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We are interested in stochastic control problems coming from mathematical finance and, in particular, related to model uncertainty, where the uncertainty affects both volatility and intensity. This kind of stochastic control problems is associated to a fully nonlinear integro-partial differential equation, which has the peculiarity that the measure (λ(a, •)) a characterizing the jump part is not fixed but depends on a parameter a which lives in a compact set A of some Euclidean space R q . We do not assume that the family (λ(a, •)) a is dominated. Moreover, the diffusive part can be degenerate. Our aim is to give a BSDE representation, known as nonlinear Feynman-Kac formula, for the value function associated to these control problems. For this reason, we introduce a class of backward stochastic differential equations with jumps and partially constrained diffusive part. We look for the minimal solution to this family of BSDEs, for which we prove uniqueness and existence by means of a penalization argument. We then show that the minimal solution to our BSDE provides the unique viscosity solution to our fully nonlinear integro-partial differential equation.

Introduction

Recently, [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF] introduced a new class of backward stochastic differential equations (BSDEs) with nonpositive jumps in order to provide a probabilistic representation formula, known as nonlinear Feynman-Kac formula, for fully nonlinear integro-partial differential equations (IPDEs) of the following type (we use the notation x.y to denote the scalar product in R d ):

∂v ∂t + sup a∈A b(x, a).D x v + 1 2 tr σσ ⊺ (x, a)D 2 x v + f (x, a) (1.1) 
+ E v(t, x + β(x, a, e)) -v(t, x) -β(x, a, e).D x v(t, x) λ(de) = 0, on [0,

T ) × R d , v(T, x) = g(x), x ∈ R d ,
where A is a compact subset of R q , E is a Borelian subset of R k \{0}, and λ is a nonnegative σ-finite measure on (E, B(E)) satisfying the integrability condition E (1 ∧ |e| 2 )λ(de) < ∞.

Notice that in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF] more general equations than (1.1) are considered, where the function f = f (x, a, v, σ ⊺ (x, a)D x v) depends also on v and its gradient D x v. However, the case f = f (x, a) is particularly relevant, as (1.1) turns out to be the Hamilton-Jacobi-Bellman equation of a stochastic control problem where the state process is a jump-diffusion with drift b, diffusion coefficient σ (possibly degenerate), and jump size β, which are all controlled. A special case of (1.1) is the Hamilton-Jacobi-Bellman equation associated to the uncertain volatility model in mathematical finance, which takes the following form:

∂v ∂t + G(D 2 x v) = 0, on [0, T ) × R d , v(T, x) = g(x), x ∈ R d , (1.2) 
where G(M ) = 1 2 sup c∈C [cM ] and C is a set of symmetric nonnegative matrices of order d. As described in [START_REF] Peng | G-expectation, G-Brownian motion and related stochastic calculus of Itô type[END_REF], the unique viscosity solution to (1.2) is represented in terms of the so-called G-Brownian motion B under the nonlinear expectation E(•) as follows:

v(t, x) = E g(x + B t ) .
It is however not clear how to simulate G-Brownian motion. On the other hand, when C can be identified with a compact subset A of a Euclidean space R q , we have the probabilistic representation formula presented in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF], which can be implemented numerically as shown in [START_REF] Kharroubi | Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps[END_REF] and [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approch by control randomization[END_REF]. We recall that the results presented in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF] were generalized to the case of controller-and-stopper games in [START_REF] Choukroun | Reflected BSDEs with nonpositive jumps, and controller-and-stopper games[END_REF] and to non-Markovian stochastic control problems in [START_REF] Fuhrman | Dual and backward SDE representation for optimal control of non-Markovian SDEs[END_REF].

In the present paper, our aim is to generalize the results presented in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF] providing a probabilistic representation formula for the unique viscosity solution to the following fully nonlinear integro-PDE of Hamilton-Jacobi-Bellman type:

∂v ∂t + sup a∈A b(x, a).D x v + 1 2 tr σσ ⊺ (x, a)D 2 x v + f (x, a) (1.3) 
+ E v(t, x + β(x, a, e)) -v(t, x) -β(x, a, e).D x v(t, x) λ(a, de) = 0, on [0,

T ) × R d , v(T, x) = g(x), x ∈ R d ,
where λ is a transition kernel from (R q , B(R q )) into (E, B(E)), namely λ(a, •) is a nonnegative measure on (E, B(E)) for every a ∈ R q and λ(•, E ′ ) is a Borel measurable function for every E ′ ∈ B(E). We do not assume that the family of measures (λ(a, •)) a∈R q is dominated. Moreover, the diffusion coefficient σ can be degenerate.

A motivation to the study of equation (1.3) comes from mathematical finance and, in particular, from model uncertainty, when uncertainty affects both volatility and intensity. This topic was studied by means of second order BSDEs with jumps (2BSDEJs) in [START_REF] Kazi-Tani | Second Order BSDEs with Jumps, Part I: Formulation and Uniqueness[END_REF] and [START_REF] Kazi-Tani | Second Order BSDEs with Jumps, Part II: Existence and Applications[END_REF], to which we refer also for the wellposedness of these kinds of backward equations. Model uncertainty is also strictly related to the theory of G-Lévy processes and, more generally, of nonlinear Lévy processes, see [START_REF] Hu | G-Lévy Processes under Sublinear Expectations[END_REF] and [START_REF] Neufeld | Nonlinear Lévy Processes and their Characteristics[END_REF]. In this case, the associated fully nonlinear integro-PDE, which naturally generalizes equation (1.2), takes the following form:

∂v ∂t + sup (b,c,F )∈Θ b.D x v + 1 2 tr cD 2 x v (1.4) + E v(t, x + z) -v(t, x) -D x v(t, x).z1 {|z|≤1} F (dz) = 0, on [0, T ) × R d , v(T, x) = g(x), x ∈ R d ,
where Θ denotes a set of Lévy triplets (b, c, F ); here b is a vector in R d , c is a symmetric nonnegative matrix of order d, and F is a Lévy measure on (R d , B(R d )). From [START_REF] Hu | G-Lévy Processes under Sublinear Expectations[END_REF] and [START_REF] Neufeld | Nonlinear Lévy Processes and their Characteristics[END_REF], we know that the unique viscosity solution to equation (1.4) is represented in terms of the so-called nonlinear Lévy process X under the nonlinear expectation E(•) as follows:

v(t, x) = E(g(x + X t )).
If we are able to describe the set Θ by means of a parameter a which lives in a compact set A of an Euclidean space R q , then (1.4) can be written in the form (1.3). Therefore, v is also given by our probabilistic representation formula, in which the forward process is possibly easier to simulate than a nonlinear Lévy process.

More generally, we expect that the viscosity solution v to equation (1.3) should represent the value function of a stochastic control problem where, roughly speaking, the state process X is a jump-diffusion process, which has the peculiarity that we may control the dynamics of X changing its jump intensity, other than acting on the coefficients b, σ, and β of the SDE solved by X. We refer to this problem as a stochastic optimal control problem with (non dominated) controlled intensity. Unfortunately, we did not find any reference in the literature for this kind of stochastic control problem. For this reason, and also because it will be useful to understand the general idea behind the derivation of our nonlinear Feynman-Kac formula, we describe it here, even if only formally. Let ( Ω, F, P) be a complete probability space satisfying the usual conditions on which a d-dimensional Brownian motion W = ( Wt ) t≥0 is defined. Let F = ( Ft ) t≥0 denote the usual completion of the natural filtration generated by W and Ā the class of control processes α, i.e., of F-predictable processes valued in A. Let also Ω ′ be the canonical space of the marked point process on R + × E (see Section 2 below for a definition), with canonical right-continuous filtration F ′ and canonical random measure π ′ . Then, consider (Ω, F, F = (F t ) t≥0 ) defined as Ω := Ω × Ω ′ , F := F ⊗ F ′ ∞ , and F t := ∩ s>t Fs ⊗ F ′ s . Moreover, we set W (ω) := W (ω), π(ω, •) := π ′ (ω ′ , •), and A := {α : α(ω) = ᾱ(ω), ∀ ω ∈ Ω, for some ᾱ ∈ Ā}. Suppose that for every α ∈ A we are able to construct a measure P α on (Ω, F) such that W is a Brownian motion and π is an integer-valued random measure with compensator λ(α t , de)dt on (Ω, F, F, P α ). Then, consider the stochastic control problem with value function given by (E α denotes the expectation with respect to P α ) v(t, x) := sup α∈A E α T t f (X t,x,α s , α s )ds + g(X t,x,α T ) ,

where X t,x,α has the controlled dynamics on (Ω, F, F, P α ) dX α s = b(X α s , α s )ds + σ(X α s , α s )dW s + E β(X α s -, α s , e)π(ds, de)

starting from x at time t, with π(dt, de) = π(dt, de) -λ(α t , de)dt the compensated martingale measure of π. As mentioned above, even if we do not address this problem here, we expect that the above partial differential equation (1.3) turns out to be the dynamic programming equation of the stochastic control problem with value function formally given by (1.5). Having this in mind, we can now begin to describe the intuition, inspired by [START_REF] Kharroubi | Backward SDEs with constrained jumps and quasi-variational inequalities[END_REF] and [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF], behind the derivation of our Feynman-Kac representation formula for the HJB equation (1.3) in terms of a forward backward stochastic differential equation (FBSDE).

The fundamental idea concerns the randomization of the control, which is achieved introducing on ( Ω, F , P) a q-dimensional Brownian motion B = ( Bt ) t≥0 , independent of W . Now F denotes the usual completion of the natural filtration generated by W and B.

