonlinear Feynman-Kac formula:

o(t,z,a) = Y (t,z,a) € [0,T] x R? x R,



Observe that the function v should not depend on a, but only on (¢,z). The function v
turns out to be independent of the variable a as a consequence of the constraint (1.9).
Indeed, if v were regular enough, then, for any (t,z,a) € [0,7] x R? x R?, we would have

Vit = Dyo(s, X" I0")Dyh(a + Bs — B) = 0, ds @ dP" a.e.

This would imply (see Subsection 4.2 below) that v does not depend on its last argument.
However, we do not know in general if the function v is so regular in order to justify the
previous passages. Therefore, the rigorous proof relies on viscosity solutions arguments. In
the end, we prove that the function v does not depend on the variable a in the interior A
of A and admits the following probabilistic representation formula:

o(t,z) = Y™ (t,x) €[0,T] x RY,

for any a € A. Moreover, v is a viscosity solution to (1.3). Actually, v is the unique viscosity
solution to (1.3), as it follows from the comparison theorem proved in the Appendix. Notice
that, due to the presence of the non dominated family of measures (A(a,-))qca, we did not
find in the literature a comparison theorem for viscosity solution to our equation (1.3).
For this reason, we prove it in the Appendix, even though the main ideas are already
contained in the paper [3], in particular the remarkable Jensen-Ishii’s lemma for integro-
partial differential equations.

The rest of the paper is organized as follows. Section 2 introduces some notations and
studies the construction of the solution to the forward equation (1.6)-(1.7). Section 3 gives
a detailed formulation of the BSDE with jumps and partially constrained diffusive part. In
particular, Subsection 3.1 is devoted to the existence of the minimal solution to our BSDE
by a penalization approach. Section 4 makes the connection between the minimal solution
to our BSDE and equation (1.3). In the Appendix, we prove a martingale representation
theorem for our model, we collect some properties of the random measure 7 and of the pair
(X,I), and we prove a comparison theorem for equation (1.3).

2 Notations and preliminaries

Let (€, F,P) be a complete probability space satisfying the usual conditions on which are
defined a d-dimensional Brownian motion W = (W;);>0 and an independent ¢g-dimensional
Brownian motion B = (B)i>0. We will always assume that F = (F;)>0 is the usual
completion of the natural filtration generated by W and B. Let us introduce some additional
notations.

(i) € is the set of sequences W' = (t,, en)nen C (0,00] X Ea, where Ep = EU{A} and A
is an external point of E. Moreover ¢, < oo if and only if e, € E, and when ¢, < oo
then t, < tp41. € is equipped with the canonical marked point process (7T}, &), )nen,
with associated canonical random measure 7/, defined as

T (W) = ta, ap (W) = ey



and

W,(w/, dt, de) = Z 1{T7’L(w’)<oo}5(Tr’L(w’),a;L(w/)) (dt, de),
neN
where §, denotes the Dirac measure at point xz. Set 77 := lim, 7). Finally, define
F' = (Fs)i>0 as Fy = Ng>1Gs, where G’ = (Gs)¢>0 is the canonical filtration, given by
Gy = o(w'( F): F € B(0,1]) @ B(E)).

(i) (9, F,F = (F)i>0) is such that Q := Q x Q| F := F® F., and F; := Ng=1Fs @ F.
Moreover, we set W(w) := W (@), B(w) := B(@), and 7(w,-) := 7'(«',-). Finally, we
set also T, (w) == T (W), ap(w) := o, (W), and T (w) := Tho ().

Let Py denote the o-field of F-predictable subsets of Ry x Q. We recall that a random
measure 7 on Ry x E is a transition kernel from (2, F) into (Ry x E,B(Ry) ® B(E)),
satisfying 7(w, {0} x E) = 0 for all w € Q; moreover, an integer-valued random measure 7
on Ry x E is an optional and Ps, ® B(E)-o-finite, NU {400 }-valued random measure such
that m(w, {t} x E) <1 for all (t,w) € [0,T] x ©Q, see Definition 1.13, Chapter II, in [20].

We are given some measurable functions b: R? x R? — R?, ¢: R? x R? — R4 and
B: R x RY x E — R? where E is a Borelian subset of R*\{0}, equipped with its Borel o-
field B(E). Moreover, let A be a transition kernel from (R?, B(R?)) into (£, B(E)), namely
A(a,-) is a nonnegative measure on (F,B(FE)) for every a € R? and \(-, E’) is a Borel
measurable function for every E’ € B(E). Furthermore, let A be a compact subset of R?
such that there exists a surjection h: R? — A satisfying h € C?(R%; A)

Remark 2.1 The existence of such a function h is guaranteed for the case A = B, (a), the
ball of radius » > 0 centered in a € R7. As a matter of fact, consider the ball B;(0) of
radius 1 centered at zero. Define h: R, — [0,1] as follows

i 6p° —15p" +10p°, 0<p<1,
1, p>1

= 1, moreover 7'(0) = h”(0) = 0 and A/(1) = A"(1) = 0.

Notice that 2(0) = 0 and h(1) =
iﬁ(!a\) for a # 0, and h(0) = 0. In particular, we have

Then, we define h(a) =

a
h(a) = (6la|* — 15|a* + 10]al*) alyy<iy + ml{\a|>1},

for all a € RY. O

For any t € [0,7] and (z,a) € R? x RY, we consider the forward stochastic differential
equation in R? x RY:

Xs = x—{—/sb(Xr,Ir)dr—i—/ o(Xy, I )dW, +/ /5 ) (dr,de), (2.1)
I, = h(a+tBs—Bt), (2.2)

for all t < s < T, where 7(ds,de) = n(ds,de) — A(I, de)ds is the compensated martingale
measure of 7, which is an integer-valued random measure with compensator (I, de)ds.



As noticed in the introduction, the above SDE (2.1)-(2.2) is nonstandard, in the sense
that the jump part of the driving factors in (2.1) is not given, but depends on the solution
via its intensity. When the intensity A is absolutely continuous with respect to a given
deterministic measure on (E, B(E)), as in [4], [9], and [10], we can obtain (2.1)-(2.2) starting
from a standard SDE via a change of intensity “a la Girsanov”. On the other hand,
in the present paper, we shall tackle the above SDE solving firstly equation (2.2), then
constructing the random measure 7(dt,de), and finally addressing (2.1). The nontrivial
part is the construction of 7, which is essentially based on Theorem 3.6 in [17], and also
on similar results in [13], Theorem 5.1, and [11], Theorem A.4. Let us firstly introduce the
following assumptions on the forward coeflicients.

(HFC)
(i) There exists a constant C' such that
b(z,a) —b(a',d')| + |o(x,a) —o(a’,a')| < C(lz—a'|+]a—d]),
for all z,2' € R? and a,d’ € RY.
(ii) There exists a constant C' such that

B(z,a,e)|
|5($a a, 6) - 5($la a/’ 6)|

for all z,2' € R% a,a’ € RY, and e € E.

C+ |z)(1 Ale]),

<
< Cle—o/|+a—d])(LAle]),

(iii) The following integrability condition holds:

sup / (LA le)Aa,de) < oo, Vm e N.
E

la|]<m
Inspired by [19], we give the definition of weak solution to equation (2.1)-(2.2).

Definition 2.1 A weak solution to equation (2.1)-(2.2) with initial condition (t,x,a) €
[0, 7] x R? x RY is a probability measure P on (Q, F) satisfying:

(i) P(dw) = P(dw) @ P'(w,dw’), for some transition kernel P’ from (Q, F) into (', F..).

ii) Under P, 7 is an integer-valued random measure on Ry x E with F-compensator
Jr
Ls<1o0}ALs, de)ds and compensated martingale measure given by 7(ds, de) = (ds, de)
— 1{8<TOO})\(IS,d€)d8.

(iii) We have
X, = x—i—/ b(Xr,Ir)dr—i—/ O'(Xr,[r)dWr—i—/ /B(XT,Ir,e)fr(dr,de),
t t t JE
I, = h(a+ Bs— By),

for allt < s < T, P almost surely. Moreover, (Xs,Is) = (z,h(a)) for s < t, and
(XSaIs) = (XTaIT) Jor s >T.



Consider a probability measure P on (2, F) satisfying condition (i) of Definition 2.1. For
every (t,a) € [0,T] x R? let us denote I = {Iﬁ’a, s > 0} the unique process on (2, F,F,P)
satisfying I = h(a+ By — By) on [t, T, with I-* = h(a) for s < t and Iv* = I%" for s > T.
We notice that the notation I»® can be misleading, since a is not the initial point of I*® at
time ¢, indeed If’a = h(a). Now we proceed to the construction of a probability measure on
(Q, F) for which conditions (i) and (ii) of Definition 2.1 are satisfied. This result is based
on Theorem 3.6 in [17], and we borrow also some ideas from [13], Theorem 5.1, and [11],
Theorem A 4.

Lemma 2.1 Under assumption (HFC), for every (t,a) € [0,T] x RY there exists a unique
probability measure on (2, F), denoted by Pb°, satisfying conditions (i) and (i) of Defini-
tion 2.1, and also condition (ii)’ given by:

(ii)’ 1{S<Too})\(1§’a,de)d5 is the (F @ F.)s>0-compensator of .

Proof. The proof is essentially based on Theorem 3.6 in [17], after a reformulation of
our problem in the setting of [17], which we now detail. Let F = (F)s>0 where Fy =
F ® F.. Notice that in F, we take F instead of F,. Indeed, in [17] the o-field F represents
the past information and is fixed throughout (we come back to this point later). Take
(t,a) € [0,T] x R? and consider the process I** = (I4%),>0. Set

vw, F) = /F1{s<Too(w)}>\([§’a(w)7de)ds

for any w € Q and any F' € B(R;) ® B(E). Now we show that v satisfies the properties
required in order to apply Theorem 3.6 in [17]. In particular, since A is a transition kernel,
we see that v is a transition kernel from (€2, F) into (Ry x E,B(Ry) ® B(E)); moreover,
v(w, {0} x E) =0 for all w € €, therefore v is a random measure on R} x E. Furthermore,
for every E' € B(E), the process v((0,] x E') = (1((0, 5] x E'))s>0 is F-predictable, hence
v is an F-predictable random measure. In addition, v({s} x E) < 1, indeed v is absolutely
continuous with respect to the Lebesgue measure ds and therefore v({s} x E) = 0. Finally,
we see by definition that v([Ts,00) X E) = 0. In conclusion, it follows from Theorem 3.6
in [17] that there exists a unique probability measure on (Q, F), denoted by P“?, satisfying

condition (i) of Definition 2.1, and for which v is the F—Compensator of 7, i.e., the process

(v((0,s AT,] x E') —7((0,5 AT] x E')) (2.3)

s>0

is a (P4 F)-martingale, for any E’ € B(E) and any n € N. Therefore condition (i)’ is also
satisfied.

To conclude, we need to prove that v is also the F-compensator of 7. Since v is an F-
predictable random measure, it follows from (2.6) in [17] that it remains to prove that the
process (2.3) is a (P4, F)-martingale. We solve this problem reasoning as in [13], Theorem
5.1, point (iv). Basically, for every T' € R, we repeat the above construction with Fr in
place of F, changing what in [17] is called the past information. More precisely, let T € R,
and define F7 = (F1),>0, where FL := Fr @ F.. Let

s

T (w,F) = /F Loery Lot (o MIE (w), de)ds.

9



Proceeding as before, we conclude that there exists a unique probability measure on
(Q, Fr @ F..), denoted by P47 whose restriction to (Q, Fr) coincides with the restriction
of P to this measurable space, and for which v is the FT-compensator of , i.e.,

(V0,8 ANT,] x E') — m((0,8 AT] x E,))szo

is a (PheT, FT)—martingale, for any E' € B(F) and any n € N. This implies that 7 ((0,T A
Tp) % E') —7((0, T AT,] x E') is F:-measurable, and therefore Fr-measurable. Notice that

vI((0,s AT, x E') = v((0,s N\T ATy x E'),

hence v((0,TAT,,| x E')—m((0,TAT,,| x E') is Fp-measurable. As T € R, was arbitrary, we
see that the process (2.3) is F-adapted. Since (2.3) is a (P4, F)-martingale, with F, C Fs,
then it is also a (P%¢, F)-martingale. In other words, v is the F-compensator of 7. O

Remark 2.2 Notice that, under assumption (HFC) and if in addition X\ satisfies the
integrability condition (which implies the integrability condition (HFC)(iii)):

sup/)\(a,de) < 00, Vm eN, (2.4)
E

la|<m

then T, = 0o, P“® a.s., and the compensator v is given by

viw, F) = /F)\(I?“(w),de)ds

for any F' € B(Ry) ® B(E) and for P»* almost every w € Q. Indeed, we have (we denote
by E%® the expectation with respect to P“®)

Etva[z 1{Tn<oo}} = E"[r(Ry x B)] = Etv"[ h w(ds,de)]

neN

S—

[e.e]

S 5

— Et,a |:

S—

v(ds, de)] .

Therefore, for m € N large enough,

Et’a[zl{n@o}] = Et’“[/o /El{s<Too}>\(I§’“,d6)d8] < T sup /EA(a’,de) < oo,

neN |a|<m

where we used condition (2.4) and the fact that P»® almost every path of the process I*®
belongs to the compact set {h(a)} U A. Hence, P"* a.s.,

Z 1{Tn<00} < 0

neN

which means that T, = oo, P“® almost surely. O
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Lemma 2.2 Under assumption (HFC), for every (t,z,a) € [0,T] x R? x R? there exists

a unique (up to indistinguishability) process X% = {X;’m’a, s > 0} on (Q,F,F Phe),

solution to (2.1) on [t,T], with Xe™* = x for s < t and Xg™* = X5° for s > T.

Moreover, for any (t,z,a) € [0,T] x R? x RY there exists a positive constant C, such that
B sup (IXEPOP 4 10)] < Call 41 + h(a)P). (2.5

t<s<T
where Cy, depends only on T, |b(0,0)|, |0(0,0)|, the Lipschitz constants of b and o, and on
the variable a through the term sup,c,cp [5(1 A le|HA(IL?, de) < 0.