We also set B(ω) := B(ω), for all ω ∈ Ω, so that B is defined on Ω. Since the control lives in the compact set A ⊂ R q , we can not use directly B to randomize the control, but we need to map B on A. More precisely, we shall assume the existence of a surjection h : R d → A satisfying h ∈ C 2 (R d ; A) (e.g., the existence of such a function h is guaranteed when A is a ball in R q ). Then, for every (t, x, a) ∈ [0, T ] × R d × R q , we consider the forward stochastic differential equation in R d × R q :

X s = x + s t b(X r , I r )dr + s t σ(X r , I r )dW r + s t E
β(X r -, I r , e)π(dr, de), (1.6)

I s = h(a + B s -B t ), (1.7) 
for all t ≤ s ≤ T , where π(ds, de) = π(ds, de) -λ(I s , de)ds is the compensated martingale measure of π, which is an integer-valued random measure with compensator λ(I s , de)ds.

Unlike [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF], we used a Brownian motion B to randomize the control, instead of a Poisson random measure µ on R + × A. From one hand, the Poisson random measure turns out to be more convenient to deal with a general compact set A, since µ is already supported by R + × A, so that we do not have to impose the existence of a surjection h from the entire space R q onto A, as we did here. On the other hand, the choice of a Brownian motion B is more convenient to derive a martingale representation theorem for our model. Indeed, in contrast with [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF], the intensity of the measure π depends on the process I, therefore it is natural to expect a dependence between π and the noise used to randomize the control. The advantage of B with respect to µ is given by the fact that B is orthogonal to π, since B is a continuous process (see the bottom of page 183 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] for a definition of orthogonality between a martingale and a random measure). Thanks to this orthogonality we are able to derive a martingale representation theorem in our context, which is essential for the derivation of our nonlinear Feynman-Kac representation formula. Let us focus on the form of the stochastic differential equation (1.6)-(1.7). We observe that the jump part of the driving factors in (1.6) is not given, but depends on the solution via its intensity. This makes the SDE (1.6)-(1.7) nonstandard. These kinds of equations were firstly studied in [START_REF] Jacod | Quelques remarques sur un nouveau type d'équations différentielles stochastiques[END_REF] and have also been used in the financial literature, see e.g. [START_REF] Becherer | Classical Solutions to Reaction-Diffusion Systems for Hedging Problems with Interacting Itô and Point Processes[END_REF], [START_REF] Crépey | About the Pricing Equations in Finance[END_REF], [START_REF] Crépey | Reflected and Doubly Reflected BSDEs with Jumps: A Priori Estimates and Comparison[END_REF], [START_REF] Cuchiero | Affine Processes on Positive Semidefinite Matrices[END_REF], [START_REF] Filipović | Dynamic CDO Term Structure Modeling[END_REF]. Notice that in [START_REF] Becherer | Classical Solutions to Reaction-Diffusion Systems for Hedging Problems with Interacting Itô and Point Processes[END_REF], [START_REF] Crépey | About the Pricing Equations in Finance[END_REF], and [START_REF] Crépey | Reflected and Doubly Reflected BSDEs with Jumps: A Priori Estimates and Comparison[END_REF], λ is absolutely continuous with respect to a given deterministic measure on (E, B(E)), which allows to solve (1.6)-(1.7) bringing it back to a standard SDE, via a change of intensity "à la Girsanov". On the other hand, in the present paper, we shall tackle the above SDE solving firstly equation (2.2) for any (t, a) ∈ [0, T ] × R q , then constructing a probability measure P t,a on (Ω, F) such that the random measure π(dt, de) admits λ(I t,a s , de)ds as compensator, and finally addressing (2.1). In the appendix, we also prove additional properties of π and (X, I). More precisely, we present a characterization of π in terms of Fourier and Laplace functionals, which shows that π is a conditionally Poisson random measure (also known as doubly stochastic Poisson random measure or Cox random measure) relative to σ(I t,a s ; s ≥ 0). Moreover, we study the Markov properties of the pair (X, I).

Regarding the backward stochastic differential equation, as expected, it is driven by the Brownian motions W and B, and by the random measure π, namely it is a BSDE with jumps with terminal condition g(X t,x,a T ) and generator f (X t,x,a

• , I t,a
• ), as it is natural from the expression of the HJB equation (1.3). The backward equation is also characterized by a constraint on the diffusive part relative to B, which turns out to be crucial and entails the presence of an increasing process in the BSDE. In conclusion, for any (t, x, a) ∈ [0, T ] × R d × R q , the backward stochastic differential equation has the following form:

Y s = g(X t,x,a T ) + T s f (X t,x,a r , I t,a r )dr + K T -K s - T s Z r dW r - T s V r dB r - T s E
U r (e)π(dr, de), t ≤ s ≤ T, P t,a a.s.

and

|V s | = 0 ds ⊗ dP t,a a.e. (1.9) 
We refer to (1.8)-(1.9) as backward stochastic differential equation with jumps and partially constrained diffusive part. Notice that the presence of the increasing process K in the backward equation does not guarantee the uniqueness of the solution. For this reason, we look only for the minimal solution (Y, Z, V, U, K) to the above BSDE, in the sense that for any other solution ( Ȳ , Z, V , Ū , K) we must have Y ≤ Ȳ . The existence of the minimal solution is based on a penalization approach as in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF]. We can now write down the nonlinear Feynman-Kac formula:

v(t, x, a) := Y t,x,a t , (t, x, a) ∈ [0, T ] × R d × R q .
Observe that the function v should not depend on a, but only on (t, x). The function v turns out to be independent of the variable a as a consequence of the constraint (1.9). Indeed, if v were regular enough, then, for any (t, x, a) ∈ [0, T ] × R d × R q , we would have

V t,x,a s = D h v(s, X t,x,a s , I t,a s )D a h(a + B s -B t ) = 0, ds ⊗ dP t,a a.e.
This would imply (see Subsection 4.2 below) that v does not depend on its last argument. However, we do not know in general if the function v is so regular in order to justify the previous passages. Therefore, the rigorous proof relies on viscosity solutions arguments. In the end, we prove that the function v does not depend on the variable a in the interior Å of A and admits the following probabilistic representation formula:

v(t, x) := Y t,x,a t , (t, x) ∈ [0, T ] × R d ,
for any a ∈ Å. Moreover, v is a viscosity solution to (1.3). Actually, v is the unique viscosity solution to (1.3), as it follows from the comparison theorem proved in the Appendix. Notice that, due to the presence of the non dominated family of measures (λ(a, •)) a∈A , we did not find in the literature a comparison theorem for viscosity solution to our equation (1.3).

For this reason, we prove it in the Appendix, even though the main ideas are already contained in the paper [START_REF] Barles | Second-order elliptic integro-differential equations: viscosity solutions' theory revisited[END_REF], in particular the remarkable Jensen-Ishii's lemma for integropartial differential equations. The rest of the paper is organized as follows. Section 2 introduces some notations and studies the construction of the solution to the forward equation (1.6)-(1.7). Section 3 gives a detailed formulation of the BSDE with jumps and partially constrained diffusive part. In particular, Subsection 3.1 is devoted to the existence of the minimal solution to our BSDE by a penalization approach. Section 4 makes the connection between the minimal solution to our BSDE and equation (1.3). In the Appendix, we prove a martingale representation theorem for our model, we collect some properties of the random measure π and of the pair (X, I), and we prove a comparison theorem for equation (1.3).

Notations and preliminaries

Let ( Ω, F , P) be a complete probability space satisfying the usual conditions on which are defined a d-dimensional Brownian motion W = ( Wt ) t≥0 and an independent q-dimensional Brownian motion B = ( Bt ) t≥0 . We will always assume that F = ( Ft ) t≥0 is the usual completion of the natural filtration generated by W and B. Let us introduce some additional notations.

(i) Ω ′ is the set of sequences ω ′ = (t n , e n ) n∈N ⊂ (0, ∞] × E ∆ , where E ∆ = E ∪ {∆} and ∆
is an external point of E. Moreover t n < ∞ if and only if e n ∈ E, and when t n < ∞ then t n < t n+1 . Ω ′ is equipped with the canonical marked point process (T ′ n , α ′ n ) n∈N , with associated canonical random measure π ′ , defined as

T ′ n (ω ′ ) = t n , α ′ n (ω ′ ) = e n and π ′ (ω ′ , dt, de) = n∈N 1 {T ′ n (ω ′ )<∞} δ (T ′ n (ω ′ ),α ′ n (ω ′ )) (dt, de),
where δ x denotes the Dirac measure at point x. Set T ′ ∞ := lim n T ′ n . Finally, define

F ′ = (F s ) t≥0 as F t = ∩ s>t G s , where G ′ = (G s ) t≥0 is the canonical filtration, given by G s = σ(π ′ (•, F ) : F ∈ B([0, t]) ⊗ B(E)). (ii) (Ω, F, F = (F t ) t≥0 ) is such that Ω := Ω × Ω ′ , F := F ⊗ F ′ ∞ , and 
F t := ∩ s>t Fs ⊗ F ′ s . Moreover, we set W (ω) := W (ω), B(ω) := B(ω), and π(ω, •) := π ′ (ω ′ , •). Finally, we set also T n (ω) := T ′ n (ω ′ ), α n (ω) := α ′ n (ω ′ ), and T ∞ (ω) := T ′ ∞ (ω ′ ).
Let P ∞ denote the σ-field of F-predictable subsets of R + × Ω. We recall that a random measure [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF].