Proof. Since hypotheses (14.15) and (14.22) in [18] are satisfied under (HFC), the thesis
follows from Theorem 14.23 in [18]. Concerning estimate (2 5), taking the square in (2.1)
(using the standard inequality (z1 + --- + 24)? < 4(2? +--- + 23), for any x1,...,24 € R)
and then the supremum, we find

2

+4 sup
t<u<s

2

sup | X5®? < 4lz|* 4+ 4 sup
t<u<s t<u<s

u u
/ b(XL™ T4 dr / o(XLme Ihdw,
t

2
+4 sup / /ﬂtha,[ﬁa, e)7(dr,de) (2.6)
t<u<s
Notice that, from Cauchy-Schwarz inequality we have
u 2 s 9
EW[ sup / b(XE™ IH")dr ] < TEt’“[ / |b(XE™e, 1)) dr]. (2.7)
t<u<s | Jt t

Moreover, from Burkholder-Davis-Gundy inequality there exists a positive constant C such

that
u
| otz
t

Slmllarly, since the local martlngale M, = ft & B( Xxhoe phe. e)(dr,de), t <u < s,issuch
that [M], = [," [, 18(X D, i ,e)|>n(dr, de), from Burkholder—Davis—Gundy inequality we
’“[ sup

obtaln
2
/ /ﬁxt“,[ﬁa, e)7(dr, de) ]
t<u<s

< CEt’a[/ /‘5 t_xa,Iﬁ“, ‘27T(d’l“,d6):|

= C’Et’“[/ /\5 X2 T e) \ﬁ([ﬁﬂ,de)dr} (2.9)
t E

2 s
Et’a[ sup , } < C_'Et’“[/ tr(aaT(Xﬁ’x’“,Iﬁ’“))dr} (2.8)
t

t<u<s

In conclusion, taking the expectation in (2.6) and using (2.7)-(2.8)-(2.9), we find (denoting
C, a generic positive constant depending only on 7', |b(0,0)|, |o(0,0)|, the Lipschitz con-
stants of b and o, and on the variable a through the term sup;< <7 [(1 A le2)A(I°, de) <
)

S
Et’“[ sup |Xi’m’a|2] < 4|ac|2—i—Ca<1—|—Et’“{ sup |I§’a|2] —i—/ Et’“{ sup |Xi’m’a|2}dr>.
t

t<u<s t<s<T t<u<r
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Since the paths of (I5*)s>0 belong to the compact set {h(a)}UA, we have (here the constant
C,, can be chosen independent of a)
B sup [IP] < Ca(l+ [h(a)?).
t<s<T
Then, applying Gronwall’s lemma to the map r — Etva[suptgugr |ijm’a|2], we end up with
estimate (2.5). O

3 BSDE with jumps and partially constrained diffusive part

Our aim is to derive a probabilistic representation formula, also called nonlinear Feynman-
Kac formula, for the following nonlinear IPDE of HJB type:

—%W)—jgg(ﬁ“u(t,wwf(x,a)) =0, (Lo)e[0,T)xRY  (3.1)
w(T,z) = g(z), =R (3.2)
where
Lu(t,z) = b(xaa).Dxu(t,m)+%tr(007(x,a)D§u(t,m))

+/ (u(t,z + B(z,a,€)) — u(t,z) — B(z,a,e).Dyu(t, z)) N a, de),
E

for all (t,z,a) € [0,T] x R? x R4. Let us firstly introduce some additional notation. Fix a
finite time horizon T' < oo and set Pr the o-field of F-predictable subsets of [0, 7] x €. For
any (t,a) € [0,T] x R?, we denote:

° Lga(]:s), p > 1, s > 0, the set of Fs-measurable random variables X such that
EL[| X P] < oo.

° Sf,a the set of real-valued cadlag adapted processes Y = (Y;);<s<7 such that

HYHz2 = Et’“[ sup \Ysﬂ < 00.
t,a tSSST

° L}za(t7 T), p > 1, the set of real-valued adapted processes (¢s)i<s<7 such that

T
ol ':E[ / ws\pds}m.

LY . (6T)

° LEa(W), p > 1, the set of R%valued Ppr-measurable processes Z = (Zs)t<s<T such

that
T ) 2
HZHiEa(W) :zE[(/t | Zs| ds> } < 00.

° Lga(B), p > 1, the set of RY-valued Pr-measurable processes V = (Vy)i<s<7 such

that
T 3
V[P =E VARE < 0.
LY a(B) t
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o LY (7), p > 1, the set of Pr ® B(E)-measurable maps U: [t,T] x Q x E — R such

that
IUITp ) = K//!U )PA(IL, de)d >]<oo.

° Kf,a the set of nondecreasing predictable processes K = (Kj)i<s<1 € Sf,a with K; =
0, so that

15Nz, = E[&P].

t,a

Remark 3.1 Equivalence relation in L (7). When U, U? € LY a(7), with Ul = U? we
mean ||U! — U?| =0,ie, Ul = U2 ds®d[F’®)\( ;a,de) a.e. on [t,T] x Q x E, where

LY . (F)

ds @ dP @ A\(I2®, de) is the measure on ([t,T] x Q x E,B(t,T) ® F ® B(E)) given by:

T
ds @ dP @ NI, de)(F) = REb [/ / 1r(s,w, ) A% (w), de)ds} ,
t E

for all F € B(t,T) ® F ® B(E). See also the beginning of Section 3 in [8]. O

The probabilistic representation formula is given in terms of the following BSDE with
jumps and partially constrained diffusive part, for any (¢,z,a) € [0,7] x R? x RY, P4® a.s.,

Ve = g(Xb™) 4 / f(xt®ae 15Ndr + Kp — K, — / Z,dW, (3.3)
—/ V,.dB, // 7(dr,de), t<s<T
and
Vs = 0 ds @ dP"* a.e. (3.4)

We look for the minimal solution (Y, Z,V,U, K) € 82 , x L? (W) x L7 (B)xL? (7)< KZ,
0 (3.3)-(3.4), in the sense that for any other solutlon Y, Z,V,U K) €S, x L (W) x
Laa(B) X Laa(fr) X Ktz,a to (3.3)-(3.4) we must have Y < Y. We impose the following
assumptions on the terminal condition g : R* — R and on the generator f: R x R? — R.

(HBC) There exists some continuity modulus p (namely p: [0,00) — [0, 00) is continu-
ous, nondecreasing, subadditive, and p(0) = 0) such that

[f(z,a) = f(a',d)[ +19(z) — g(2")| < p(lz — 2| +|a —d)),
for all z,2’ € R? and a,a’ € RY.

Proposition 3.1 Let assumptions (HFC) and (HBC) hold. For any (t,z,a) € [0,T] X
RY x RY, there exists at most one minimal solution on (Q, F,F,P4®) to the BSDE (3.3)-
(3.4).
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Proof. Let (Y, Z,V,U,K) and (Y, Z,V,U, K) be two minimal solutions to (3.3)-(3.4). The
uniqueness of the Y component is clear by definition. Regarding the other components,
taking the difference between the two backward equations we obtain

0 = Ks—f(s—/ts (ZT—ZT)dWT—/tS (Vr—f/,,)dBr—/tS/E(Ur(e)—Ur(e))ﬁ(dr,de),

for all t < s < T, P4%-almost surely. Rewriting the above identity as follows

/: (Zr—Zr)dWr-i-/ts (V. = V,)dB, = Ks—f(s—/ts/E(Ur(e)—Ur(e))ﬁ(dr,de),

we see that the right-hand side is a finite variation process, while the left-hand side has not
finite variation, unless Z = Z and V = V. Therefore, we obtain the identity

// r(e))m(dr, de) // H(@))AIL, de)dr + K — K,

where the right-hand side is a predictable process, therefore it has no totally inaccessible
jumps (see, e.g., Proposition 2.24, Chapter I, in [20]); on the other hand, the left-hand side
is a pure-jump process with totally inaccessible jumps, unless U = U. As a consequence,
we must have U = U from which it follows that K = K. O

To guarantee the existence of the minimal solution to (3.3)-(3.4) we shall need the
following result.

Lemma 3.1 Let assumptions (HFC) and (HBC) hold. Then, for any initial condition
(t,z,a) € [0,T] x R? x RY, there exists a solution {(Y&™®, ZL™ VE© UL KE™%), ¢ <
s < T} on (Q,F,F,Pb%) to the BSDE (3.3)-(3.4), with Y2 = (s, X:™") for some

deterministic function © on [0,T] x R? satisfying a linear growth condition

< [o(t, )|
up
(ta)e0T]xrd 1+ [z]

< o0

Proof. Let us consider the mollifier n(x) = ¢exp(1/(|x|* — 1))l <1}, where & > 0 is such
that [pqn(z)dz = 1. Let us introduce the smooth function

o(t,z) = CerT=Y (1 + /Rd n(x — y)\y[dy), VY (t,x) € [0,T] x RY x RY,

for some positive constants C' and p to be determined later. We claim that for C' and
p large enough, the function v is a classical supersolution to (3.1)-(3.2). More precisely,
C is such that g(x) < C(1 + f{|y‘<1} n(y)|z — y|dy), for all z € R which follows from
f{‘y|<1} n(y)|z — y|ldy > ||x| — 1| and from the uniform continuity of g (which implies the
linear growth of g itself). Furthermore, using the compactness of A, a straightforward
calculation shows that

ov

=5 ha) = sup (L75(4,2) + Fw,0)) 2 (o= C)lt, ),
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for some positive constant C' depending only on C' and the linear growth conditions of b,
o, B, and f. Then, we choose p > C. Let us now define the quintuple (Y, Z,U,L, K) as
follows:

= 0(s, Xb®Y), fort <s<T, Yr = g(X5™),

(XL I Dyo(s, X079, t<s<T,

=0, t<s<T,

(s, X0P + B(XLD I e)) — (s, XU™), t<s<T,e€FE,

s— ts

«

| |
vy
)

w
|

=
—
)
~—
i

s

S
K, ;:/ < ‘;7;( xtoay £ g (p, xtoay f(Xﬁ"”’a,If:“))dr, t<s<T,
t
Ky = Kp- +0(T, Xp™%) — g(X3").

We see that (Y, Z,V,U,K) lies in SZ, x L (W) x Lf,a(B) L (7 ) x K2 ,. Moreover,

by It6’s formula applied to (s, X£™®), we conclude that (Y, Z,V,U, K) solves (3.3), and
the constraint (3.4) is clearly satisfied. O

3.1 Existence of the minimal solution by penalization

In this section we prove the existence of the minimal solution to (3.3)-(3.4). We use a
penalization approach and introduce the indexed sequence of BSDEs with jumps, for any
(t,z,a) € [0,T] x R x R, P4% as.,

T
Yr o= g(Xp"Y) + / FXP50, 1) dr + K — KT — / ZdW,
S
—/ V'dB, — / / UM (e)w(dr,de), t<s<T, (3.5)
S
for n € N, where K™ is the nondecreasing continuous process defined by
S
= n/ |V |dr, t<s<T.
t
Proposition 3.2 Under assumptions (HFC) and (HBC), for every (t,z,a) € [0,T] X

R? x RY and every n € N there exists a unique solution (yntoa zntza yntra gt o
SZax L (W) x L? (B) x L (T) on (, F,F,P") satisfying the BSDE with jumps (3.5).

Proof. As usual, the proof is based on a fixed point argument. More precisely, let us
consider the function ®: L (t,T) x L ,(W) x L ,(B) x L{ ,(7) — L ,(t, T) x L{ ,(W) x
L .(B) x L (%), mapping (Y', 2", V', U’) to (Y, Z,V,U) defined by

T
Y, = g(XL"%) / fu(XEma phe ,,)dr—/ ZrdW,
—/ a)dBg / / 7 (dr, de), (3.6)

fu(z,a,v) = f(z,a) + nlv|.

where
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More precisely, the quadruple (Y Z,V,U) is constructed as follows: we consider the mar-
tingale M, = Eb¢[g(X tx ) + ft F(XE5 IH* V!)dr| F,), which is square integrable under
the assumptions on g and f . From the martingale representation Theorem A.1, we deduce
the existence and uniqueness of (Z,V,U) € L ,(W) x L ,(B) x L ,(7) such that

M, = Mt+/ Z,dW, +/ V,dB, / / #(dr, de). (3.7)

We then define the process Y by

yhp 5 Vo

T
}/; _ Et’a[g(X;’x’a)—i—/ fn Xt:va Ita V)d?"
S

} = M, - /fn Xp0e, 1, V] Ydr.

By using the representation (3.7) of M in the previous relation, and noting that Yr =
g(X;x’a), we see that Y satisfies (3.6). Using the conditions on ¢g and f, we deduce that
Y lies in Laa(t,T), and also in Sﬁa. Hence, ® is a well-defined map. We then see that
(ymbtaa zntoa yntia [rntia) s g golution to the penalized BSDE (3.5) if and only if it
is a fixed point of ®. To this end, for any a > 0 let us introduce the equivalent norm on
L2, (t,T) x L2,(W) x L2,(B) x L2, (7):

T
0 2V.0) 5= ] [0 (W 2+ P+ [ o@raaao)as)
t E

It can be shown, proceeding along the same lines as in the classical case (for which we refer,
e.g., to Theorem 6.2.1 in [30]), that there exists @ > 0 such that ® is a contraction on
LZ,.(t,T) x L2 (W) x L (B) x L2 ,(7) endowed with the equivalent norm || - [|5. Then,
the thesis follows from the Banach contraction mapping theorem. O

We can now prove our main result of this section. Firstly, we need the following two
lemmata.

Lemma 3.2 Under assumptions (HFC) and (HBC), for every (t,z,a) € [0,T] x RY x RY
the sequence (Y™4%), is nondecreasing and upper bounded by Y5%4 i.c., for all n € N,

n,t,x,a n+1,t,z,a v tax,a
Y;777 < Y; 20T, S Y;77

for all 0 < s < T, Pb% almost surely.

Proof. Fix (t,z,a) € [0,7] x R? x R? and n € N, and observe that

fn(xa CL,’U) < fnJrl(x,a’v),

for all (z,a,v) € R? x RY x R?. Then, the inequality yuhta < stﬂ’t’x’a, forall 0 <s<T,
P a.s., follows from the comparison Theorem A.1 in [26]. We should notice that Theorem
A.1 in [26] is designed for BSDE with jumps driven by a Wiener process and a Poisson
random measure, while in our case we have a general random measure . Nevertheless,
Theorem A.1 in [26] can be proved proceeding along the same lines as in [26] to encompass
this more general case.

Similarly, since [ (VE"%dr = 0, it follows that (YH®e, Ztwe ytea [jtaae [(H.a) solves
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the BSDE (3.3) with generator f,, for any n € N, other than with generator f. Therefore,
we can again apply the (generalized version, with the random measure 7 in place of the
Poisson random measure, of the) comparison Theorem A.1 in [26], from which we deduce
the thesis. O

Lemma 3.3 Under assumptions (HFC) and (HBC), there exists a positive constant C
such that, for all (t,x,a) € [0,T] x R* x R? and n € N,

Hyn,t,x,aH2 + HZn,t,m aH an,t,m aH HUn,t,:v,aH22 i + HKn,t,x,aH22
L a(® St

LZ (W)

T
< c(Etv“Ug(X;f’“)P]+EW[ [ s + oz, ) @
t t,a

L2 (B)

Proof. The proof is very similar to the proof of Lemma 3.3 in [26], so it is not reported.

t
[Y5"5%2 between ¢ and

We simply recall that the thesis follows applying It6’s formula to
T, and exploiting Gronwall’s lemma and Burkholder-Davis-Gundy inequality in an usual

way. |

Theorem 3.1 Under assumptions (HFC) and (HBC), for every (t,z,a) € [0,T] x
R? x RY there exists a unique minimal solution (Y@, Ztwe ytaa [rhea [tea) ¢ Sf,a X
L. (W) x L, (B) x L (7) xKZ, on (Q,F,F,P"%) to the BSDE with jumps and partially
constrained diffusive part (3.3)-(3.4), where:

(i) Y@ is the increasing limit of (Y™4%9),.

(i) (Zb@e, Viee, UMY s the weak limit of (Z7b50, Vmbae Unboe), i L2 (W) x
L{.(B) x L (7).

(iii) K& is the weak limit of (KI"™%), in L (Fs), foranyt <s<T.

Proof. Let (t,r,a) € [0,T] x R? x R? be fixed. From Lemma 3.2 it follows that (Y"5%:2),

converges increasingly to some adapted process Y%, We see that Y% satisfies E[sup;<s<r ]Y;t’gﬁ’am <
o0 as a consequence of the uniform estimate for (Y™4%4), in Lemma 3.3 and Fatou’s lemma.

Moreover, by Lebesgue’s dominated convergence theorem, the convergence also holds in

Lf,a(t’ T). Next, by the uniform estimates in Lemma 3.3, the sequence (Z™h%@ Vmbta.a yntz.a)

is bounded in the Hilbert space L7 ,(W) x L ,(B) x L ,(T). Then, we can extract a subse-

quence which weakly converges to some (25, V5%e Ub%%) in L2 (W) xLZ ,(B)x L (7).

Thanks to the martingale representation Theorem A.1, for every stopping time t < 7 < T,

the following weak convergences hold in Lf,a(]-}), as n — 0o,

/ Zn,t,:v adW N / ZtmadWs, / Vn,t,m adB N / Vt:vast,
t

/ /U;“t’w() (ds, de) / /Ut"”a 7(ds, de).
t E

T T
t
gt <yt [ s + [ zptea,
t t

Since
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+/ Vn,t,l' adB +/ /Un,t,:va dS de)
t

we also have the following weak convergence in L ,(F-), as n — oo,

’
n,t,xr,a tr,a . t,z,a t,z,a t.xz,a 7t,a
KT77 ’ —\ KT7 ’ = }/;7 ’ _YT7 ’ _/ f(st ’ 71—57 )ds

t

- / Zbm AW, + / Vi dB, + / / Ut (e)7(ds, de).
t t t E

Since the process (K"’t’x’a)t<s<T is nondecreasing and predictable and Knm’a = 0, the
limit process K" remains nondecreasing and predictable with EM[| Ky tma|2] < oo and

Kf % = 0. Moreover, by Lemma 2.2 in [28], K»*® and Y% are cadlag, therefore Y% €
Sf,a and K& € K%,a' In conclusion, we have

T
tht,at,a _ (tha / f Xt;)ja, Ita)ds—l-Ktxa Kta:a_/ Zg,g;,adWS

t
—/ VEhreqB, — //Ut“ 7(ds, de).
t

It remains to show that the jump constraint (3.4) is satisfied. To this end, we consider the
functional F': L, (B) — R given by

T
F(V) = Et’“[/t \Vsyds], VV e L, (B).

Notice that F(V™h%e) = Et’“[Kn’t’x “l/n, for any n € N. From estimate (3.8), we see
that F(V™b%a) — (0 as n — oo. Since F is convex and strongly continuous in the strong
topology of Lﬁa(B), then F' is lower semicontinuous in the weak topology of Lf,a(B), see,
e.g., Corollary 3.9 in [5]. Therefore, we find

F(VE5*) < liminf F(V™5%) = 0,

n— o0

which implies the validity of the jump constraint (3.4). Hence, (Y%a, Zta ytoae [jhra gtea)
is a solution to the BSDE with jumps and partially constrained diffusive part (3.3)-(3.4).
From Lemma 3.2, we also see that Y%%% = lim Y™%%2 is the minimal solution to (3.3)-
(3.4). Finally, the uniqueness of the solution (Y#:a zZta ytoae [yhr.a [te.a) follows from
Proposition 3.1. O

4 Nonlinear Feynman-Kac formula

We know from Theorem 3.1 that, under (HFC) and (HBC), there exists a unique minimal
solution (Yh®a ztwa yiea prhra ghra) on (Q, F F,PY) to (3.3)-(3.4). As we shall see
below, this minimal solution admits the representation Y{™** = v(s, X0 Ib®), where
v: [0,T] x R x R? — R is the deterministic function defined as

o(t,z,a) = Y (t,z,a) € [0,T] x RY x RY. (4.1)
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Our aim is to prove that the function v given by (4.1) does not depend on the variable a in
the interior of A, and it is related to the fully nonlinear partial differential equation of HJB
type (3.1)-(3.2). Notice that we do not know a priori whether the function v is continuous.
Therefore, we shall adopt the definition of discontinuous viscosity solution to (3.1)-(3.2).
Firstly, we impose the following conditions on h and A.

(HA) There exists a compact set A, C R such that h(Aj,) = A. Moreover, the interior
set fih of Ay is connected, and A; = Cl(/ih), the closure of its interior. Furthermore,
h(Ap) = A.

We also impose some conditions on A, which will imply the validity of a comparison
theorem for viscosity sub and supersolutions to the fully nonlinear IPDE of HJB type (3.1)-
(3.2) and also for penalized IPDE (4.5)-(4.6). To this end, let us define, for every § > 0
and (t,z,a) € [0,T] x R? x R,

L (ta, ) = / (p(t,x + Bz, a,e)) — p(t,x) — Bz, a,€).Dyp(t, ) ) \a, de),
En{le|<é}
for any ¢ € C12([0,T] x R?), and

Ig"s(t,x,q,u) = / (u(t,x + B(z,a,e)) —u(t,z) — Bz, a, e).q))\(a,de),
En{le|>d}

for any ¢ € R? and any locally bounded function u. Let us impose the following continuity
conditions on Ialt’5 and 13’5. Notice that, whenever Ii’é and 13’5 do not depend on a,
then (HAM)(i)-(ii) are consequences of Lebesgue’s dominated convergence theorem, while

(H\)(iii) follows from Fatou’s lemma.
(HX)
(i) Let € > 0 and define p.(e) = 1A le|?> Ae, e € E. Then

+
sup IM(t,x, 0.) =% 0,
a€A

for any (t,z) € [0,T] x R? and § > 0.
(ii) Let o € CY2([0,T] x RY). If (tg, zp, ax) — (t*,2*,a*) as k goes to infinity, then
lim T2 (ty, zp, ) = I;Zfs(t*,x*,gp),
k—oo “k
for any § > 0.

(iii) Let u: [0,T] x RY — R be usc (resp. lIsc) and locally bounded. If (ty,zy, qx, ax) —
(t*,z*,q*, a*) and u(tg,x) — u(t*,z*), as k goes to infinity, then

limsupfgf(tk,xk,qk,u) < Ig;é(t*,x*,q*,u)
k—o0

<resp. liminflgf(tk,xk,qk,u) > Ig;é(t*,x*,q*,u)>
k—00

for any § > 0.
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For a locally bounded function u on [0, T) x R*, we define its lower semicontinuous (lsc

for short) envelope w,, and upper semicontinuous (usc for short) envelope u*, by

u(t,€) = liminf wu(s,§) and w*(¢,£) = limsup u(s,§)
(s;m)—=(t,€) (5,m)—(t,€)
s<T s<T

for all (¢,€) € [0,T] x R*,
Definition 4.1 (Viscosity solution to (3.1)-(3.2))

(i) A Isc (resp. usc) function u on [0,T] x R? is called a viscosity supersolution (resp.
viscosity subsolution) to (3.1)-(3.2) if

wT,z) = (resp. <) g(x)
for any x € R, and

0
—a—f(t,x) — Zlelg (Eagp(t,x) + f(:v,a)) > (resp. <) 0

for any (t,x) € [0,T) x R? and any p € CH2([0,T] x RY) such that

(u—o)(t,x) = [O,I:%l]iand(u —¢) (resp. [O%i%d(u — ).

(i) A locally bounded function u on [0,T) x R? is called a viscosity solution to (3.1)-
(3.2) if ux is a viscosity supersolution and u* is a viscosity subsolution to (3.1)-(3.2).

We can now state the main result of this paper.

Theorem 4.1 Assume that conditions (HFC), (HBC), (HA), and (H\) hold. Then,
the function v in (4.1) does not depend on the variable a on [0,T) x R% x A:

v(t,z,a) = wv(t,z,d), Va,a'éfi,

for all (t,x) € [0,T) x RY. Let us then define by misuse of notation the function v on
[0,T) x R by

v(t,z) = wo(t,z,a), (t,z) € [0,T) x RY,
for any a € A. Then v is a viscosity solution to (3.1)-(3.2).

The rest of the paper is devoted to the proof of Theorem 4.1.

4.1 Viscosity property of the penalized BSDE

For every n € N, let us introduce the deterministic function v,, defined on [0, 7] x R? x R?
by

on(t,z,a) = Y00 (t,z,a) € [0,T] x R? x RY, (4.2)
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where (Yhea zntza ynteae ntta) s the unique solution to the BSDE with jumps
(3.5), see Proposition 3.2. As we shall see in Proposition 4.1, the identification Y7""** =
Un (s, X0 I) holds. Therefore, sending n to infinity, it follows from the convergence
results of the penalized BSDE, Theorem 3.1, that the minimal solution to the BSDE
with jumps and partially constrained diffusive part (3.3)-(3.4) can be written as Yoo
= v(s, XL 10", t < s < T, where v is the deterministic function defined in (4.1).

Now, notice that, from the uniform estimate (3.8), the linear growth conditions of g,
f, and v, and estimate (2.5), it follows that v,, and thus also v by passing to the limit,
satisfies the following linear growth condition: there exists some positive constant C', such

that, for all n € N,
[on(t, 2, 0)| + o(t, 2,a)| < Cy(1+ || +[h(a)]),  V(ta,a) €[0,T] xR x R%. (4.3)

As expected, for every n € N, the function v, in (4.2) is related to a parabolic semi-linear
penalized IPDE. More precisely, let us introduce the function vﬁ: [0, 7] x R x RY — R

given by
oMtz a) = wvn(t,x, ha)), (t,z,a) € [0,T] x R? x RY, (4.4)
Then, the function v! is related to the semi-linear penalized IPDE:
_ v, _ h(@) _
28 (1,,0) — L4Ouh(t,,0) — f (2, h(a)) (4.
1
—gtr(ngZ(t,x,a)) - n‘DavZ(t,m,a)‘ = 0, on[0,7) x RY x RY,
oMT,-,) = g, onRY xR (4.6)

Let us provide the definition of discontinuous viscosity solution to equation (4.5)-(4.6).

Definition 4.2 (Viscosity solution to (4.5)-(4.6))

(i) A Isc (resp. usc) function u on [0,T] x R x R? is called a viscosity supersolution
(resp. viscosity subsolution) to (4.5)-(4.6) if

u(T,z,0) > (resp. <) g(a)
for any (z,a) € R? x RY, and

_%_f(t,x,a) — LMV(t, 2, a) — f(z, h(a))

1
—itr(Dggo(t,x,a)) —n|Dap(t,z,a)] > 0 (resp. < 0)
for any (t,x,a) € [0,T) x R x RY and any ¢ € CH2([0,T] x (R? x R?)) such that

(u—)(t,z,a) = min  (u— ) (resp. max (u—¢)). (4.7)
[0,T]xR4xRY [0,T]xR4xR4

(i) A locally bounded function u on [0,T) x R? x R? is called a viscosity solution
to (4.5)-(4.6) if u. is a viscosity supersolution and u* is a viscosity subsolution to
(4.5)-(4.6).
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Then, we have the following result, which states that the penalized BSDE with jumps
(3.5) provides a viscosity solution to the penalized IPDE (4.5)-(4.6).

Proposition 4.1 Let assumptions (HFC), (HBC), (HA), and (H)) hold. Then, the

function vl in (4.4) is a viscosity solution to (4.5)-(4.6). Moreover, v

[0, 7] x ]Rd X Rq.

1S continuous on

Proof We divide the proof into three steps.