π on R + × E is a transition kernel from (Ω, F) into (R + × E, B(R + ) ⊗ B(E)), satisfying π(ω, {0} × E) = 0 for all ω ∈ Ω; moreover, an integer-valued random measure π on R + × E is an optional and P ∞ ⊗ B(E)-σ-finite, N ∪ {+∞}-valued random measure such that π(ω, {t} × E) ≤ 1 for all (t, ω) ∈ [0, T ] × Ω, see Definition 1.13, Chapter II, in
We are given some measurable functions b :

R d × R q → R d , σ : R d × R q → R d×d , and β : R d × R q × E → R d
, where E is a Borelian subset of R k \{0}, equipped with its Borel σfield B(E). Moreover, let λ be a transition kernel from (R q , B(R q )) into (E, B(E)), namely λ(a, •) is a nonnegative measure on (E, B(E)) for every a ∈ R q and λ(•, E ′ ) is a Borel measurable function for every E ′ ∈ B(E). Furthermore, let A be a compact subset of R q such that there exists a surjection h :

R d → A satisfying h ∈ C 2 (R d ; A) Remark 2.1
The existence of such a function h is guaranteed for the case A = B r (a), the ball of radius r > 0 centered in a ∈ R q . As a matter of fact, consider the ball B 1 (0) of radius 1 centered at zero. Define h : R + → [0, 1] as follows

h(ρ) = 6ρ 5 -15ρ 4 + 10ρ 3 , 0 ≤ ρ ≤ 1, 1, ρ > 1.
Notice that h(0) = 0 and h(1) = 1, moreover h′ (0) = h′′ (0) = 0 and h′ (1) = h′′ (1) = 0. Then, we define h(a) = a |a| h(|a|), for a = 0, and h(0) = 0. In particular, we have

h(a) = 6|a| 4 -15|a| 3 + 10|a| 2 a1 {|a|≤1} + a |a| 1 {|a|>1} , for all a ∈ R q . ✷ For any t ∈ [0, T ] and (x, a) ∈ R d × R q , we consider the forward stochastic differential equation in R d × R q : X s = x + s t b(X r , I r )dr + s t σ(X r , I r )dW r + s t E
β(X r -, I r , e)π(dr, de), (2.1)

I s = h(a + B s -B t ), (2.2) 
for all t ≤ s ≤ T , where π(ds, de) = π(ds, de) -λ(I s , de)ds is the compensated martingale measure of π, which is an integer-valued random measure with compensator λ(I s , de)ds.

As noticed in the introduction, the above SDE (2.1)-(2.2) is nonstandard, in the sense that the jump part of the driving factors in (2.1) is not given, but depends on the solution via its intensity. When the intensity λ is absolutely continuous with respect to a given deterministic measure on (E, B(E)), as in [START_REF] Becherer | Classical Solutions to Reaction-Diffusion Systems for Hedging Problems with Interacting Itô and Point Processes[END_REF], [START_REF] Crépey | About the Pricing Equations in Finance[END_REF], and [START_REF] Crépey | Reflected and Doubly Reflected BSDEs with Jumps: A Priori Estimates and Comparison[END_REF], we can obtain (2.1)-(2.2) starting from a standard SDE via a change of intensity "à la Girsanov". On the other hand, in the present paper, we shall tackle the above SDE solving firstly equation (2.2), then constructing the random measure π(dt, de), and finally addressing (2.1). The nontrivial part is the construction of π, which is essentially based on Theorem 3.6 in [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF], and also on similar results in [START_REF] Filipović | Dynamic CDO Term Structure Modeling[END_REF], Theorem 5.1, and [START_REF] Cuchiero | Affine Processes on Positive Semidefinite Matrices[END_REF], Theorem A.4. Let us firstly introduce the following assumptions on the forward coefficients.

(HFC)

(i) There exists a constant C such that

|b(x, a) -b(x ′ , a ′ )| + |σ(x, a) -σ(x ′ , a ′ )| ≤ C |x -x ′ | + |a -a ′ | , for all x, x ′ ∈ R d and a, a ′ ∈ R q .
(ii) There exists a constant C such that

|β(x, a, e)| ≤ C(1 + |x|)(1 ∧ |e|), |β(x, a, e) -β(x ′ , a ′ , e)| ≤ C |x -x ′ | + |a -a ′ | (1 ∧ |e|), for all x, x ′ ∈ R d , a, a ′ ∈ R q , and e ∈ E.
(iii) The following integrability condition holds:

sup |a|≤m E 1 ∧ |e| 2 λ(a, de) < ∞, ∀ m ∈ N.
Inspired by [START_REF] Jacod | Quelques remarques sur un nouveau type d'équations différentielles stochastiques[END_REF], we give the definition of weak solution to equation (2.1)-(2.2).

Definition 2.1 A weak solution to equation (2.1)-(2.2) with initial condition (t, x, a) ∈ [0, T ] × R d × R q is a probability measure P on (Ω, F) satisfying:

(i) P(dω) = P(dω) ⊗ P ′ (ω, dω ′ ), for some transition kernel P ′ from ( Ω, F ) into (Ω ′ , F ′ ∞ ).

(ii) Under P, π is an integer-valued random measure on R + × E with F-compensator 1 {s<T∞} λ(I s , de)ds and compensated martingale measure given by π(ds, de) = π(ds, de) -1 {s<T∞} λ(I s , de)ds.

(iii) We have

X s = x + s t b(X r , I r )dr + s t σ(X r , I r )dW r + s t E
β(X r -, I r , e)π(dr, de),

I s = h(a + B s -B t ),
for all t ≤ s ≤ T , P almost surely. Moreover, (X s , I s ) = (x, h(a)) for s < t, and (X s , I s ) = (X T , I T ) for s > T .

Consider a probability measure P on (Ω, F) satisfying condition (i) of Definition 2.1. For every (t, a) ∈ [0, T ] × R q let us denote I t,a = {I t,a s , s ≥ 0} the unique process on (Ω, F, F, P) satisfying I t,a s = h(a + B s -B t ) on [t, T ], with I t,a s = h(a) for s < t and I t,a s = I t,a T for s > T . We notice that the notation I t,a can be misleading, since a is not the initial point of I t,a at time t, indeed I t,a t = h(a). Now we proceed to the construction of a probability measure on (Ω, F) for which conditions (i) and (ii) of Definition 2.1 are satisfied. This result is based on Theorem 3.6 in [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF], and we borrow also some ideas from [START_REF] Filipović | Dynamic CDO Term Structure Modeling[END_REF], Theorem 5.1, and [START_REF] Cuchiero | Affine Processes on Positive Semidefinite Matrices[END_REF], Theorem A.4. Lemma 2.1 Under assumption (HFC), for every (t, a) ∈ [0, T ] × R q there exists a unique probability measure on (Ω, F), denoted by P t,a , satisfying conditions (i) and (ii) of Definition 2.1, and also condition (ii)' given by:

(ii)' 1 {s<T∞} λ(I t,a s , de)ds is the ( F ⊗ F ′ s ) s≥0 -compensator of π.
Proof. The proof is essentially based on Theorem 3.6 in [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF], after a reformulation of our problem in the setting of [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF], which we now detail. Let F = ( Fs ) s≥0 where Fs := F ⊗ F ′ s . Notice that in Fs we take F instead of Fs . Indeed, in [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF] the σ-field F represents the past information and is fixed throughout (we come back to this point later). Take (t, a) ∈ [0, T ] × R q and consider the process I t,a = (I t,a s ) s≥0 . Set

ν(ω, F ) = F 1 {s<T∞(ω)} λ(I t,a s (ω), de)ds
for any ω ∈ Ω and any F ∈ B(R + ) ⊗ B(E). Now we show that ν satisfies the properties required in order to apply Theorem 3.6 in [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF]. In particular, since λ is a transition kernel, we see that ν is a transition kernel from (Ω, F) into (R + × E, B(R + ) ⊗ B(E)); moreover, ν(ω, {0} × E) = 0 for all ω ∈ Ω, therefore ν is a random measure on R + × E. Furthermore, for every E ′ ∈ B(E), the process ν((0, •] × E ′ ) = (ν((0, s] × E ′ )) s≥0 is F-predictable, hence ν is an F-predictable random measure. In addition, ν({s} × E) ≤ 1, indeed ν is absolutely continuous with respect to the Lebesgue measure ds and therefore ν({s} × E) = 0. Finally, we see by definition that ν([T ∞ , ∞) × E) = 0. In conclusion, it follows from Theorem 3.6 in [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF] that there exists a unique probability measure on (Ω, F), denoted by P t,a , satisfying condition (i) of Definition 2.1, and for which ν is the F-compensator of π, i.e., the process

ν((0, s ∧ T n ] × E ′ ) -π((0, s ∧ T n ] × E ′ ) s≥0 (2.3)
is a (P t,a , F)-martingale, for any E ′ ∈ B(E) and any n ∈ N. Therefore condition (ii)' is also satisfied.

To conclude, we need to prove that ν is also the F-compensator of π. Since ν is an Fpredictable random measure, it follows from (2.6) in [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF] that it remains to prove that the process (2.3) is a (P t,a , F)-martingale. We solve this problem reasoning as in [START_REF] Filipović | Dynamic CDO Term Structure Modeling[END_REF], Theorem 5.1, point (iv). Basically, for every T ∈ R + we repeat the above construction with FT in place of F , changing what in [START_REF] Jacod | Multivariate Point Processes: Predictable Projection, Radon-Nikodym Derivatives, Representation of Martingales[END_REF] is called the past information. More precisely, let T ∈ R + and define FT = ( FT s ) s≥0 , where FT

s := FT ⊗ F ′ s . Let ν T (ω, F ) = F 1 {s≤T } 1 {s<T∞(ω)} λ(I t,a s (ω), de)ds.
Proceeding as before, we conclude that there exists a unique probability measure on (Ω, FT ⊗ F ′ ∞ ), denoted by P t,a,T , whose restriction to ( Ω, FT ) coincides with the restriction of P to this measurable space, and for which ν T is the FT -compensator of π, i.e.,

ν T ((0, s ∧ T n ] × E ′ ) -π((0, s ∧ T n ] × E ′ ) s≥0
is a (P t,a,T , FT )-martingale, for any E ′ ∈ B(E) and any n ∈ N. This implies that ν T ((0,

T ∧ T n ] × E ′ ) -π((0, T ∧ T n ] × E ′ ) is FT
T -measurable, and therefore F T -measurable. Notice that 