Step 1. Identification Y& = v, (s, Xe™* Iv*) = vl(s, Xb™" a + B Bt) Inspired by
the proof of Theorem 4.1 in [12], we shall prove the identification Yo""*% = v, (s, X4, 10%)
using the Markovian property of (X,I) studied in Appendix B. and the construction
of (Ymbtma zntaa prntra fntz.a) hased on Proposition 3.2. More precisely, for any
(t,z,a) € [0,T] x R x RY, from Proposition 3.2 we know that there exists a sequence
(yrmktea znktoae ynktee gkt e T2 (4, T) x L2, (W) x LZ,(B) x L (%), con-
verging to (Ywbhoae zntza yntza fnti.a) iy Lf,a(t7T) X Ltz’a(W) X Lt27a(B) X L%,a(ﬁ.)7
such that (YnOtza znotaa ynotea fmitz.a) = (( 0,0,0) and

T
szn,k:Jrl,t,:v,a — Q(X%La)‘i‘/ f Xt:va Ita d?"—/ /UnkJrLt,:va )ﬁ(dr,de)

_ / Zn Jk+1,t,x, adW / Vn k41t adB +n / ‘V'rn,k,t,ar,a‘dr,
s s

for all t < s < T, P"* almost surely. Let us define v, (¢, z,a) = Ytn’k’t’m’a. We begin noting
that, for £ = 1 we have
}"s} |

Then, we see from Proposition B.3 that Yo' = 4, (s, X0 18, dPY @ ds-almost

everywhere. Proceeding as in Lemma 4.1 of [12] (in particular, relylng on Theorem 6.27 in
717t7$7a/ —

T
Y'Sn,l,t,x,a _ Et,a [Q(Xélmﬂ)—{—/ f(Xﬁ’x’a,Iﬁ’a)dT’
s

[6]), we also deduce that there exists a Borel measurable function oy, ; such that V4"
Up,1(s, Xﬁ’f”’a, IL%), dPY* @ ds almost everywhere. Since V7 1hoa ¢ Laa(B), we notice that

T
Et’“[ / |6n71(s,X§i"“’“,I§’“)|2ds} < . (4.8)
t

n,k,t,x,a

Let us now prove the inductive step: let k¥ > 1 be an integer and suppose that Ys"
vmk(s,Xétm ok “) and V" ktzae 17n7k(s,X§_m ok "), dP“* ® ds-almost everywhere, with
Et’“[ftT ]f}n,k(s,Xsz’a, I5%)|2ds] < co. Then, we have

}"s}

Using again Proposition B.3 (notice that, by a monotone class argument, we can extend

T T
e [g(X%m’“)Jr / FXE2 1) dr +n / |G (r, X2, I0%) | dr
S S

Proposition B.3 to Borel measurable functions verifying an integrability condition of the
type (4.8)) we see that Y"FHHEm0 — ¢ 40 (s, X070 I0%), dPH © ds almost everywhere.
Now, we notice that it can be shown that E[sup;< <7 yukbma _ymbTa) 0 as k tends
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to infinity (e.g., proceeding as in Remark (b) after Proposition 2.1 in [12]). Therefore,
Un i (t, 7, a) — vy (t, 7, a) as k tends to infinity, for all (¢,z,a) € [0,T] x R x RY, from which
it follows the validity of the identification Yi""® = v, (s, Xe™% IL%) = ol (s, X1™% a +
Bg — By), dP* @ ds almost everywhere.

Step 2. Viscosity property of v'. We shall divide the proof into two substeps.

Step 2a. vl is a wiscosity solution to (4.5). We now prove the viscosity supersolution
property of v/ to (4.5). A similar argument would show that v/ it is a viscosity subsolution

o (4.5). Let (t,z,a) € [0,T) x R? x R? and ¢ € C12([0,T] x (R? x R9)) such that

0 = ((UZ)* - @)(tai.?a) - [0 T]rilﬂi&%xﬂ{q((vz)* _90)' (49)

Let us proceed by contradiction, assuming that

Using the continuity of b, o, 8, f, and h, we find 0 > 0 such that

_(?9_@: (t,2,0) — LDt a) — f(, h(a))

1
—?cr(Digo(t,x,a)) —n|Dap(t,z,a)| = —2¢ < 0. (4.10)
for any (t,z,a) € [0,T] x R? x R with |t — #|, |z — Z|, |a — a| < 0. Define
=inf {s > f: |X0®% —F| >4, |[Bs — B > 6} A(f+ ) AT

Since X570 ig cadlag, it is in particular right-continuous at time t. Therefore, 7 > £, Pha
almost surely. Then, an application of It6’s formula to ¢(s, X z’m’a, a + Bs — By) between ¢
and 7, using also (4.10), yields

o, Xtma a+ B, — B;) > o(t,z,a) —n/ |Daap Xff,&,d—i-Br—B{)‘dr

:&3\
l
~
SH
Sl
N~—
IS
E

T _ _ o _
_/ f(xEaa [t )dr—i—s(T—f)—i—/ Dyo(r, XI5 6+ B, — Bpo(X!
t

T T = —
+ / Dyo(r, X" a + B, — By)dB, (4.11)
t

W
::
<
—
.
=
Q.
@)
\_/

T _ - P
+ / / (o(r, X024+ B(X5" 11 e),a + B, — By) — o(r, X" a+ B, —
t E

Writing the BSDE (3.5) from ¢ to 7, using the identification ybsa = vl (s, X5" a+ B, —
By) and the inequality (v?).(t,7,a) < vf{(t_,f,(z), we find

t

_/ Z:L,f,f,&dWT _/ Vnta:adB / / Un 56(1 d?" de) (412)
t t
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Plugging (4.12) into (4.11), we obtain

B8 G4 B, — By) — ol(r, Xb% G+ B, — By) (4.13)

T T

t t E

Let us introduce the process a: [t,T] x  — R? given by

_ o Daplr X770+ By - Bl - VT
\Dop(r, X152 6 + B, — By) — Voo
. Dag(r, X020 @ 4 B, — By) — Vb B -
|Da30(7', Xf-vfz'ya, a —|— BT — Bt—) _ ‘/;‘n7{75376| {|Da§0(T‘,X7§’I’a’a+BT‘_BE)_Vrn,t,z,a,‘;éo}

T

for all £ <r < T. Notice that « is bounded, moreover

n(’DaQO(T’ th}iﬁ7 a+ BT’ - B[)‘ - ’V’Tn’ﬂfﬁ‘) = (Da90(7"7 thj’@&? a—+ BT’ - Bf) - V’Tnfj’a)ar'

Consider now the probability measure PH®® equivalent to P5® on (Q, Fr), with Radon-

. 1
= 5(/ o, dB, — —/ ]ar]2dr>
Fs t 2 t s

for all t < s < T, where £(-) is the Doléans-Dade exponential. Notice that the stochastic

integrals with respect to W and 7 in (4.13) remain martingales with respect to Pf’avo‘, while

Nikodym density given by

de,a,oz
dPta

the effect of the measure Pb@© is to render the process B, — B; — ftr o, du a Brownian
motion. As a consequence, taking the expectation with respect to Pb®® in (4.13) we end
up with (recalling that p(f,7,a) = (v").(t,,a))

EF"" [o(r, X0™® a+ B, — By) — (W!)u(r, Xo%% a + B, — By)]

" lp(r, X529 G+ B, — By) —oh(r, X0%0a + B, — By)] > eEF[r — 1],
Since 7 > £, Phias.. it follows that 7 > £, Pf’a’a—g.s., therefore EPE’E’Q[T —t] > 0. This
implies that there exists B € F;, such that (o(r, X2™% @ + By — By) — (v/). (7, X2 @ +
B, — By))1p > 0 and P4®*(B) > 0. This is a contradiction with (4.9).

Step 2b. v is a viscosity solution to (4.6). As in step 2a, we shall only prove the viscosity

supersolution property of v to (4.6), since the viscosity subsolution of v” to (4.6) can be
proved similarly. Let (Z,a) € R? x R9. Our aim is to show that

(vp)o(T, 2,0) > g(x). (4.14)

n
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Notice that there exists (tg, 2z, ap)r C [0,T) x R? x RY such that

(tk7 Ty QL UZ(tka Ly ak)) ki)o (t: 'f7 é? (’UZ)*(E, 'f7 a))

Recall that ! (tg, 2y, ag) = Y‘t;%tkyl‘kyak and

T
Yl etk [ (XCHTROR)] 4 / otk [f(X 00k, I | ds

173

T

+ n/ [tk HVS"’tk’x’“a’“Hds. (4.15)
tg

Now we observe that, from classical convergence results of diffusion processes with jumps,

see, e.g., Theorem 4.8, Chapter IX, in [20], we have that the law of (Xt,’m,’“,,ft/’a/) weakly

converges to the law of (X5%% %), As a consequence, we obtain

Rtk-ax [g(Xé_l‘mmkyak)] k‘jf’ g(i)

Moreover, from estimate (2.5) and (3.8), it follows by Lebesgue’s dominated convergence
theorem that the two integrals in time in (4.15) go to zero as k — oo. In conclusion, letting
k — oo in (4.15) we deduce that (v).(T,z,a) = g(z), therefore (4.14) holds. Notice that,
from this proof, we also have that, for any (x,a) € RIxRY, ol (t' 2, a') — v!(T,z,a) = g(x),
as (t',2',a") — (T, x,a), with ¢ < T. In other words, v/ is continuous at 7.

Step 3. Continuity of vz on [0,T] x RY x RY. The continuity of vz at T was proved in
step 2b. On the other hand, the continuity of v/ on [0,7) x R? x R? follows from the
comparison theorem for viscosity solutions to equation (4.5)-(4.6). We notice, however,
that a comparison theorem for equation (4.5)-(4.6) does not seem to be at disposal in the
literature. Indeed, Theorem 3.5 in [2] applies to semilinear PDEs in which a Lévy measure
appears, instead in our case A depends on a. We can not even apply our comparison
Theorem C.1, designed for equation (3.1)-(3.2), since in Theorem C.1 the variable a is a

parameter while in equation (4.5) is a state variable. Moreover, in (4.5) there is also a
h

v, i.e., we need a comparison theorem for an equation

nonlinear term in the gradient D,v
with a generator f depending also on z. Nevertheless, we observe that, under assumption
(H\) we can easily extend Theorem 3.5 in [2] to our case and, since the proof is very similar

to that of Theorem 3.5 in [2], we do not prove it here to alleviate the presentation. O

4.2 The non dependence of the function v on the variable a

In the present subsection, our aim is to prove that the function v does not depend on
the variable a. This is indeed a consequence of the constraint (3.4) on the component
V of equation (3.3). If v were smooth enough, then, for any (¢,z,a) € [0,T] x R? x RY,
we could express the process V5% as follows (we use the notations h(a) = (hi(a))i=1,.. 4,
Dyh(a) = (Da,hi(a))ij=1,..4, and finally Dpv to denote the gradient of v with respect to

its last argument)

Vstvmva = th(s,Xg’x’a,[g’a)Dah(a + Bs — By), t<s<T.
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Therefore, from the constraint (3.4) we would find
)
Etva[/ |Dy(s, X0 12" Doh(a + By — By)|ds| = 0,
t

for any § > 0. By sending ¢ to zero in the above equality divided by ¢, we would obtain
|Dpu(t, z, h(a))Dgh(a)] = 0.
Let us consider the function v": [0,T] x R? x R? — R given by
oMt x,a) = v(t,x, h(a)), (t,z,a) € [0,T] x RY x RY. (4.16)

Then |D,v"| = 0, so that the function v” is constant with respect to a. Since h(R?) = A,
we have that v does not depend on the variable a on A.

Unfortunately, we do not know if v is regular enough in order to justify the above
passages. Therefore, we shall rely on viscosity solutions techniques to derive the non de-
pendence of v on the variable a. To this end, let us introduce the following first-order
PDE:

— D" (t,z,0)|] = 0,  (t,x,a) €[0,T) x RY x RY. (4.17)

Lemma 4.1 Let assumptions (HFC), (HBC), (HA), and (H)) hold. The function v"
in (4.16) is a viscosity supersolution to (4.17): for any (t,z,a) € [0,T) x R x R and any
function p € CH2([0,T] x (R x RY)) such that

h

h _ _ : _
(W =@)twa) = min 009

we have
— | D" (t,z,a)| > 0.

Proof. We know that v” is the pointwise limit of the nondecreasing sequence of functions

h

" the function v" is lower semicontinuous and we have (see, e.g.,

(v1),,. By continuity of v
page 91 in [1]):

v (t,z,a) = VP(t,x,a) = liminf, v"(t,z,a),
n—o0

for all (t,z,a) € [0,T) x R? x RY, where

lirlrggf* ol (t,z,a) = lim inf oh(t 2 ), (t,z,a) € [0,T) x R? x R,
t'<T

Let (t,z,a) € [0,T) x R? x R? and ¢ € C12([0,T] x (R? x RY)) such that

h _ : h
(V" = p)(t, 2, a) [o,Tffuéngq(” ©)-

We may assume, without loss of generality, that this minimum is strict. Up to a suitable
negative perturbation of ¢ for large values of x and a, we can assume, without loss of
generality, that there exists a bounded sequence (t,, x,, a,) € [0,T] x R? x R such that

h : h
v, — tn, Tn,Qp) = min v, — P).
(U = @)t ns an) [QT}dequ( n =)
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Then, it follows that, up to a subsequence,
h h
(tns Tn, ans Uy (tn, Ty an)) — (t3,a,0"(t, 2, a)), as n — oo. (4.18)

Now, from the viscosity supersolution property of vﬁ at (tn,Tn,a,) with the test function

v, we have

1
_§tr(D¢2L‘~P(tn7xnaan)) _n‘Da@(tnaxnaan)| > 07

which implies

1 0 a
E < a a_sto(tn7x7h an) - ﬁh( n)gp(tn“%.n’ an)

- flonhlan)) = (D2t ) ).

|Ddgp(tn7 mn7 an)| S

Sending 7 to infinity, we get from (4.18) and the continuity of b, o, 3, f, and h:
!Dago(t,x, a)‘ = 0,
which is the thesis. O

We can now state the main result of this subsection.

Proposition 4.2 Let assumptions (HFC), (HBC), (HA), and (HX) hold. Then, the
function v in (4.1) does not depend on its last argument on [0,T) x R x A:

v(t,r,a) = v(t,z,d), a,d € A,
for any (t,x) € [0,T) x R

Proof. From Lemma 4.1, we have that v" is a viscosity supersolution to the first-order
PDE:
- ‘Davh(t,m,a)‘ = 0, (t,z,a) € [0,T) x RY x Ay,

where A;, was introduced in assumption (HA). Then, from Proposition 5.2 in [26] we

conclude that v" does not depend on the variable @ in /ih:
v (t,z,a) = V(L x,d), (t,z) € [0,T) x R%, a,d’ € Ap.

Since, from assumption (HA) we have h(Aj,) = A, we deduce the thesis. O

4.3 Viscosity properties of the function v

From Proposition 4.2, by misuse of notation, we can define the function v on [0, T) x R? by

v(t,z) = v(t,z,a), (t,z) € [0,T) x RY,
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for some a € A. Since h(A;) = A, we also have
o(t,z) = V"t z,a), (t,z,a) € [0,T) x RY,

for some a € Aj,. Moreover, from estimate (4.3) we deduce the linear growth condition for
v (recall that h(a) € A and A is a compact set, so that h is a bounded function):

“u lu(t, )|
p
(ta)eo,r)xrd 1+ 7]

(4.19)

The present subsection is devoted to the remaining part of the proof of Theorem 4.1, namely
that v is a viscosity solution to (3.1)-(3.2).

Proof of the viscosity supersolution property to (3.1). We know that v is the point-
wise limit of the nondecreasing sequence of functions (v?),,, so that v is lower semicontinuous
and we have

v(t,z) = v(t,z) = liminf, v"(t,z,a), (4.20)

n—oo
for all (t,z,a) € [0,T) x R? x Ay,. Let (t,z) € [0,T) x R and ¢ € C12([0,T] x RY) such
that

—o)(t,x) = i — ).
(v—)(t, ) [O%IXan(v )

From the linear growth condition (4.19) on v, we can assume, without loss of generality,
that ¢ satisfies sup( g)cpo,r1xre [9(t, 2)|/(1 + [2]) < co. Fix some a € Ay, and define, for
any € > 0, the test function

(2, d) = ot 2)) - a(]t' — t]Q + |2’ — x\Q + |a’ — a\Q),

for all (#',2',a’) € [0,T] x R? x R%. Notice that ¢° < ¢ with equality if and only if
(t',2',a') = (t,z,a), therefore v — ¢° has a strict global minimum at (¢,z,a). From the
linear growth condition on the continuous functions v” and ¢, there exists a bounded
sequence (t,, Tp, a,), (we omit the dependence in €) in [0,7T") x R? x R? such that

h 5 : h 5
v, — tn, Tn,Qn) = min v, — .
(U — %) (tns Tn, an) [O,T}dequ( n =)

By standard arguments, we obtain that, up to a subsequence,
(tn,xn, n, O (ty T, an)) — (t,x,a,v(t,x)), as n — 0o.
Now, from the viscosity supersolution property of vﬁ at (tn,Tn,a,) with the test function

e, we have

8806 h(an), £
_W(tmxna an) - L ¥ (tn’xn?an) - f(x”’ h(a”))
1
(D26 (s 0)) — 1| Da s )] 2 0.

Therefore
0p°

—W(tn,:cn,an) — Eh(“”)goa(tn,xn, an) — f(xn, h(ay)) — %tr(Dggps(tn,xn, an)) > 0.
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Sending n to infinity in the above inequality, we obtain, from the definition of ¢*,

€

_%(t,m,a) — £h(a)§0€(t,1‘,a) _ f(.%',h(a)) Le > o

Sending € to zero, recalling that ¢°(t,z,a) = ¢(t,x), we find

99 1. 2) — LMD p(t, 2) — F(x,h(a)) > 0.

ot
Since a € zflh and h(;lh) = ;1, the above equation can be rewritten in an equivalent way as
follows
dp a
_E(t’x) - L Sp(t’x) - f(CC,CL) > 0,

where a is arbitrarily chosen in A. As a consequence, using assumption (HA) and the
continuity of the coefficients b, o, 5, and f in the variable a, we end up with

0
~Z2(t,2) — sup [L%(t,2) — f(z,a)| > 0,
ot acA
which is the viscosity supersolution property. O

Proof of the viscosity subsolution property to (3.1). Since v is the pointwise limit
of the nondecreasing sequence (v/'),,, we have (see, e.g., page 91 in [1]):

v*(t,x) = limsup, o™ (t,z,a), (4.21)

n— o0

for all (t,z,a) € [0,T) x R x Ay, where

lim sup, v (t, z,a) = limsup o™t 2, d), (t,z,a) € [0,T) x RY x RY.
n—o00 n-—00
t,<’T7 a’EAh

Let (t,r) € [0,T) x R? and ¢ € C12(]0,T] x RY) such that

* t — * )
(v* = 9)(t,x) [O%%d(” )

We may assume, without loss of generality, that this maximum is strict and that ¢ satisfies
a linear growth condition sup(; z)cpo,r)xra [ (¢, )|/ (1 + |2]) < 0o. Fix a € A, and consider
a sequence (tn, Tn,an)y in [0,7) x R x Ay such that

(tn,xn,an,vn(tn,xn,an)) — (t,x,a,v*(t,x)), as n — oo.
Let us define for n > 1 the function ¢, € C12([0,T] x (R? x RY)) by
on(t',2',d) = (', 2") +n(lt' - tnl? + |2’ — xn\Q),

for all (#,2/,a’) € [0,T] x R x R9. From the linear growth condition on v” and ¢, we can
find a sequence (f,,, Ty, @p)n in [0,T) x R? x Ay such that

h F = = h
v, — tn, Tn,Qy) = max v, — .
(U = n)(tn, ZTn, Gn) [O,T]dexAh( n— #n)
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By standard arguments, we obtain that, up to a subsequence,

n([tn = tal? + [Tn — 2,?) =3 0.

As a consequence, up to a subsequence, we have

(Eru 'fna dn) nj)o (ta 1’, d),

for some a € Ajp. Now, from the viscosity subsolution property of vz at (tn, Tn,dn) with
the test function ,,, we have:

Opn - _ a S o
_%(tmxna an) - ﬁh( ")cpn(tn,xn,an) - f(xna h(an))

1 _ _
_itr(Dggpn(tn,En,dn)) —n|Dan(tn, T, an)| < 0.
Therefore, using the definition of ,,,

_9n
ot

IN
o

(EWJ 'fna dn) - ﬁh(an)gpn(fna jrw an) - f('fna h(én))
Sending n to infinity in the above inequality, we obtain
__(t’x) - ‘ch(a)@(t’x) - f(x’ h(d)) < 0.

Setting a = h(a), the above equation can be rewritten in an equivalent way as follows

Oy

—E(t,x) — L'acp(t,x) — f(z,a) < 0.

As a consequence, we have

92 (1,2) — sup [£o0(t,2) — f(2,0)] < 0,
ot acA

which is the viscosity subsolution property. O

Proof of the viscosity supersolution property to (3.2). Let z € R%. From (4.20), we
can find a sequence (t,, T, an)n valued in [0,T) x R? x R? such that
(tn,:vn, s O (b an)) — (T,x,a,v*(T,x)), as n — 0o,

h

"), is nondecreasing and v"(T),-,-) = g, we have

for some a € Ay,. Since the sequence (v

0 (T, ) > lim ol (ty, zp,an) = g(z).
n—o0

a

Proof of the viscosity subsolution property to (3.2). Let € R%. From (4.21), for
every € > 0 and a € Ay, there exist N € N and ¢ > 0 such that

|v2(t',x’,a') —v*(T,z)| < e, (4.22)
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for all m > N and |t/ — T, |2’ — z|,|a’ —a|] < 6, with ¢/ < T and o’ € A,. Now, we recall
that (T, x,a) = g(z), therefore, from the continuity of v, for every n € N, there exists
dn > 0 such that

ol (¢, 2’ d') — g(z)| < e, (4.23)

for all |t/ — T|, |z’ — x|, |a’ — a| < 6,, with a’ € Aj,. Combining (4.22) with (4.23), we end
up with
v (T, z) < g(z)+ 2e.

From the arbitrariness of ¢, we get the thesis. |

Appendices

A. DMartingale representation theorem

We present here a martingale representation theorem, which is one of the fundamental
result to derive our nonlinear Feynman-Kac representation formula. It is indeed a direct
consequence of Theorem 4.29, Chapter III, in [20], which is however designed for local

(instead of square integrable) martingales.

Theorem A.1 Let (t,a) € [0,T] x R? and M = (Mj)i<s<1 be a cadlag square integrable
F-martingale, with My constant. Then, there exist Z € L (W), V € L (B), and U €
L (%) such that

My, = M, /ZdW+/VdB+// e)m(dr,de),

forallt < s <T, P almost surely.

Proof. Since M is a local martingale, we know from Theorem 4.29, Chapter III, in [20],

that
MS:Mt—l—/ZdW—i-/VdB // 7(dr,de),

for some predictable processes (Zs)i<s<1, (Vs)i<s<r, and (Us)i<s<T, satisfying

TATE TATY
Etva[/ yzsy%zs] < oo, Et’“[/ W.S]st} < oo,
t t
T/\T
[/ /]U (e)2A(IL%, de) s} < 00,

for all n € N, where (77)nen, (7V)nen, and (7¥),en are nondecreasing sequences of F-
stopping times valued in [t,T], converging pointwisely P® a.s. to T. It remains to show
that Z € L7 ,(W), V € L ,(B), and U € L (7). To this end, set 7, := tZ ATy AT for
every n € N. Notice that 7, is an F-stopping time valued in [t,T], converging pointwisely
Pb% a.s. to T. Then, applying It6’s formula to M2 between ¢ and 7, we find

Mﬂ?n = Mt2 +2/ M ZdW +2/ M VydBg +2/ / M U ds de)
t t
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+/n\ZS\2ds+/n\VS]2ds+/n/ |Us(e) > (ds, de). (A1)
t t t E

Observe that the local martingale ( ftSAT” M, Z,dW, )< s<7 satisfies, using Burkholder-Davis-
Gundy inequality and the fact that E"*[sup,< oy |M;[*] < oo (which is a consequence of
Doob’s inequality),

SN\Tp,
EY| sup
t<s<T

| <

In particular, fS/\T" M ZsdWy)<s< is a martingale. Similarly, ( fS/\T" M, V,dB,)i<s<T
and ( SAT" [ M, U,(e)7(dr,de))i<s<r are martingales. Therefore, taking the expectation
in (A.l) yields

E"[MZ] = Mt2+IEt’a[/ |Zs|2ds] +Et’“[/ |Vs|2d5}
t t

+Ew[ / ' / \Us(e)\Qw(dS,de)]. (A.2)
t E
Recall that

Et’“[/tm/E|Us(e)|27r(ds,de)] - Et’“[/ /|U 2N, de)d }

Moreover, we have E-*[M2 ] < E““[sup,<,op M?] < oo. Therefore, from (A.2) it follows
that there exists a positive constant C', independent of n, such that

ge| [ 1zpas| | [Tvpas| cete) [0 [ oopacie o) < c.
t t

Letting n — oo, by Fatou’s lemma we conclude that Z € L (W), V e L, (B), and
U e L, (7). ]

B. Characterization of 7 and Markov property of (X, I)

In the following lemma, inspired by the results concerning Poisson random measures (see,
e.g., Proposition 1.12, Chapter XII, in [31]), we present a characterization of 7 in terms
of Fourier and Laplace functionals. This shows that 7 is a conditionally Poisson random
measure (also known as doubly stochastic Poisson random measure or Cox random measure)
relative to o(l,;2 > 0).

Proposition B.1 (Fourier and Laplace functionals of 7) Assume that (HFC) holds
and fix (t,a) € [0,T] x RY. Let £: Ry x E — R be a B(Ry) ® B(E)-measurable function
such that [ [5 [Cu(e)| A1 1L, de)du < co, P4 a.s., then, for every s < oo,

Et,a [ei fOS fE Ly (e)m(du,de)

o(IL% 2 > 0)| = i Jele™ OIS depdu - pa g

If 0 is nonnegative, then the following equality holds:

Etae |:€7 Jo [z tu(e)m(du,de)

s —ly (e t,a
O'(I?a‘;z > 0)i| = e f() fE(lfe bul ))A(Iu vde)du7 ]P:t,(l a.s.
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In particular, if (Fy)i1<k<n, with n € N\{0}, is a finite sequence of pairwise disjoint Borel
measurable sets from Ry x E, with ka )\(Ii’a,de)du < 00, P4 a.s., then

n ) "
Et,a {eizzzl 0 (Fy) U(Ii’a; 2> 0)} _ H eka(ewk_l))\(Li’ ,de)du’ ]P’t’a a.s.

k=1

for all 01,...,0, € R. In other words, n(Fy),...,n(F,) are conditionally independent
. t,a
relative to o(1;";z > 0).

Proof. Let J, = [ [ tu(e)m(du,de), for any s > 0, and define

¢(S) _ Et,a[eiJs

o(I% 2 > 0)], Vs> 0.

Applying It6’s formula to the process e/, we find

el = 1+// u= (€ — 1) 7(du, de).

Taking the conditional expectation with respect to U(Iia, u > 0), we get

Et,a [eiJs

o(I}%2>0)] =1 +Et’“[ / / eu () — 1) \(I4°, de)du

:1+//Et“eu

o(s) = 1+/08<;5(u)1/)(u)du, P a.s.,

(1052 0))

o(IL% 2 > 0)] (e1®) — 1)A(I4?, de)du.