ν T ((0, s ∧ T n ] × E ′ ) = ν((0, s ∧ T ∧ T n ] × E ′ ), hence ν((0, T ∧T n ]×E ′ )-π((0, T ∧T n ]×E ′ ) is F T -measurable. As T ∈
sup |a|≤m E λ(a, de) < ∞, ∀ m ∈ N, (2.4) 
then T ∞ = ∞, P t,a a.s., and the compensator ν is given by

ν(ω, F ) = F λ(I t,a s (ω), de)ds
for any F ∈ B(R + ) ⊗ B(E) and for P t,a almost every ω ∈ Ω. Indeed, we have (we denote by E t,a the expectation with respect to P t,a )

E t,a n∈N 1 {Tn<∞} = E t,a π(R + × E) = E t,a ∞ 0 E π(ds, de) = E t,a ∞ 0 E ν(ds, de) .
Therefore, for m ∈ N large enough,

E t,a n∈N 1 {Tn<∞} = E t,a ∞ 0 E 1 {s<T∞} λ(I t,a s , de)ds ≤ T sup |a ′ |≤m E λ(a ′ , de) < ∞,
where we used condition (2.4) and the fact that P t,a almost every path of the process I t,a belongs to the compact set {h(a)} ∪ A. Hence, P t,a a.s., n∈N

1 {Tn<∞} < ∞
which means that T ∞ = ∞, P t,a almost surely. ✷ Lemma 2.2 Under assumption (HFC), for every (t, x, a) ∈ [0, T ] × R d × R q there exists a unique (up to indistinguishability) process X t,x,a = {X t,x,a s , s ≥ 0} on (Ω, F, F, P t,a ), solution to (2.1) on [t, T ], with X t,x,a s = x for s < t and X t,x,a s = X t,x,a T for s > T . Moreover, for any (t, x, a) ∈ [0, T ] × R d × R q there exists a positive constant C a such that

E t,a sup t≤s≤T |X t,x,a s | 2 + |I t,a s | 2 ≤ C a 1 + |x| 2 + |h(a)| 2 , (2.5) 
where C a depends only on T , |b(0, 0)|, |σ(0, 0)|, the Lipschitz constants of b and σ, and on the variable a through the term sup t≤s≤T E (1 ∧ |e| 2 )λ(I t,a s , de) < ∞.

Proof. Since hypotheses (14.15) and (14.22) in [START_REF] Jacod | Calcul Stochastique et Problèmes de Martingales[END_REF] are satisfied under (HFC), the thesis follows from Theorem 14.23 in [START_REF] Jacod | Calcul Stochastique et Problèmes de Martingales[END_REF]. Concerning estimate (2.5), taking the square in (2.1) (using the standard inequality (x β(X t,x,a r -, I t,a r , e)π(dr, de)

1 + • • • + x 4 ) 2 ≤ 4(x 2 1 + • • • + x 2 4 ),
2 ≤ C E t,a s t E
β(X t,x,a r -, I t,a r , e) 2 π(dr, de)

= C E t,a s t E
β(X t,x,a r -, I t,a r , e) 2 λ(I t,a r , de)dr .

(2.9)

In conclusion, taking the expectation in (2.6) and using (2.7)-(2.8)-(2.9), we find (denoting C a a generic positive constant depending only on T , |b(0, 0)|, |σ(0, 0)|, the Lipschitz constants of b and σ, and on the variable a through the term sup t≤s≤T E (1 ∧ |e| 2 )λ(I t,a s , de) < ∞)

E t,a sup t≤u≤s |X t,x,a u | 2 ≤ 4|x| 2 + C a 1 + E t,a sup t≤s≤T |I t,a s | 2 + s t E t,a sup t≤u≤r |X t,x,a u | 2 dr .
Since the paths of (I t,a s ) s≥0 belong to the compact set {h(a)}∪A, we have (here the constant C a can be chosen independent of a)

E t,a sup t≤s≤T |I t,a s | 2 ≤ C a 1 + |h(a)| 2 .
Then, applying Gronwall's lemma to the map r → E t,a [sup t≤u≤r |X t,x,a u

| 2 ], we end up with estimate (2.5). ✷

BSDE with jumps and partially constrained diffusive part

Our aim is to derive a probabilistic representation formula, also called nonlinear Feynman-Kac formula, for the following nonlinear IPDE of HJB type:

- ∂u ∂t (t, x) -sup a∈A L a u(t, x) + f (x, a) = 0, (t, x) ∈ [0, T ) × R d , (3.1) 
u(T, x) = g(x), x ∈ R d , (3.2) 
where

L a u(t, x) = b(x, a).D x u(t, x) + 1 2 tr σσ ⊺ (x, a)D 2 x u(t, x) + E u(t, x + β(x, a, e)) -u(t, x) -β(x, a, e).D x u(t, x) λ(a, de), for all (t, x, a) ∈ [0, T ] × R d × R q .
Let us firstly introduce some additional notation. Fix a finite time horizon T < ∞ and set P T the σ-field of F-predictable subsets of [0, T ] × Ω. For any (t, a) ∈ [0, T ] × R q , we denote:

• L p t,a (F s ), p ≥ 1, s ≥ 0, the set of F s -measurable random variables X such that E t,a [|X| p ] < ∞. • S 2 t,a the set of real-valued càdlàg adapted processes Y = (Y s ) t≤s≤T such that Y 2 S 2 t,a := E t,a sup t≤s≤T |Y s | 2 < ∞.
• L p t,a (t, T), p ≥ 1, the set of real-valued adapted processes (φ s ) t≤s≤T such that

φ p L p t,a (t,T) := E T t |φ s | p ds < ∞. • L p t,a (W), p ≥ 1, the set of R d -valued P T -measurable processes Z = (Z s ) t≤s≤T such that Z p L p t,a (W) := E T t |Z s | 2 ds p 2 < ∞. • L p t,a (B), p ≥ 1, the set of R q -valued P T -measurable processes V = (V s ) t≤s≤T such that V p L p t,a (B) := E T t |V s | 2 ds p 2 < ∞. • L p t,a (π), p ≥ 1, the set of P T ⊗ B(E)-measurable maps U : [t, T ] × Ω × E → R such that U p L p t,a (π) := E T t E |U s (e)| 2 λ(I t,a s , de)ds p 2 < ∞. • K 2 t,a the set of nondecreasing predictable processes K = (K s ) t≤s≤T ∈ S 2 t,a with K t = 0, so that K 2 S 2 t,a = E |K T | 2 . Remark 3.1 Equivalence relation in L p t,a (π). When U 1 , U 2 ∈ L p t,a (π), with U 1 = U 2 we mean U 1 -U 2 L p t,a (π) = 0, i.e., U 1 = U 2 ds ⊗ dP ⊗ λ(I t,a s , de) a.e. on [t, T ] × Ω × E, where ds ⊗ dP ⊗ λ(I t,a s , de) is the measure on ([t, T ] × Ω × E, B(t, T ) ⊗ F ⊗ B(E))
given by:

ds ⊗ dP ⊗ λ(I t,a s , de)(F ) = E t,a T t E 1 F (s, ω, e)λ(I t,a s (ω), de)ds , for all F ∈ B(t, T ) ⊗ F ⊗ B(E).
See also the beginning of Section 3 in [START_REF] Confortola | Backward stochastic differential equations and optimal control of marked point processes[END_REF]. ✷

The probabilistic representation formula is given in terms of the following BSDE with jumps and partially constrained diffusive part, for any (t, x, a)

∈ [0, T ] × R d × R q , P t,a a.s., Y s = g(X t,x,a T ) + T s f (X t,x,a r , I t,a r )dr + K T -K s - T s Z r dW r (3.3) - T s V r dB r - T s E U r (e)π(dr, de), t ≤ s ≤ T and V s = 0 ds ⊗ dP t,a a.e. (3.4) 
We look for the minimal solution (Y,

Z, V, U, K) ∈ S 2 t,a × L 2 t,a (W)× L 2 t,a (B)× L 2 t,a (π)× K 2 t,a to (3.3)-(3.4), in the sense that for any other solution ( Ȳ , Z, V , Ū , K) ∈ S 2 t,a × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π) × K 2 t,a to (3.3)-(3.4) we must have Y ≤ Ȳ .
We impose the following assumptions on the terminal condition g : R d → R and on the generator f : R d × R q → R.

(HBC) There exists some continuity modulus ρ (namely

ρ : [0, ∞) → [0, ∞) is continu- ous, nondecreasing, subadditive, and ρ(0) = 0) such that |f (x, a) -f (x ′ , a ′ )| + |g(x) -g(x ′ )| ≤ ρ(|x -x ′ | + |a -a ′ |), for all x, x ′ ∈ R d and a, a ′ ∈ R q .
Proposition 3.1 Let assumptions (HFC) and (HBC) hold. For any (t, x, a) ∈ [0, T ] × R d × R q , there exists at most one minimal solution on (Ω, F, F, P t,a ) to the BSDE (3.3)-(3.4).

Proof. Let (Y, Z, V, U, K) and ( Ỹ , Z, Ṽ , Ũ , K) be two minimal solutions to (3.3)- (3.4). The uniqueness of the Y component is clear by definition. Regarding the other components, taking the difference between the two backward equations we obtain

0 = K s -Ks - s t Z r -Zr dW r - s t V r -Ṽr dB r - s t E
U r (e) -Ũr (e) π(dr, de), for all t ≤ s ≤ T , P t,a -almost surely. Rewriting the above identity as follows

s t Z r -Zr dW r + s t V r -Ṽr dB r = K s -Ks - s t E
U r (e) -Ũr (e) π(dr, de),

we see that the right-hand side is a finite variation process, while the left-hand side has not finite variation, unless Z = Z and V = Ṽ . Therefore, we obtain the identity

s t E U r (e) -Ũr (e) π(dr, de) = s t E U r (e) -Ũr (e) λ(I t,a r , de)dr + K s -Ks ,
where the right-hand side is a predictable process, therefore it has no totally inaccessible jumps (see, e.g., Proposition 2.24, Chapter I, in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]); on the other hand, the left-hand side is a pure-jump process with totally inaccessible jumps, unless U = Ũ . As a consequence, we must have U = Ũ , from which it follows that K = K. ✷

To guarantee the existence of the minimal solution to (3.3)-(3.4) we shall need the following result. Lemma 3.1 Let assumptions (HFC) and (HBC) hold. Then, for any initial condition

(t, x, a) ∈ [0, T ] × R d × R q , there exists a solution {( Ȳ t,x,a s , Zt,x,a s , V t,x,a s , Ū t,x,a s , Kt,x,a s ), t ≤ s ≤ T } on (Ω, F, F, P t,a ) to the BSDE (3.3)-(3.4), with Ȳ t,x,a s = v(s, X t,x,a s ) for some deterministic function v on [0, T ] × R d satisfying a linear growth condition sup (t,x)∈[0,T ]×R d |v(t, x)| 1 + |x| < ∞.
Proof. Let us consider the mollifier η

(x) = c exp(1/(|x| 2 -1))1 {|x|<1} , where c > 0 is such that R d η(x)dx = 1. Let us introduce the smooth function v(t, x) = Ce ρ(T -t) 1 + R d η(x -y)|y|dy , ∀ (t, x) ∈ [0, T ] × R d × R q ,
for some positive constants C and ρ to be determined later. We claim that for C and ρ large enough, the function v is a classical supersolution to (3.1)-(3.2). More precisely, C is such that g(x) ≤ C(1 + {|y|<1} η(y)|x -y|dy), for all x ∈ R d , which follows from {|y|<1} η(y)|x -y|dy ≥ ||x| -1| and from the uniform continuity of g (which implies the linear growth of g itself). Furthermore, using the compactness of A, a straightforward calculation shows that

- ∂v ∂t (t, x) -sup a∈A L a v(t, x) + f (x, a) ≥ (ρ -C)v(t, x),
for some positive constant C depending only on C and the linear growth conditions of b, σ, β, and f . Then, we choose ρ ≥ C. Let us now define the quintuple ( Ȳ , Z, Ū , L, K) as follows:

Ȳs := v(s, X t,x,a s ), for t ≤ s < T, ȲT := g(X t,x,a T ), Zs := σ(X t,x,a s -, I t,a s )D x v(s, X t,x,a s -), t ≤ s ≤ T, Vs := 0, t ≤ s ≤ T, Ūs (e) := v(s, X t,x,a s -+ β(X t,x,a s -, I t,a s , e)) -v(s, X t,x,a s -), t ≤ s ≤ T, e ∈ E, Ks := s t - ∂v ∂t (r, X t,x,a r ) -L I t,a r v(r, X t,x,a r ) -f X t,x,a r , I t,a r dr, t ≤ s < T, KT := KT -+ v(T, X t,x,a T ) -g(X t,x,a T ). We see that ( Ȳ , Z, V , Ū , K) lies in S 2 t,a × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π) × K 2 t,a .
Moreover, by Itô's formula applied to v(s, X t,x,a s ), we conclude that ( Ȳ , Z, V , Ū , K) solves (3.3), and the constraint (3.4) is clearly satisfied. ✷

Existence of the minimal solution by penalization

In this section we prove the existence of the minimal solution to (3.3)-(3.4). We use a penalization approach and introduce the indexed sequence of BSDEs with jumps, for any

(t, x, a) ∈ [0, T ] × R d × R q , P t,a a.s., Y n s = g(X t,x,a T ) + T s f (X t,x,a r , I t,a r )dr + K n T -K n s - T s Z n r dW r - T s V n r dB r - T s E U n r (e)π(dr, de), t ≤ s ≤ T, (3.5) 
for n ∈ N, where K n is the nondecreasing continuous process defined by

K n s = n s t |V n r |dr, t ≤ s ≤ T.
Proposition 3.2 Under assumptions (HFC) and (HBC), for every (t, x, a) ∈ [0, T ] × R d × R q and every n ∈ N there exists a unique solution (Y n,t,x,a , Z n,t,x,a , V n,t,x,a , U n,t,x,a ) ∈

S 2 t,a × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a ( 
π) on (Ω, F, F, P t,a ) satisfying the BSDE with jumps (3.5).

Proof. As usual, the proof is based on a fixed point argument. More precisely, let us consider the function Φ :

L 2 t,a (t, T) × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π) → L 2 t,a (t, T) × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π), mapping (Y ′ , Z ′ , V ′ , U ′ ) to (Y, Z, V, U ) defined by Y s = g(X t,x,a T ) + T s f n (X t,x,a r , I t,a r , V ′ r )dr - T s Z r dW r - T s V r (a)dB s - T s E U r (e)π(dr, de), (3.6) 
where

f n (x, a, v) = f (x, a) + n|v|.
More precisely, the quadruple (Y, Z, V, U ) is constructed as follows: we consider the martingale

M s = E t,a [g(X t,x,a T ) + T t f n (X t,x,a r , I t,a r , V ′ r )dr|F s ],
which is square integrable under the assumptions on g and f . From the martingale representation Theorem A.1, we deduce the existence and uniqueness of (Z,

V, U ) ∈ L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π) such that M s = M t + s t Z r dW r + s t V r dB r + s t E
U r (e)π(dr, de).

(3.7)

We then define the process Y by

Y s = E t,a g(X t,x,a T ) + T s f n (X t,x,a r , I t,a r , V ′ r )dr F s = M s - s t f n (X t,x,a r , I t,a r , V ′ r )dr.
By using the representation (3.7) of M in the previous relation, and noting that Y T = g(X t,x,a T ), we see that Y satisfies (3.6). Using the conditions on g and f , we deduce that Y lies in L 2 t,a (t, T), and also in S 2 t,a . Hence, Φ is a well-defined map. We then see that (Y n,t,x,a , Z n,t,x,a , V n,t,x,a , U n,t,x,a ) is a solution to the penalized BSDE (3.5) if and only if it is a fixed point of Φ. To this end, for any α > 0 let us introduce the equivalent norm on

L 2 t,a (t, T) × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π): (Y, Z, V, U ) α := E t,a T t e α(s-t) |Y s | 2 + |Z s | 2 + |V s | 2 + E |U s (e)| 2 λ(I t,a s , de) ds .
It can be shown, proceeding along the same lines as in the classical case (for which we refer, e.g., to Theorem 6.2.1 in [START_REF] Pham | Continuous-time Stochastic Control and Optimization with Financial Applications[END_REF]), that there exists ᾱ > 0 such that Φ is a contraction on

L 2 t,a (t, T) × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a ( 
π) endowed with the equivalent norm • ᾱ. Then, the thesis follows from the Banach contraction mapping theorem. ✷

We can now prove our main result of this section. Firstly, we need the following two lemmata. Lemma 3.2 Under assumptions (HFC) and (HBC), for every (t, x, a) ∈ [0, T ] × R d × R q the sequence (Y n,t,x,a ) n is nondecreasing and upper bounded by Ȳ t,x,a , i.e., for all n ∈ N,

Y n,t,x,a s ≤ Y n+1,t,x,a s ≤ Ȳ t,x,a s for all 0 ≤ s ≤ T , P t,a almost surely. Proof. Fix (t, x, a) ∈ [0, T ] × R d × R q
and n ∈ N, and observe that

f n (x, a, v) ≤ f n+1 (x, a, v), for all (x, a, v) ∈ R d × R q × R q . Then, the inequality Y n,t,x,a s ≤ Y n+1,t,x,a s
, for all 0 ≤ s ≤ T , P t,a a.s., follows from the comparison Theorem A.1 in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF]. We should notice that Theorem A.1 in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF] is designed for BSDE with jumps driven by a Wiener process and a Poisson random measure, while in our case we have a general random measure π. Nevertheless, Theorem A.1 in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF] can be proved proceeding along the same lines as in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF] to encompass this more general case. Similarly, since s 0 | V t,x,a r |dr = 0, it follows that ( Ȳ t,x,a , Zt,x,a , V t,x,a , Ū t,x,a , Kt,x,a ) solves the BSDE (3.3) with generator f n , for any n ∈ N, other than with generator f . Therefore, we can again apply the (generalized version, with the random measure π in place of the Poisson random measure, of the) comparison Theorem A.1 in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF], from which we deduce the thesis. ✷ Lemma 3.3 Under assumptions (HFC) and (HBC), there exists a positive constant C such that, for all (t, x, a)

∈ [0, T ] × R d × R q and n ∈ N, Y n,t,x,a 2 S 2 t,a + Z n,t,x,a 2 L 2 t,a (W) + V n,t,x,a 2 L 2 t,a (B) + U n,t,x,a 2 L 2 t,a (π) + K n,t,x,a 2 S 2 t,a ≤ C E t,a |g(X t,x,a T )| 2 + E t,a T t |f (X t,x,a s , I t,a s )| 2 ds + v(•, X t,x,a • ) 2 S 2 t,a . (3.8)
Proof. The proof is very similar to the proof of Lemma 3.3 in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF], so it is not reported. We simply recall that the thesis follows applying Itô's formula to |Y n,t,x,a s | 2 between t and T , and exploiting Gronwall's lemma and Burkholder-Davis-Gundy inequality in an usual way. ✷ Theorem 3.1 Under assumptions (HFC) and (HBC), for every

(t, x, a) ∈ [0, T ] × R d × R q there exists a unique minimal solution (Y t,x,a , Z t,x,a , V t,x,a , U t,x,a , K t,x,a ) ∈ S 2 t,a × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π) × K 2 t,a on (Ω, F, F, P t,a
) to the BSDE with jumps and partially constrained diffusive part (3.3)- (3.4), where:

(i) Y t,x,a is the increasing limit of (Y n,t,x,a ) n .