In terms of ¢ this reads

where

P(u) = / () —1)\(IL,de),  P"a.s.
E

Notice that 1 belongs to L1(R, ), as a consequence of the integrability condition on f. We
see then that ¢ is continuous, so that

o(s) = elo w(“)du, Pa.s.,
which yields the first formula of the lemma. The second formula is proved similarly. O

We shall now study the Markov properties of the pair (X, I) in the following two propo-
sitions.

Proposition B.2 Under assumption (HFC), for every (t,z,a) € [0,T] x R x RY the
stochastic process (X;’m’a,fé’a)szo on (Q, F,F,P4) is Markov with respect to F: for every
r,s € Ry, r < s, and for every Borel measurable and bounded function h: R x R? — R we
have

E 4 h(X o™, I0%) | Fy]

EY (X5, 10 |o(Xp5e I0Y)], P as.
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Proof. Fix (t,z,a) € [0,T] xR?xR?. Notice that it is enough to show the Markov property
for t < r < s < T. Therefore, let r € [t,T] and consider, on (2, F,F,P4®) the following
equation for X:

X, = Xf:l“’u/ b(Xu,Ifﬂ)dqu/ o(Xu, IL*)dW, (B.1)

+ /TS/EB( X, 15, )7 (du, de),

for all s € [r,T], Pb® a.s., where 7(du,de) = n(du,de) — 1{u<Tm}A(IZ’a,de)du. Under
assumption (HFC), it is known (see, e.g., Theorem 14.23 in [18]) that there exists a unique
solution to equation (B.1), which is clearly given by the process (Xﬁ’w’a) se[r,7]- We recall
that this solution is constructed using an iterative procedure, which relies on a recursively

defined sequence of processes (X)), see, e.g., Lemma 14.20 in [18]. More precisely, we
set X(© =0 and then we define X+ from X as follows:

XD = xtea / b(X M, 15 du + / (X5, 15")dw,

//ﬁ XM b o)i(du, de),

for all s € [r,T], P4 a.s., for every n € N. It can be shown that X™) converges uniformly
towards the solution X*“*® of (B.1) on [r,T], P"* a.s., namely sup,c(. 7 |Xs(n) X0™ =0
as n tends to infinity, P“® almost surely. This shows that X>™% (and also (X2 a, 1) s
F-adapted, where F = (F,) sefr7] is the augmentation of the filtration G = (G,) selr,7] given
by:

Gs = a(XPP IV FV gV FL gV Fl g,

where F}V oWy — Wyir < u < s), ]:[]fs] = o(By — Br;r < u < s), and F

r,5 r,5
o(m (F)][J‘ ]e B([r,s]) ® B(E)). Since .7:[W} and .7-"[381 are independent with respect to[]-"i, it
is enough to prove that ]:[ N and F, are conditionally independent relative to o(X,’ Laa N/ t’a).
To prove this, take C' € F, and a B(R) ® B(E)-measurable function ¢: Ry x E — R such
that [ [, [€u(e)|A(I5", de)du < oo, P4 almost surely. Then, the thesis follows if we prove
that

Ebe [ o1 1o+ib2 [ [ bu(e)m(du,de)

o(Xpme, 1) (B:2)

_ Et@ [eigl 1o {O'(Xffx’a, Iﬁ’a)] Et,a |:ei92 ff fE Ly (e)m(du,de)

o(Xhma, I;éva)] . Ptoas,

for all 0,05 € R. Firstly, let us prove that 1o and f Jut P )7 (du, de) are conditionally
independent relative to o(I2%; z > r), ie.,
Ehe [6i9110+i92 J7 Jg tu(€)m(du,de) o(IL%z > 7‘)} (B.3)
— Eta [ewllc ‘U([i,a; z> r)]eff fE(e”“@%—1)A(13;“,de)du’ Phe g s
Proceeding as in Proposition B.1, let J, = [7 [}, £,(e)m(du, de) and

¢(S) — Et7a[ei9110+i92Js

J(Iﬁ,’“; z>7)], Vs>
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Applying It6’s formula to the process e/, we find

}Et@ [eiel 1o+i02Js

o(Ib% 2z > 1)) = EM[eic|o(Ib 2 > 1)
+ Fbe |:/S/ ei0110+i92Ju7 (eifu(e)% _ 1))\([507 de)du
r JE

= [Ebe [ewllc!a(li’a; z > 7")]

o(Ib% 2 > 0)]

S
+ / / Rbe [629110“92%* |0(I§’a; z>7)] (623“(6)92 — 1)A(I5%, de)du.
r JE
In terms of ¢ this reads

o(s) = 1+/s¢(u)1/)(u)du, P a.s.,

where

b(u) = / (% _ )\(IL de),  P4a.s.
E

Notice that 1 belongs to L1(R, ), as a consequence of the integrability condition on f. We
see then that ¢ is continuous, so that

(;5(5) — Ete [6201 1o |U(I§,’a; 2> ’I“)] eff w(u)du, pta as.,
which yields (B.3). Let us come back to (B.2). We have, using (B.3),

Rte |:ei€1 Lo+if2 [° [5 bu(e)m(du,de)

P(X07, 1] = BNVl (X050, 1)
where
y; = Eb° [ewllc‘a(fi’a; z2>r)V U(Xf,’x’“,lf,’“)],

Y, = Ete [€i62 J7 [ bu(e)m(du,de) O_(Ié,a; 2> T) V O_(Xﬁ,ar,a’ Iﬁ,a) )

Since (I4%).>0 is Markov with respect to I, we have that F, and o(I5% 2z > ) are inde-
pendent relative to U(L'f’a). Therefore, Y7 can be written as

Yy = Eb e |o (X0 T
It follows that Y7 is o( X2, IF®)-measurable, so that

Ete |:ei9110+i92 I2 [ bu(e)m(du,de)

O—(Xﬁ,x,a71ﬁ,a)} — YlEt’a[YQ‘O'(Xﬁ’m’a, Iﬁ,a)L ]P’t’a a.s.,
which proves (B.2). O

Proposition B.3 Under assumption (HFC), the family (Q,F, (X5 [4%) Pb%), o is
Markovian with respect to F and satisfies, for every (t,z,a) € [0,T] x R? x RY, 7,5 € R,
with r < s, and for every Borel measurable and bounded function h: R? x R? — R,

EYe [h(XE™, 10| F] = / h(z',a")p(r, (XE I0Y), s, da’dd’), P a.s. (B.4)
R4 xRY

where p is the Markovian transition function given by
p(r,(a',d'),s,T) = Pr((XP™, 10%) €T),

for everyr,;s e Ry, r <s, (2/,d) € R? x RY, and every Borelian set T' C R% x RY.
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Remark B.1 For the proof of Proposition B.3 we shall need to consider simultaneously two
distinet solutions {(X5™% 14%), s > 0} and {(X;l’x/’a/, 12/’“'), s > 0}, for (t,z,a),(t',2',d") €
0, 7] x R? x RY. According to Lemma 2.2, {(X™% I4%), s > 0} is defined on (Q, F,F,Ph®)
and {(Xﬁ'“'v“’, Iﬁ/’a/), 5> 0} on (Q,F,F,P"), respectively. However, we can construct a
single probability space supporting both solutions. More precisely, we can construct a single
probability space supporting both the random measure with compensator 1,7, 1 A( ba de)ds
and the random measure with compensator 1{S<Tw})\([§l’al, de)ds, proceeding as follows.
Let Q" be a copy of ', with corresponding canonical marked point process denoted by
(T), &!")pen, canonical random measure 7, T/ := lim,, T/, and filtration F” = (F.);>o0.
Define (Q, F,F = (Fi)i>0) with Q:=0xQ, F:=FF., and F; := Ngy Fs @ FV.
Moreover, set W () := W (w), B(Q) := B(w), #'(&,-) = 7w(w,-), and #7(Q, ) := 7" (", ).
Set also T/ (&) := Tho(w) and T”( ) == T/ (w"). Let Ph®*.% be the probability mea-
sure on (Q,F) given by Pt&!9 (do) = P(dw) @ P (@, dw’) @ P (@, dw”). Finally,
get (Xta:a,Ita)( )= (Xtma Ita)( /) and (tha It ’)( ):_(Xt/ar/a’ It @ )( )
Then (X%%2, [%) solves (2.1)-(2.2) on [t, T] starting from (z, a) at time ¢, and (X* %"« It/ a’y
solves (2.1)-(2.2) on [¢/,T] starting from (2/,a’) at time ¢'. O

Proof (of Proposition B.3). We begin noting that from Proposition B.2 the left-hand
side of (B.4) is equal to EL0[h(XE I0%)|o (X" IF)], Pb* almost surely. Let us now
divide the proof into two steps.

Step 1. (Xtm “ If’a) is a discrete random variable. Suppose that

(Xﬁ,x,a717€,a) - Z(mhai)lrw
i>1
for some (z;,a;) € R? x R? and a Borel partition (T'3)i>1 of R? x R? satisfying P(T';) > 0,
for any ¢ > 1. In this case, (B.4) becomes

B (X050, D)o (X, 10)] = Y 1p 0% [W(Xp7% 10|, Pha.s.  (B.5)
i>1

A

Now notice that the process (X&™*1r,)s>, satisfies on (€, F,F,Pb@™%) (using the same
notation as in Remark B.1)

s s
Xﬁ’x’alpi = xilpi —|—/ bi(XfL’x’alpi,[fL’alpi)dT—|—/ O’Z‘(Xi’m’al Z,Iia )qu
r

T

S
- / / BX" I, I 1, e)7i(du, de),
r E

with b; = blr,, 0; = olr,, and 7i; is the compensated martingale measure associated to the
random measure 7;, which has 1FiA(I;f1pi,de)ds, s > r, as compensator. Similarly, the
process (Xg """ 1p,)s>, satisfies on (Q, F, [, Pharai)

S S
Xreotilp = glp, 4+ / bi(XD@e%i 1, IP% 1 p, )dr + / oy (XD, I0% 1, ) dW,,
s

T
S
+ / / BRI 1y, [y )7 (du, de),
r E
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/

where 7 is the compensated martingale measure associated to the random measure 7,

which has 1Fi)\(f§f”1pi, de)ds, s > r, as compensator. Since the two processes (fﬁ’alpi)szr
and (I91r,)s>, have the same law, we see that (X2™*1p,)s>, and (X2%%1p,)ss, solve
the same equation, and, from uniqueness, they have the same law, as well. This implies
(denoting EH®™% the expectation with respect to PH®74)

BOOn 0 [R(X 0D, 1) p,] = RO [R(XPP0%, 591y, ]
Notice that
E“on [R(Xp™, Ip)1e,] = B [h(Xe™, I0)1p,]
and
Bhers [p(Xpron Ip%)1r,] = Ebene [Bhene (X Pt 01 | F]]

= Ehera [Ehene [p( X [re)| F 1]
_ ptara; [Et,a,r,ai [h(Xsr,mi,ai’ f;’,ai)] 11“,']
= EM[EN [h(XPT0, 10 1 ).

In other words, we have
Ebta [h(X;f,x,a7[§,a)1FJ — [EhLa [Ehai [h(X?ri,ai’Ishai)] 1Fi]7

from which (B.5) follows.
Step 2. General case. From estimate (2.5), we see that (X2™% I0%) is square inte-

grable, so that there exists a sequence (Xﬁ’m’a’n, Iﬁ’a’n)n of square integrable discrete random

variables converging to (Xp™%, I'*) pointwisely P4 a.s. and in L2(Q, F,Phe;R? x RY).

The sequence (Xp“%™ IX“™), can be chosen in such a way that (XZ"®"H! bently g
a better approximation of (X2™% IF®) than (X;™®" IF™™), in other words such that
o(XEmen by o g(XETen Tt phem ) Let us denote (X5T®™, IX“™) the solution to
(2.1)-(2.2) starting at time 7 from (X7"*" I7*™). Notice that, from classical convergence
results of diffusion processes with jumps (see, e.g., Theorem 4.8, Chapter IX, in [20]), it
follows that (Xﬁ’x’“’",lﬁ’“’") converges weakly to (Xﬁ’x’a,lﬁ’a). From Step 1, for any n we

have
BV [n(XL50 100 |o(XE5em 1h™)] = p(r, (XE5"" 16, s, h), P a.s. (B.6)

where
p(ry(a'sa), s, k) = BN (X LR

for every r,s € Ry, r < s, (2/,d) € R? x RY, and every Borel measurable and bounded
function h: R? x R? — R. Let us suppose that h is bounded and continuous. Since the
sequence (EL¢[h(XED™ TE"™)|o(Xp™ "™, I7%™)]), is uniformly bounded in L2(Q, F,Ph9),
there exists a subsequence (EL[h(XL™ @M [LO%) (X 5@ [LO)]), - which converges
weakly to some Z € L?(Q, F,P»*). For any N € N and 'y € U(Xﬁ’x’a’N, Iﬁ’a’N), we have,

by definition of conditional expectation,

Et,a [Et,a [h(X;’x’a’nk : [E,a,nk ) ‘O,(Xﬁ,x,a,nk : [ﬁ,a,nk )] ]‘FN] — Et,a [h(X§’$’a7nk, I;’a’nk)le] 7
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for all n, > N. Letting £k — oo, we deduce
EX*[Z1p,] = EM[R(XE5 101, ].
Since (X2 IF") = Vo (X5 IE™™), it follows that
Z = EM (XD I0M)|o(Xp5 10, P as.

Notice that every convergent subsequence of (Eb¢[h(XE™®™ IL%™)|o(XEP", I%™)]),, has
to converge to EXO[h(X2™® ILY)|o (X", IF)], so that the whole sequence converges. On
the other hand, when h is bounded and continuous, it follows again from classical con-
vergence results of diffusion processes with jumps (see, e.g., Theorem 4.8, Chapter IX, in
[20]), that p = p(r, (2',d’), s, h) is continuous in (z’,a’). Since (X;™®™ IF*™), converges
pointwisely P4 a.s. to (Xp™, IF®), letting n — oo in (B.6) we obtain

EY [R(X0™ 10" o (X5, 10 = p(r, (X5, 10%), s, h), P q.s. (B.7)
for any h bounded and continuous. Using a monotone class argument, we conclude that
(B.7) remains true for any h bounded and Borel measurable. O

C. Comparison theorem for equation (3.1)-(3.2)

We shall prove a comparison theorem for viscosity sub and supersolutions to the fully
nonlinear IPDE of HJB type (3.1)-(3.2). Inspired by Definition 2 in [3], we begin recalling
the following result concerning an equivalent definition of viscosity super and subsolution
to (3.1)-(3.2), whose standard proof is not reported.