(ii) (Z t,x,a , V t,x,a , U t,x,a ) is the weak limit of (Z n,t,x,a , V n,t,x,a , U n,t,x,a

) n in L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π). 
(iii) K t,x,a s is the weak limit of (K n,t,x,a s

) n in L 2 t,a (F s ), for any t ≤ s ≤ T .

Proof. Let (t, x, a) ∈ [0, T ] × R d × R q be fixed. From Lemma 3.2 it follows that (Y n,t,x,a ) n converges increasingly to some adapted process Y t,x,a . We see that Y t,x,a satisfies E[sup t≤s≤T |Y t,x,a s | 2 ] < ∞ as a consequence of the uniform estimate for (Y n,t,x,a ) n in Lemma 3.3 and Fatou's lemma. Moreover, by Lebesgue's dominated convergence theorem, the convergence also holds in L 2 t,a (t, T). Next, by the uniform estimates in Lemma 3.3, the sequence (Z n,t,x,a , V n,t,x,a , U n,t,x,a ) n is bounded in the Hilbert space L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π). Then, we can extract a subsequence which weakly converges to some (Z t,x,a , V t,x,a , U t,x,a ) in L 2 t,a (W)×L 2 t,a (B)×L 2 t,a (π). Thanks to the martingale representation Theorem A.1, for every stopping time t ≤ τ ≤ T , the following weak convergences hold in

L 2 t,a (F τ ), as n → ∞, τ t Z n,t,x,a s dW s ⇀ τ t Z t,x,a s dW s , τ t V n,t,x,a s dB s ⇀ τ t V t,x,a s dB s , τ t E U n,t,x,a s (e)π(ds, de) ⇀ τ t E U t,x,a
s (e)π(ds, de).

Since

K n,t,x,a τ = Y n,t,x,a t -Y n,t,x,a τ - τ t f (X t,x,a s , I t,a s )ds + τ t Z n,t,x,a s dW s + τ t V n,t,x,a s dB s + τ t E
U n,t,x,a (e)π(ds, de), we also have the following weak convergence in L 2 t,a (F τ ), as n → ∞,

K n,t,x,a τ ⇀ K t,x,a τ := Y t,x,a t -Y t,x,a τ - τ t f (X t,x,a s , I t,a s )ds + τ t Z t,x,a s dW s + τ t V t,x,a s dB s + τ t E
U t,x,a (e)π(ds, de).

Since the process (K n,t,x,a s ) t≤s≤T is nondecreasing and predictable and K n,t,x,a t = 0, the limit process K t,x,a remains nondecreasing and predictable with E t,a [|K t,x,a T | 2 ] < ∞ and K t,x,a t = 0. Moreover, by Lemma 2.2 in [START_REF] Peng | Monotonic limit theorem for BSDEs and non-linear Doob-Meyer decomposition[END_REF], K t,x,a and Y t,x,a are càdlàg, therefore Y t,x,a ∈ S 2 t,a and K t,x,a ∈ K 2 t,a . In conclusion, we have

Y t,x,a t = g(X t,x,a T ) + T t f (X t,x,a s , I t,a s )ds + K t,x,a T -K t,x,a t - T t Z t,x,a s dW s - T t V t,x,a s dB s - T t E U t,
x,a (e)π(ds, de).

It remains to show that the jump constraint (3.4) is satisfied. To this end, we consider the functional F : L 2 t,a (B) → R given by

F (V ) := E t,a T t |V s |ds , ∀ V ∈ L 2 t,a (B).
Notice that F (V n,t,x,a ) = E t,a [K n,t,x,a T ]/n, for any n ∈ N. From estimate (3.8), we see that F (V n,t,x,a ) → 0 as n → ∞. Since F is convex and strongly continuous in the strong topology of L 2 t,a (B), then F is lower semicontinuous in the weak topology of L 2 t,a (B), see, e.g., Corollary 3.9 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]. Therefore, we find

F (V t,x,a ) ≤ lim inf n→∞ F (V n,t,x,a ) = 0,
which implies the validity of the jump constraint (3.4). Hence, (Y t,x,a , Z t,x,a , V t,x,a , U t,x,a , K t,x,a ) is a solution to the BSDE with jumps and partially constrained diffusive part (3.3)-(3.4). From Lemma 3.2, we also see that Y t,x,a = lim Y n,t,x,a is the minimal solution to (3.3)-(3.4). Finally, the uniqueness of the solution (Y t,x,a , Z t,x,a , V t,x,a , U t,x,a , K t,x,a ) follows from Proposition 3.1. ✷

Nonlinear Feynman-Kac formula

We know from Theorem 3.1 that, under (HFC) and (HBC), there exists a unique minimal solution (Y t,x,a , Z t,x,a , V t,x,a , U t,x,a , K t,x,a ) on (Ω, F, F, P t,a ) to (3.3)-(3.4). As we shall see below, this minimal solution admits the representation

Y t,x,a s = v(s, X t,x,a s , I t,a s ), where v : [0, T ] × R d × R q → R is the deterministic function defined as v(t, x, a) := Y t,x,a t , (t, x, a) ∈ [0, T ] × R d × R q . (4.1)
Our aim is to prove that the function v given by (4.1) does not depend on the variable a in the interior of A, and it is related to the fully nonlinear partial differential equation of HJB type (3.1)-(3.2). Notice that we do not know a priori whether the function v is continuous. Therefore, we shall adopt the definition of discontinuous viscosity solution to (3.1)-(3.2). Firstly, we impose the following conditions on h and A.

(HA) There exists a compact set A h ⊂ R q such that h(A h ) = A. Moreover, the interior set Åh of A h is connected, and A h = Cl( Åh ), the closure of its interior. Furthermore, h( Åh ) = Å.

We also impose some conditions on λ, which will imply the validity of a comparison theorem for viscosity sub and supersolutions to the fully nonlinear IPDE of HJB type (3.1)-(3.2) and also for penalized IPDE (4.5)-(4.6). To this end, let us define, for every δ > 0 and (t, x, a)

∈ [0, T ] × R d × R q , I 1,δ a (t, x, ϕ) = E∩{|e|≤δ} ϕ(t, x + β(x, a, e)) -ϕ(t, x) -β(x, a, e).D x ϕ(t, x) λ(a, de), for any ϕ ∈ C 1,2 ([0, T ] × R d ),
and

I 2,δ a (t, x, q, u) = E∩{|e|>δ} u(t, x + β(x, a, e)) -u(t, x) -β(x,
a, e).q λ(a, de),

for any q ∈ R d and any locally bounded function u. Let us impose the following continuity conditions on I 1,δ a and I 2,δ a . Notice that, whenever I 1,δ a and I 2,δ a do not depend on a, then (Hλ)(i)-(ii) are consequences of Lebesgue's dominated convergence theorem, while (Hλ)(iii) follows from Fatou's lemma.

(Hλ)

(i) Let ε > 0 and define ϕ ε (e) = 1 ∧ |e| 2 ∧ ε, e ∈ E. Then sup a∈A I 1,δ a (t, x, ϕ ε ) ε→0 + -→ 0, for any (t, x) ∈ [0, T ] × R d and δ > 0. (ii) Let ϕ ∈ C 1,2 ([0, T ] × R d ). If (t k , x k , a k ) → (t * , x * , a * ) as k goes to infinity, then lim k→∞ I 1,δ a k (t k , x k , ϕ) = I 1,δ a * (t * , x * , ϕ),
for any δ > 0.

(iii) Let u : [0, T ] × R d → R be usc (resp. lsc) and locally bounded. If (t k , x k , q k , a k ) → (t * , x * , q * , a * ) and u(t k , x k ) → u(t * , x * ), as k goes to infinity, then

lim sup k→∞ I 2,δ a k (t k , x k , q k , u) ≤ I 2,δ a * (t * , x * , q * , u) resp. lim inf k→∞ I 2,δ a k (t k , x k , q k , u) ≥ I 2,δ a * (t * , x * , q * , u)
for any δ > 0.

For a locally bounded function u on [0, T ) × R k , we define its lower semicontinuous (lsc for short) envelope u * , and upper semicontinuous (usc for short) envelope u * , by for any x ∈ R d , and We can now state the main result of this paper. 

u * (t, ξ) = lim inf (s,η)→(t,ξ) s<T u(s, ξ) and u * (t, ξ) = lim sup (s,η)→(t,ξ) s<T u(s, ξ) for all (t, ξ) ∈ [0, T ] × R k .
- ∂ϕ ∂t (t, x) -sup a∈A L a ϕ(t, x) + f (x, a) ≥ (resp. ≤) 0 for any (t, x) ∈ [0, T ) × R d and any ϕ ∈ C 1,2 ([0, T ] × R d ) such that (u -ϕ)(t, x) = min [0,T ]×R d (u -ϕ) (resp. max [0,T ]×R d (u -ϕ)). (ii 
v(t, x, a) = v(t, x, a ′ ), ∀ a, a ′ ∈ Å, for all (t, x) ∈ [0, T ) × R d . Let us then define by misuse of notation the function v on [0, T ) × R d by v(t, x) = v(t, x, a), (t, x) ∈ [0, T ) × R d , for any a ∈ Å. Then v is a viscosity solution to (3.1)-(3.2).
The rest of the paper is devoted to the proof of Theorem 4.1.

Viscosity property of the penalized BSDE

For every n ∈ N, let us introduce the deterministic function

v n defined on [0, T ] × R d × R q by v n (t, x, a) := Y n,t,x,a t , (t, x, a) ∈ [0, T ] × R d × R q , (4.2) 
where (Y n,t,x,a , Z n,t,x,a , V n,t,x,a , U n,t,x,a ) is the unique solution to the BSDE with jumps (3.5), see Proposition 3.2. As we shall see in Proposition 4.1, the identification Y n,t,x,a s = v n (s, X t,x,a s , I t,a s ) holds. Therefore, sending n to infinity, it follows from the convergence results of the penalized BSDE, Theorem 3.1, that the minimal solution to the BSDE with jumps and partially constrained diffusive part (3.3)-(3.4) can be written as Y t,x,a s = v(s, X t,x,a s , I t,a s ), t ≤ s ≤ T , where v is the deterministic function defined in (4.1). Now, notice that, from the uniform estimate (3.8), the linear growth conditions of g, f , and v, and estimate (2.5), it follows that v n , and thus also v by passing to the limit, satisfies the following linear growth condition: there exists some positive constant C v such that, for all n ∈ N,

|v n (t, x, a)| + |v(t, x, a)| ≤ C v 1 + |x| + |h(a)| , ∀ (t, x, a) ∈ [0, T ] × R d × R q . (4.3)
As expected, for every n ∈ N, the function v n in (4.2) is related to a parabolic semi-linear penalized IPDE. More precisely, let us introduce the function

v h n : [0, T ] × R d × R q → R given by v h n (t, x, a) := v n (t, x, h(a)), (t, x, a) ∈ [0, T ] × R d × R q . (4.4)
Then, the function v h n is related to the semi-linear penalized IPDE: for any (x, a) ∈ R d × R q , and Then, we have the following result, which states that the penalized BSDE with jumps (3.5) provides a viscosity solution to the penalized IPDE (4.5)-(4.6). Proposition 4.1 Let assumptions (HFC), (HBC), (HA), and (Hλ) hold. Then, the function v h n in (4.4) is a viscosity solution to (4.5)-(4.6). Moreover,

- ∂v h n ∂t (t, x, a) -L h(a) v h n (t, x, a) -f (x, h(a)) (4.5) 
- 1 2 tr D 2 a v h n (t, x, a) -n D a v h n (t, x, a) = 0, on [0, T ) × R d × R q , v h n (T, •, •) = g, on R d × R q . ( 4 
- ∂ϕ ∂t (t, x, a) -L h(a) ϕ(t, x, a) -f (x, h(a)) - 1 2 tr D 2 a ϕ(t, x, a) -n D a ϕ(t, x, a) ≥ 0 resp. ≤ 0 for any (t, x, a) ∈ [0, T ) × R d × R q and any ϕ ∈ C 1,2 ([0, T ] × (R d × R q )) such that (u -ϕ)(t, x, a) = min [0,T ]×R d ×R q (u -ϕ) (resp. max [0,T ]×R d ×R q (u -ϕ)). (4.7) (ii) A locally bounded function u on [0, T ) × R d × R q is called
v h n is continuous on [0, T ] × R d × R q .
Proof We divide the proof into three steps.

Step 1. Identification Y n,t,x,a s = v n (s, X t,x,a s , I t,a s ) = v h n (s, X t,x,a s , a + B s -B t ). Inspired by the proof of Theorem 4.1 in [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF], we shall prove the identification Y n,t,x,a s = v n (s, X t,x,a s , I t,a s ) using the Markovian property of (X, I) studied in Appendix B. and the construction of (Y n,t,x,a , Z n,t,x,a , U n,t,x,a , L n,t,x,a ) based on Proposition 3.2. More precisely, for any (t, x, a) ∈ [0, T ] × R d × R q , from Proposition 3.2 we know that there exists a sequence (Y n,k,t,x,a , Z n,k,t,x,a , V n,k,t,x,a , U n,k,t,x,a ) ∈ L 2 t,a (t,

T) × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π), con- verging to (Y n,t,x,a , Z n,t,x,a , V n,t,x,a , U n,t,x,a ) in L 2 t,a (t, T) × L 2 t,a (W) × L 2 t,a (B) × L 2 t,a (π) 
, such that (Y n,0,t,x,a , Z n,0,t,x,a , V n,0,t,x,a , U n,0,t,x,a ) ≡ (0, 0, 0, 0) and

Y n,k+1,t,x,a s = g(X t,x,a T ) + T s f (X t,x,a r , I t,a r )dr - T s E
U n,k+1,t,x,a r (e)π(dr, de)

- T s Z n,k+1,t,x,a r dW r - T s V n,k+1,t,x,a r dB r + n T s V n,k,t,x,a r dr,
for all t ≤ s ≤ T , P t,a almost surely. Let us define v n,k (t, x, a) := Y n,k,t,x,a t . We begin noting that, for k = 1 we have

Y n,1,t,x,a s = E t,a g(X t,x,a T ) + T s f (X t,x,a r , I t,a r )dr F s .
Then, we see from Proposition B.3 that Y n,1,t,x,a s = v n,1 (s, X t,x,a s , I t,a s ), dP t,a ⊗ ds-almost everywhere. Proceeding as in Lemma 4.1 of [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF] (in particular, relying on Theorem 6.27 in [START_REF] Jacod | Semimartingales and Markov Processes[END_REF]), we also deduce that there exists a Borel measurable function ṽn,1 such that V n,1,t,x,a s = ṽn,1 (s, X t,x,a s -, I t,a s ), dP t,a ⊗ ds almost everywhere. Since V n,1,t,x,a ∈ L 2 t,a (B), we notice that

E t,a T t |ṽ n,1 (s, X t,x,a s -, I t,a s )| 2 ds < ∞. (4.8) 
Let us now prove the inductive step: let k ≥ 1 be an integer and suppose that Y n,k,t,x,a s = v n,k (s, X t,x,a s , I t,a s ) and V n,k,t,x,a s = ṽn,k (s, X t,x,a s -, I t,a s ), dP t,a ⊗ ds-almost everywhere, with

E t,a [ T t |ṽ n,k (s, X t,x,a s -, I t,a s )| 2 ds] < ∞. Then, we have Y n,k+1,t,x,a s = E t,a g(X t,x,a T ) + T s f (X t,x,a r , I t,a r )dr + n T s ṽn,k (r, X t,x,a r -, I t,a r ) dr F s .
Using again Proposition B.3 (notice that, by a monotone class argument, we can extend Proposition B.3 to Borel measurable functions verifying an integrability condition of the type (4.8)) we see that Y n,k+1,t,x,a s = v n,k+1 (s, X t,x,a s , I t,a s ), dP t,a ⊗ ds almost everywhere. Now, we notice that it can be shown that E[sup t≤s≤T |Y n,k,t,x,a s -Y n,t,x,a s |] → 0, as k tends to infinity (e.g., proceeding as in Remark (b) after Proposition 2.1 in [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]). Therefore, v n,k (t, x, a) → v n (t, x, a) as k tends to infinity, for all (t, x, a) ∈ [0, T ] × R d × R q , from which it follows the validity of the identification Y n,t,x,a s = v n (s, X t,x,a s , I t,a s ) = v h n (s, X t,x,a s , a + B s -B t ), dP t,a ⊗ ds almost everywhere.

Step 2. Viscosity property of v h n . We shall divide the proof into two substeps.

Step 2a. v h n is a viscosity solution to (4.5). We now prove the viscosity supersolution property of v h n to (4.5). A similar argument would show that v h n it is a viscosity subsolution to (4.5). Let ( t, x, ā)

∈ [0, T ) × R d × R q and ϕ ∈ C 1,2 ([0, T ] × (R d × R q )) such that 0 = ((v h n ) * -ϕ)( t, x, ā) = min [0,T ]×R d ×R q ((v h n ) * -ϕ). (4.9) 
Let us proceed by contradiction, assuming that

- ∂ϕ ∂t ( t, x, ā) -L h(ā) ϕ( t, x, ā) -f (x, h(ā)) - 1 2 tr D 2 a ϕ( t, x, ā) -n D a ϕ( t, x, ā) =: -2ε < 0.
Using the continuity of b, σ, β, f , and h, we find δ > 0 such that

- ∂ϕ ∂t (t, x, a) -L h(a) ϕ(t, x, a) -f (x, h(a)) - 1 2 tr D 2 a ϕ(t, x, a) -n D a ϕ(t, x, a) =: -2ε < 0. (4.10) for any (t, x, a) ∈ [0, T ] × R d × R q with |t -t|, |x -x|, |a -ā| < δ. Define τ := inf s ≥ t : |X t,x,ā s -x| > δ, |B s -Bt| > δ ∧ ( t + δ) ∧ T.
Since X t,x,ā is càdlàg, it is in particular right-continuous at time t. Therefore, τ > t, P t,ā almost surely. Then, an application of Itô's formula to ϕ(s, X t,x,ā s , ā + B s -Bt) between t and τ , using also (4.10), yields

ϕ(τ, X t,x,ā τ , ā + B s -Bt) ≥ ϕ( t, x, ā) -n τ t D a ϕ(r, X t,x,ā r , ā + B r -Bt) dr - τ t f (X t,x,ā r , I t,ā r )dr + ε(τ -t) + τ t D x ϕ(r, X t,x,ā r , ā + B r -Bt)σ(X t,x,ā r , I t,ā r )dW r + τ t D a ϕ(r, X t,x,ā r , ā + B r -Bt)dB r (4.11) + τ t E ϕ(r, X t,x,ā r -+ β(X t,x,ā r -, I t,ā r , e), ā + B r -Bt) -ϕ(r, X t,x,ā r -, ā + B r -Bt) π(dr, de).
Writing the BSDE (3.5) from t to τ , using the identification Y n, t,x,ā

s = v h n (s, X t,x,ā s , ā + B s - Bt) and the inequality (v h n ) * ( t, x, ā) ≤ v h n ( t, x, ā), we find (v h n ) * ( t, x, ā) ≤ v h n (τ, X t,x,ā τ , ā + B τ -Bt) + τ t f (X t,x,ā r , I t,ā r )dr + n τ t V n, t,x,ā r dr - τ t Z n, t,x,ā r dW r - τ t V n, t,x,ā r dB r - τ t E
U n, t,x,ā r (e)π(dr, de). (4.12)