Lemma C.1 Let assumption (HFC), (HBC), and (H\) hold. A locally bounded and lsc
(resp. usc) function u on [0, T]x R? is a viscosity supersolution (resp. viscosity subsolution)

to (3.1)-(3.2) if and only if
u(T,z) > (resp. <) g(z)

for any x € R, and, for any § > 0,

1
- %f(t, z) = sup |b(w,0)-Dap(t,2) + 5tx (007 (2. @) Dip(t, 7)) + 1;°(t, %, ¢)

+ I20(t, 2, Dyp(t,x),u) + f(z,a)| > (resp. <) 0,

for any (t,x) € [0,T) x R? and any ¢ € CH2([0,T] x RY) such that

U — t,r) = min (u— resp. max (u— .
(u—)(t, ) [O,T]XRd( p) (resp [Oﬂde( )

As in [3], see Definition 4, for the proof of the comparison theorem it is useful to adopt
another equivalent definition of viscosity solution to equation (3.1)-(3.2), see Lemma C.2
below, where we mix test functions and sub/superjets. We first recall the definition of sub
and superjets.
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Definition C.1 Let u: [0,T] x R? — R be a Isc (resp. usc) function.

(i) We denote by P*>~u(t, z) the parabolic subjet (resp. P> u(t, ) the parabolic superjet)
of u at (t,z) € [0,T) x RY, as the set of triples (p,q, M) € R x R x S¢ (we denote by S?
the set of d x d symmetric matrices) satisfying

1
u(s,y) > (resp. <) u(t,) +pls 1) +aly— ) + Ly~ ). M(y — )
+o(ls =t + |y —«l*), as (s,y) = (¢, ).
(ii) We denote by P>~ u(t,z) the parabolic limiting subjet (resp. P>t u(t,z) the parabolic

limiting superjet) of u at (t,z) € [0,T) x RY, as the set of triples (p,q, M) € R x R% x §¢
such that

(p,q, M) = lim (py, qn, M)
n—oo
with (P, Gn, My) € P>~ u(tn, z,) (resp. P> u(ty,z,)), where
(t,z,u(t,z)) = lim (tn,Tn, u(tn,zy)).
n—0o0

Lemma C.2 Let assumption (HFC), (HBC), and (H\) hold. A locally bounded and lsc
(resp. usc) function u on [0,T] x R? is a viscosity supersolution (resp. viscosity subsolution)
to (3.1)-(3.2) if and only if

w(T,z) = (resp. <) g(x)

for any x € R, and, for any § > 0,

1
— p—sup |b(z,a).q+ itr(aaT(:v, a)M) + M@t )
acA

+ It x,q,u) + f(z,a)| > (resp. <) O,

for any (t,z) € [0,T) x R?, (p,q, M) € P>~u(t,x) (resp. (p,q,M) € P>*u(t,x)), and
any ¢ € C12([0,T] x RY), with %—f(t,x) = p, Dyo(t,x) = q, and D2p(t,x) < M (resp.
D2p(t,z) > M), such that

(u—)(t,x) = [O,rTn]land(u — ) (resp. [Ogﬂl]axﬁd(u — ).
Proof. Using Lemma C.1, we see that the if part is true. We have to prove the only
if part. In particular, we prove the equivalence for the supersolution case only, since the
subsolution case can be proved similarly.
Let u be locally bounded and lsc on [0,T] X R? and suppose that u is a viscosity
supersolution to (3.1)-(3.2). Fix § > 0, (t,z) € [0,T) x R, (p,q, M) € P> u(t,x) and
¢ € C12(]0,T] x R?), with %—f =p, Dyp(t,z) = q, and D2p(t,2) < M, such that

—)(t,x) = mi — ).
(u—@)(t,x) [o,%lfw(“ )
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By classical results (see, e.g., Lemma 4.1, Chapter V, in [14]), there exists a function
Y: [0,T] x RT = R, ¢ € CY2([0,T] x RY), such that (t,z) = u(t,x), %—If(t,x) = p,
Dy(t,x) = q, D2)(t,2) = M, and ¥ < u on [0,T] x R%. For any ¢ > 0, we define 1. as
follows:

bels,y) = xels,)0(s,9) + (1= xe(s,9))e(5,9),  (5,9) € [0,T] x R,
where x. is a smooth function satisfying:

0 < xe(s,9) < 1, if (s,9) €[0,T] xR,

X:(s,y) =1, if (s,9) € ([0, 7] N {]s —t| < &}) x RIN{Jy — 2| < &}),

X=(s,y) =0, if (s,y) € ([0, 7] N {]s — | > 2¢}) x RN {|y — x| > 2¢}).
Notice that ¥. € C12([0,T] x R?%) and min 7y pa (v — Ye) = (u — :)(t,x). Moreover,

1 =1 in a neighborhood of (t,z). As a consequence, from Lemma C.1 we have

1
— p—sup |b(x,a).q+ §tr(007(az, a)M) + IMO(t, x,9.) (C.1)
acA

+ Lt w g u) + f(z,0) | > 0.
Let us assume, for a moment, the validity of the following result:

SUE {I;"S(t,xﬂbg) — I;"S(t,x, gp)‘ 8_)—0>+ 0. (C.2)
ac

Then, by sending n — oo in (C.1), we obtain the thesis

1
— p—sup |b(x,a).q + §tI‘(O'O'T($, a)M) + Mt )
acA

+ Ig"s(t,x,q,u) + f(x,a) > 0.

Therefore, it remains to prove (C.2). Notice that

sup |10 (¢, z,9.) — 13 (1, 2, )] (C3)

acA

= sup / Xe(t,z + B(z, a, 6))(1/1(t,1’ + B(z,a,e)) — o(t,x + B(x,a, e))))\(a,de) .
acA | JEN{|e|<d}

From the regularity of ¢ and ¢, we have

[W(t.x + B(x,a,¢)) — otz + Bz, ae))| < |B(z,a,e)l> sup  [DI(¥ —@)(t,y)l,

ly—z|<rs,»

where 755 1= SUP(4 0)cAx (En{|e|<s}) |B(T: a, €)]. In particular, (C.3) becomes (in the sequel
we shall denote by C' a generic positive constant depending only on ¢ and )

sup {Ié7é(t7 z, w&) - Ia176(t7 z, SO){
acA
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< Csup/ Xe(t,x + B(z,a,e))|(x,a, e)\z)\(a, de).
acAJEN{|e|<d}

Observe that Xs(tw%' + ,8(.%',@, 6))’,8(.%',@, 6)‘2 < ’,8(.%',@, e)‘21{\ﬁ(x,a,e)|§26}' Since 5(1’,0,, 6) <
C(1 A lel?), we find

sup ‘I;"S(t,x,wg) —IM(t, x, o) < Csup/ LA le? A (4eH)N(a, de). (C4)
acA acA JEN{|e|<d}

It follows from assumption (H\)(i) that the right-hand side of (C.4) goes to zero as e — 0T,
from which we deduce (C.2). O

We can now state the main result of this appendix.

Theorem C.1 Assume that (HFC), (HBC), and (H\) hold. Let u be a usc viscosity
subsolution to (3.1)-(3.2) and w a lsc viscosity supersolution to (3.1)-(3.2), satisfying a

linear growth condition

u(t, 2)| + [w(t, z)

sup (C.5)
(t,)€[0,T] xRd 1+ |z|
If w(T,z) < w(T,x) for all z € RY, then u < w on [0,T] x R
Proof We shall argue by contradiction, assuming that
sup (u—w) > 0. (C.6)
[0,T]xRd
Step 1. For some p > 0 to be chosen later, set
a(t,z) = elu(t,x), w(t,z) = e’w(t,x), (t,z) € [0,T] x RY.
Let us consider the following equation:
_ 00 a~ | F d
pv — — —sup (LD + f(-,a)) = O, on [0,T) x RY, (C.7)
ot acA
o(T,z) = glx), =eR% (C.8)

where

ft,z.a) = e flz,a),  glz) = e g(x),

for all (t,z,a) € [0,T] x RY x A. Then @ (resp. ) is a viscosity subsolution (resp.
supersolution) to (C.7)-(C.8) (the definition of viscosity sub/supersolution to (C.7)-(C.8)
is an obvious adaptation of Definition 4.1). Indeed, concerning the subsolution property of
i, let (t,2) € [0,T) x R? and ¢ € C12([0,T] x R?) such that

(@ —@)(t,z) = max (a— @)
[0,T]xRd

We can suppose u(t,z) = ¢(t,z), without loss of generality. Set o(s,y) = e P*@(s,y), for
all (s,7) € [0,T] x R%. Then u(t,z) = p(t, ). Moreover, since % — @ < 0 on [0,T] x RY, we
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see that maxy 71,ge(u — ¢) = 0. The claimed viscosity subsolution property of @ to (C.7)
then follows from the viscosity subsolution property of u to (3.1). Similarly, we can show
the viscosity supersolution property of w.

Step 2. Denote, for all (t,s,z,y) € [0,7]> x R?, and for any n € N\{0} and v > 0,

t—sP  Jz—yP

2 2
> 2 (2 + lyP?).

P, (t,s,2,y) = a(t,z) —w(s,y) —n

By the linear growth assumption on v and w, for each n and v, there exists (ty, ~, Sn.y, Tnys Un,y) €
[0, T)2xR?¢ attaining the maximum of ®,, , on [0, T)?> xR, Notice that @y, »(tn. s Snys Tnys Yny) >
0, for « small enough. Indeed, from (C.6) we see that there exists (£,#) € [0,T") x R? such

that @(f,2) — w(f,2) =: n > 0. Then

(pn,v(tn,w sn,’yawn,’wyn,’y) 2 (I)n,v(ia fai.ai.) = 77 - 2'7’i.’27

therefore it is enough to take v < n/(2|£|%). From @y, (tn s Snys Tnys Yny) > 0 it follows
that

2 2
n |ty — Snyl +n |Tny — Yngyl
2 2

+7(|xnmf|2+|yn,'y|2) < ﬂ(tn,'y,xn,v)_w(sn,'y,yn,'y)- (C.9)

On the other hand, from the linear growth condition (C.5) of u and w, we deduce that there
exists a constant C' > 0 such that (recalling the standard inequality ab < a?/(27) + vb%/2,
for any a,b € R and v > 0)

IN

a(t, ) —w(s,y) C(1+ || + |y]) (C.10)

02
< Ot (el +1P),  V(smy) € 0T xR
Combining (C.9) with (C.10), we obtain

n|tn,'y - 5n,7|2 + n|$n,ﬂ/ - yn,7|2

2 2 + ’y(|l‘n’7|2 + |yn77|2) S ﬂ(tn,»}/, xnﬂ/) - 'lI](Sn,»Y, ynﬁ)

C? vy
< O+ —+ _(‘xnﬁ‘z + ‘yn,v’2)7
0% 2
which implies

02
- %(\xm\z +lynnl’) < C+ — (C.11)

ltny — snn/‘Q in |Tny — yn,v‘Q
4 4

From (C.11) it follows that, for each v, there exists (t.,2,) € [0,T] x R? such that

1
3

(tnys Snys Tngys Yny) = (ty, ty,s Ty, Ty), (C.12)
|2,y — xw‘Z + 1|Yny — yv‘Q == 0, (C.13)
Wtnr, Tnny) = W(Snrs Ynn) =3 Aty @) — B(5y, Yy )- (C.14)

As a matter of fact, we see from (C.11) that, for every v, there exists a constant C;y > 0
such that |z, 4, [yn| < Cy. Moreover, we obviously have |t +|,|$n,y| < T'. Therefore, from
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Bolzano-Weierstrass theorem, there exist a subsequence ((tn, v, Snyys Tng,v> Yng,y) )k and
(ty, th, 2y, 2) € [0, 7% x R?? such that (¢, ~» Sny > Trg.ys Yng,) CONVErges to (ty, bl 2y, )
as k goes to infinity. Combining this latter result with limsup,, . (|tny — A2 + |Tn —
Yn~|?) = 0, which follows from (C.11), we finally obtain (C.12). On the other hand, to

prove (C.13)-(C.14), notice that we have (recalling that @ — @ is usc)

ﬁ(tq/, .%',y) — ﬁ)(sy, yv) — 2’7’1'«/’2 < hnrggf ¢n7’y(tn,’ya Sn,ys Ty ynﬂ/)
< limsup <I>,w(tn,7, Sn,ys Ln,ys yn,w)
n—0o0

<ty my) — W(Sy,Yy) — 27‘957’2-

This implies that

ltny = Snql? _ n’xn,v - ynn/’2>

U(ty, Ty) — W(Sy,yy) = lim (a(tnmmnw) — W(Snys Yny) — 1 9 B

n—o0

< limsup (@(tny, Tny) — D(Snys Ynpy)) = Wty Ty) — W(Sy, Yy),
n—oo

which proves (C.13) and (C.14).
Finally, we derive a useful inequality. More precisely, for any &,& € RY, from the
maximum property @y, ~(tn.ys Snys Ty + dyUny +d) < Py (Enys Snys Ty Ynyy) WE get

Uty Tny +d) — Wtny, Tny) — nd-(Tny = Yn )
S a}(snvﬂf’ yn,’“{ + d,) - w(snvﬂf’ ynv’y) - nd/'(l’nvﬂf - ynv'\/)
d—d'f?

2 + 7(|xn,'y + d|2 - |xn,'y|2 + |yn,7 + d/|2 - |yn,“f|2)' (C'15)

+n

Step 3. Let us prove that, if v is small enough, then ¢, < T, so that ¢, y,s,, < T, up to a
subsequence. We proceed by contradiction, assuming ¢, = 7". From (C.16) we obtain the
contradiction (recalling that @ — w is usc)

IN

0 < limsup (@(tn,y, Tny) = D(Snsy: Yniy)) (T, zy) — (T, 2zy) < 0.

n—oo

~

Consider, as in step 3, (£,2) € [0,T) x R? such that a(f,2) — w(f,#) =: n > 0. Then, from
the inequality @y ~(tn,ys Snys Tnys Yny) = <I>np,(f, t,2,1), we obtain

Set v* := (u(t,#) — w(t,2))/(4]2]*) A1 if |£]> > 0, and v* := 1 if |2]?> = 0. Then, for any
0 < v <~* we have

W(tny, Tny) — W(Sny, Uny) = > 0, (C.16)

from which we obtain the contradiction (recalling that @ — w is usc)

0 < limsup (ﬁ(tnmxnﬂ)—Qf}(snmynﬁ)) < w(T,zy) —w(T,zy) < 0.

n—oo
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Step 4. We shall apply the nonlocal Jensen-Ishii’s lemma (see Lemma 1 in [3]). To this
end, let v € (0,7*] and define

t—sl*  |z—yf
2 2

(Pn(ta 37x7y) =n + 7(’1"2 + ‘y’2) - q)n,v(tnn/a Sn,yaxn,'wyn,'y)a

for all (¢,s,z,y) € R?*24 and for any n € N\{0}. Then (,, S, Tns Yn) := (tnys Snys Trys Yny)
is a zero global maximum point for @(t, z) — w(s,y) — @n(t, s, z,y) on [0,T]> x R??. Set
Ipn

(pna Qn) = <W(tna Sny Tn, yn)a Dx@n(tna Snsy Ty yn)) )

0
(—p;,—q;) = (%(tnaSnaxnayn)aDy@n(tnasnaxmyn)>'

Then, for any 7 > 0, it follows from the nonlocal Jensen-Ishii’s lemma that there exists
&(7) > 0 such that, for any 0 < o < &(7), we have: there exist sequences (to allevi-
ate the notation, we omit the dependence of the sequences on «) (ty i, Sn ks Tnk, Ynk) —
(tmsmxnayn)? (tn,kasn,hxn,kayn,k) S [07T)2 X R2da (pn,kapil,MQn,mQ;L,k) — (pnap;NQm(];L)a
matrices Nmk,NAk e S? with (Nn,kar/hk) converging to some (M, q, M, ,), and a se-

quence of functions ¢, x € C12([0,T]? x R??) such that:
(i) (tnks Snkes Trks Yn k) is a global maximum point of @ — W — ¢y, k;
(i) w(tnps Tnk) = UWtn, zy) and W(Sy k, Yn k) — W(Sn, Yn), as k tends to infinity;
(i) (Pnks Gnks Nnk) € P2’+&(tn7k,xn,k), (p;%k,q,'%k,NAk) € PQ’*w(sn,k,yn,k‘), and

On k
(pn,k, Qn,k) = (a—?(tn,ka Sn,ky Tnks yn,k)a Dx@n,k(tn,ka Sn,ky Tnk, yn,k)> )

Oon k
(_pln,ka _Q;L,k) = < 67;7 (tn,ka Sn,ky Tn,k> yn,k)a Dy@n,k(tn,ka Sn,ky Tn,k> yn,k)> ;

(iv) The following inequalities hold (we denote by I the 2d x 2d identity matrix and by
D?x,y)ﬂﬂn,k the Hessian matrix of ¢, with respect to (z,y))

1 N,k 0
—aI < ( (T)L, _NT,LJC) < D(2$7y)80n,k(tn,kaSn,kaxn,k,yn,k)' (C17)

(V) @n,i converges uniformly in R?*+24 and in C%(B; (tn, sn, Tn, yn)) (Where By (tn, 85, Tn, Yn)
is the ball in R2T2? of radius # and centered at (t,,S,,n,yn)) towards Ypao =

2
Ronl(2,6) = sup {gon(z')—s.(z'—z)—M}, Ve e R
|2/ —2|<1 2a

Then, from Lemma C.2 and the viscosity subsolution property to (C.7)-(C.8) of u, we have:

- 1
pu(tn,ka xn,k) — Pnk — Sug |:b(xn,ka a)-Qn,k + §tr(UUT (xn,lm a)Nn,k)
ac
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L3 (b s Tk Pk (S s Unk)) + 10 (b s Gk ©)

+.f(tn,k7xn,k7a) < 0.

On the other hand, from the viscosity supersolution property to (C.7)-(C.8) of w, we have:

- 1

PO(Sp s Ynk) — P — sup b(Yn,k @) + 500 (007 (Y ks @) N i)
ac

+I;76(5n,ka Yn k> _@n,k(tn,ka Lk )) + 1376(571,16, Yn k> Q;L,k, ZE)

+f(5n,ka Yn, k) a) > 0.

For every k € N*| consider a;, € A such that

- 1
Pty ks Tnk) — Pnk — b(Tnk, Qk)-Gn ke — 5‘61“(00T(90n,k7 ar) N k) (C.18)
_Ial,;f (tn,k‘a xn,k, Spn,k('a Sn,k‘) ) yn,k‘)) - Ig;f(tn,ka xn,k, Qn,k, a)
~ 1
_f(tn,k,xn7k‘aak‘) < %

From the compactness of A, we can suppose that ar — a., € A, up to a subsequence.

Moreover, for every a € A we have

. 1
P k) — Bl — D @)t = 57007 (s @)V, ) (C.19)

_I;’é(sn,lm Yn,k> _(Pn,k(tn,ka Y Lk )) - Ig’é(sn,ka Yn ks q;hk’ UN))

_f(Sn,k:,yn,k;,a) 2 0.
Set 7 1= 28up(q eyeax(mnfle|<s) (1B a,e)| V [B(y*,a,e)]), where from (C.12) we de-
fine (z*,y*) := lim,_yoo(Tn,yn), and o* := &(r*). Notice that for all n € N\{0} we
have sup(, o)cax(mn{je|<sy) (|B(Tns a,e)| V [B(yn,a,€)]) < r*, up to a subsequence. There-
fore, sending k to infinity, we get ¢n 1 — Yna, as k tends to infinity, uniformly in
C?(By+(tn, Sn, Tny yn)) for any 0 < a < a*. Moreover, from assumption (HM)(iii) we
have

lim SUP/ (W(tn o, Tk + B(@n e, ks €)) — Wt ks Tr) — B(Tn e, Oy €)-Gn i) Mg, de)
En{le[<s}

k—o0

< / (ﬂ(tn, Tp + B(xn, oo, 6)) - 22(tna xn) - /B(xn, oo, e)-Qn))\(aocn de)
En{le|<d}
Therefore, from (C.18) we obtain

- 1
PU(tn, Tn) — Pn — b(Tp, Go0) .G, — §tr(O'O'T($n, aoo)Mma)
_I;:i (tnawnawn7a('78n7 7yn)) - Igﬁ (tn7xn7Q7laﬁ) - fN(tn7xn7aoo) S O

A fortiori, if we take the supremum over a € A we conclude

- 1
pU(ty, Tn) — pp — sug b(xn,a).q, + §tr(o'0'T(mn7 a)Mn,a)
ac
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+I;’6(tn7xn7wn,a('a Sny 7yn)) + Ia276(tn7xn7qn7a) + f(tn7xN7a) < 07 (020)

for any 0 < o < o*. On the other hand, letting & to infinity in (C.19) for every fixed a € A,
and then taking the supremum, we end up with

- 1
P50, = = 509 [0, )., + 1500 (s D)
ac

+I;’6(5nayna_¢n,a(tn7'axna')) +Ig’6(3myn7q;wu~)) +f(sn7y"’a) > 0, (C.21)

for any 0 < o < o*. Moreover, from (C.17) we have

1 M, 0
——I < ( g,a Y ) < D(Z%y)(bn,a(tnasnaxmyn) (C.22)
n,a

and by direct calculation

D(Zx,y)¢n,a(7§na5naxmyn) = D(2$7y)gpn(tna5naxnayn) +0(1), as a — 07, (0-23)

Step 5. From (C.20), for any n, consider a,, € A such that

- 1
PU(tn, Tn) — pn — b(Xp, an).qn — §tr(O'O'T($n, an)Mn,a)

—I;;f(tn,xn,wn,a(.’ SnssYn)) — Igf(tn,xn,qn,ﬂ) — f(tn,xn,an) < % (C.24)
On the other hand, from (C.21) we deduce that
i (5nsn) =y = Do)ty — 5t7(90" (s 00) M, )
—L32 (30 Yy —Vnatns - @0y ) = 122 (S0 Yo @y @) = f (0, ymsan) 2 0. (C.25)
By subtracting (C.25) to (C.24), we obtain:
p(U(tn, 2n) — W(sp,yn)) < % + pn — Pl + AF, + ALY + AT2O (C.26)

+ b(zn, an).qn — b(Yn, an)-q;m

1
+ §tr(007(azn, an) Mo — 00" (Yn, an)Mrll,a),

where
AFn = fN(tn7xn7an) - f(snaynaan)7
AIrlfé = Ialt,’f(tnaxmwn,a(',sna',?/n))_Ialn,’f(snayna_wn,a(tm'axna')),
ALY = I2(tn, Tns G @) — 120 (S0 Y, 4y, D).
We have 5 5
pn_pln = %(tmsmxmyn)+%(tnasnaxmyn) = 0.
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By the uniform Lipschitz property of b with respect to z, and (C.13), we see that

lim (b(2n, an)-qn — b(Yn: an)-q),)

n—00
= lim (b(xnaan)-Dm@n(tnaxnayn)"’b(ynaan)-Dy@n(tnaxnayn)) = 0.

n—oo

Regarding the trace term in (C.26), by the uniform Lipschitz property of o with respect to
z, (C.22), (C.23), and (C.13), we obtain

lim sup limsup tr (60" (2, an) Mp,o — 00" (Yn, an)M;, ) < 0.

n—oo a—0t o

Moreover, from assumption (HBC) and (C.13)-(C.14), we find
lim |AF,|=0.
n—oo
Concerning the integral term AI%’(S, we have, for some ¢, 9" € (0,1),

ar — [ (D2t s 2n + 0 B0, Gns€), 5n) B in, €).B(n, ans €)
En{le|<d}
+ D5¢n,a(tna Sny Tn,Yn + 19”5(%% Ap, 6)),8($n, Apyy 6).5($n, Apy,y 6)] )‘(ana de)-

Therefore, using (C.23) we see that there exists a positive constant C/,, depending only on
(Zn, Yn), the Lipschitz constant of 3, and on supy grc(o 1] | D20y, (tn, Sns Tn+0' B(Tn, Ay €), yn) |V
|D§@n(tn, Sns Ty Yn + 0 B(Yn, an, €))|, such that

limsup |AI}] < C’;L/ (1/\|e|2))\(an,de). (C.27)
En{le|<d}

a—0t

Finally, it remains to consider the integral term AI,QL’(S. Integrating inequality (C.15), with
d = B(xp,an,e) and d' = B(yp, an, €), we find

~ ~ B T, dn, € _/8 Yn,an, € 2
En{le|>d}

—i—’y/ (|zn + B(Tn, an, €)* = zn]*) May, de)
En{le|>d}

ap, de)

+ 7/ (‘yn + /B(ymam e)‘Q - ’yn‘2))\(an7d€)
EN{le|>65}

Then, it follows from assumption (HFC)(ii) that there exists a positive constant C”, de-
pending only on the function /3, such that (recalling that by Cauchy-Schwarz inequality we
have |a + b|? — |a|? < |b|? + 2|a||b|, a,b € R)

i - Tn — Yn|*
B2 tnsitns s ®) < T2 d) + 0O [ (1 A )N e)
E
A (Ut a2+ nf?) [ (1A 1eP)Aan de) (©.23)
E
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From assumption (HFC)(iii) we see that sup,e 4 [5(1 A |e[*)A(a, de) < co. Moreover, from
(C.11) we have that |z,|? + |y,|? is bounded by a constant, independent of n and v. So
that, enlarging the constant C” appearing in (C.28) if necessary, we find

2
- - Tn —
Igf(tn,xn, In, ) < Igf(sn,yn,q;,w) + nC’"% +~C". (C.29)

In conclusion, plugging (C.29) into (C.26), we obtain

i i 1
Pty @n) = D(sn,yn)) < — +pp =Py + AP + ALY (C.30)
L el =l

2

+ b(zn, an).qn — b(Yn, an).q;

_|_ 'YCI/

1
+ §t1‘(O'O'T(.%'n, an) Mo — 00" (Y, an) M, ,,).

Then, taking the lim sup,_,o+ in both sides of (C.30) and using (C.27), we get

p((tn, zn) — W(Sn,yn)) < = + pn —Pp + AF, + C;L/ (LA le]*)Man, de) (C.31)
" EN{le|<5}

2
+nC”‘xn 2y77/’ _i_,_ycll

+ b(xru an)-Qn - b(yna an)-Q;L
1
+ 3 lim sup tr (oo™ (@, an) Mp.o — 00 (Yn, an) M, ).

a—0t

Now, taking the limsups_,o+ in both sides of (C.31), we deduce

_yn|2

1 T
pa(tn, ) = @(sn,yn)) < —+pn = P+ AF, + nc”| = 5 +~C” (C.32)

+ b(zn,an).qn — b(Yn, an).q;

1
+ = limsup tr (60" (@, an) Mo — 00T (Yn, an) M, ).
2 a0+ 7 7
Recall from (C.16) that p(@i(tn, 2n) — @ (Sn, yn)) > p(a(t, #) —w(t, 1)) /2. Therefore, taking
the lim sup,,_, . in (C.32), we conclude
&(f’ j) — ’U~)(7§, j)

0 < < ~C"
9 = Y0,

which is a contradiction for v small enough. O
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