Plugging (4.12) into (4.11), we obtain

ϕ(τ, X t,x,ā τ , ā + B τ -Bt) -v h n (τ, X t,x,ā τ , ā + B τ -Bt) (4.13) ≥ ϕ( t, x, ā) -(v h n ) * ( t, x, ā) + ε(τ -t) + τ t D x ϕ(r, X t,x,ā r , ā + B r -Bt)σ(X t,x,ā r , I t,ā r )dW r - τ t Z n, t,x,ā r dW r -n τ t D a ϕ(r, X t,x,ā r , ā + B r -Bt) dr + n τ t V n, t,x,ā r dr - τ t V n, t,x,ā r dB r + τ t D a ϕ(r, X t,x,ā r , ā + B r -Bt)dB r - τ t E
U n, t,x,ā r (e)π(dr, de)

+ τ t E ϕ(r, X t,x,ā r -+ β(X t,x,ā r -, I t,ā r , e), ā + B r -Bt) -ϕ(r, X t,x,ā r -, ā + B r -Bt) π(dr, de).
Let us introduce the process α : [ t, T ] × Ω → R q given by

α r = n |D a ϕ(r, X t,x,ā r , ā + B r -Bt)| -|V n, t,x,ā r | |D a ϕ(r, X t,x,ā r , ā + B r -Bt) -V n, t,x,ā r | • • D a ϕ(r, X t,x,ā r , ā + B r -Bt) -V n, t,x,ā r |D a ϕ(r, X t,x,ā r , ā + B r -Bt) -V n, t,x,ā r | 1 {|Daϕ(r,X t,x,ā r ,ā+Br-Bt)-V n, t,x,ā r | =0}
for all t ≤ r ≤ T . Notice that α is bounded, moreover

n |D a ϕ(r, X t,x,ā r , ā + B r -Bt)| -|V n, t,x,ā r | = D a ϕ(r, X t,x,ā r , ā + B r -Bt) -V n, t,x,ā r α r .
Consider now the probability measure P t,ā,α equivalent to P t,ā on (Ω, F T ), with Radon-Nikodym density given by dP t,ā,α dP t,ā

Fs = E • t α r dB r - 1 2 • t |α r | 2 dr
s for all t ≤ s ≤ T , where E(•) is the Doléans-Dade exponential. Notice that the stochastic integrals with respect to W and π in (4.13) remain martingales with respect to P t,ā,α , while the effect of the measure P t,ā,α is to render the process B r -B t -r t α u du a Brownian motion. As a consequence, taking the expectation with respect to P t,ā,α in (4.13) we end up with (recalling that ϕ( t, x, ā) = (v h n ) * ( t, x, ā))

E P t,ā,α ϕ(τ, X t,x,ā τ , ā + B τ -Bt) -(v h n ) * (τ, X t,x,ā τ , ā + B τ -Bt) ≥ E P t,ā,α ϕ(τ, X t,x,ā τ , ā + B τ -Bt) -v h n (τ, X t,x,ā τ , ā + B τ -Bt) ≥ εE P t,ā,α [τ -t].
Since τ > t, P t,ā -a.s., it follows that τ > t, P t,ā,α -a.s., therefore E P t,ā,α [τ -t] > 0. This implies that there exists B ∈ F τ such that (ϕ(τ,

X t,x,ā τ , ā + B τ -Bt) -(v h n ) * (τ, X t,x,ā τ , ā + B τ -Bt))1 B >
0 and P t,ā,α (B) > 0. This is a contradiction with (4.9).

Step 2b. v h n is a viscosity solution to (4.6). As in step 2a, we shall only prove the viscosity supersolution property of v h n to (4.6), since the viscosity subsolution of v h n to (4.6) can be proved similarly. Let (x, ā) ∈ R d × R q . Our aim is to show that

(v h n ) * (T, x, ā) ≥ g(x). (4.14) 
Notice that there exists (t

k , x k , a k ) k ⊂ [0, T ) × R d × R q such that t k , x k , a k , v h n (t k , x k , a k ) k→∞ -→ t, x, ā, (v h n ) * ( t, x, ā) . Recall that v h n (t k , x k , a k ) = Y n,t k ,x k ,a k t k and Y n,t k ,x k ,a k t k = E t k ,a k g(X t k ,x k ,a k T ) + T t k E t k ,a k f (X t k ,x k ,a k s , I t k ,a k s ) ds + n T t k E t k ,a k V n,t k ,x k ,a k s ds. (4.15) 
Now we observe that, from classical convergence results of diffusion processes with jumps, see, e.g., Theorem 4.8, Chapter IX, in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], we have that the law of (X t ′ ,x ′ ,a ′ , I t ′ ,a ′ ) weakly converges to the law of (X t,x,a , I t,a ). As a consequence, we obtain

E t k ,a k g(X t k ,x k ,a k T ) k→∞ -→ g(x).
Moreover, from estimate (2.5) and (3.8), it follows by Lebesgue's dominated convergence theorem that the two integrals in time in (4.15) go to zero as k → ∞. In conclusion, letting k → ∞ in (4.15) we deduce that (v h n ) * (T, x, ā) = g(x), therefore (4.14) holds. Notice that, from this proof, we also have that, for any (x, a)

∈ R d ×R q , v h n (t ′ , x ′ , a ′ ) → v h n (T, x, a) = g(x), as (t ′ , x ′ , a ′ ) → (T, x, a), with t ′ < T . In other words, v h n is continuous at T . Step 3. Continuity of v h n on [0, T ] × R d × R q .
The continuity of v h n at T was proved in step 2b. On the other hand, the continuity of v h n on [0, T ) × R d × R q follows from the comparison theorem for viscosity solutions to equation (4.5)-(4.6). We notice, however, that a comparison theorem for equation (4.5)-(4.6) does not seem to be at disposal in the literature. Indeed, Theorem 3.5 in [START_REF] Barles | Backward stochastic differential equations and integral-partial differential equations[END_REF] applies to semilinear PDEs in which a Lévy measure appears, instead in our case λ depends on a. We can not even apply our comparison Theorem C.1, designed for equation (3.1)-(3.2), since in Theorem C.1 the variable a is a parameter while in equation (4.5) is a state variable. Moreover, in (4.5) there is also a nonlinear term in the gradient D a v h n , i.e., we need a comparison theorem for an equation with a generator f depending also on z. Nevertheless, we observe that, under assumption (Hλ) we can easily extend Theorem 3.5 in [START_REF] Barles | Backward stochastic differential equations and integral-partial differential equations[END_REF] to our case and, since the proof is very similar to that of Theorem 3.5 in [START_REF] Barles | Backward stochastic differential equations and integral-partial differential equations[END_REF], we do not prove it here to alleviate the presentation. ✷

The non dependence of the function v on the variable a

In the present subsection, our aim is to prove that the function v does not depend on the variable a. This is indeed a consequence of the constraint (3.4) on the component V of equation (3.3). If v were smooth enough, then, for any (t, x, a) ∈ [0, T ] × R d × R q , we could express the process V t,x,a as follows (we use the notations h(a) = (h i (a)) i=1,...,q , D a h(a) = (D a j h i (a)) i,j=1,...,q , and finally D h v to denote the gradient of v with respect to its last argument)

V t,x,a s = D h v(s, X t,x,a s , I t,a s )D a h(a + B s -B t ), t ≤ s ≤ T.
Therefore, from the constraint (3.4) we would find

E t,a t+δ t |D h v(s, X t,x,a s , I t,a s )D a h(a + B s -B t )|ds = 0,
for any δ > 0. By sending δ to zero in the above equality divided by δ, we would obtain

|D h v(t, x, h(a))D a h(a)| = 0.
Let us consider the function

v h : [0, T ] × R d × R q → R given by v h (t, x, a) := v(t, x, h(a)), (t, x, a) ∈ [0, T ] × R d × R q . (4.16)
Then |D a v h | ≡ 0, so that the function v h is constant with respect to a. Since h(R q ) = A, we have that v does not depend on the variable a on A.

Unfortunately, we do not know if v is regular enough in order to justify the above passages. Therefore, we shall rely on viscosity solutions techniques to derive the non dependence of v on the variable a. To this end, let us introduce the following first-order PDE:

- 

|D a v h (t, x, a)| = 0, (t, x, a) ∈ [0, T ) × R d × R q . ( 4 
∈ [0, T ) × R d × R q and any function ϕ ∈ C 1,2 ([0, T ] × (R d × R q )) such that (v h -ϕ)(t, x, a) = min [0,T ]×R d ×R q (v h -ϕ)
we have -|D a v h (t, x, a)| ≥ 0.

Proof. We know that v h is the pointwise limit of the nondecreasing sequence of functions (v h n ) n . By continuity of v h n , the function v h is lower semicontinuous and we have (see, e.g., page 91 in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]):

v h (t, x, a) = v h * (t, x, a) = lim inf n→∞ * v h n (t, x, a), for all (t, x, a) ∈ [0, T ) × R d × R q , where lim inf n→∞ * v h n (t, x, a) = lim inf n→∞ (t ′ ,x ′ ,a ′ )→(t,x,a) t ′ <T v h n (t ′ , x ′ , a ′ ), (t, x, a) ∈ [0, T ) × R d × R q . Let (t, x, a) ∈ [0, T ) × R d × R q and ϕ ∈ C 1,2 ([0, T ] × (R d × R q )) such that (v h -ϕ)(t, x, a) = min [0,T ]×R d ×R q (v h -ϕ).
We may assume, without loss of generality, that this minimum is strict. Up to a suitable negative perturbation of ϕ for large values of x and a, we can assume, without loss of generality, that there exists a bounded sequence (

t n , x n , a n ) ∈ [0, T ] × R d × R q such that (v h n -ϕ)(t n , x n , a n ) = min [0,T ]×R d ×R q (v h n -ϕ).
Then, it follows that, up to a subsequence,

t n , x n , a n , v h n (t n , x n , a n ) -→ t, x, a, v h (t, x, a) , as n → ∞. (4.18)
Now, from the viscosity supersolution property of v h n at (t n , x n , a n ) with the test function ϕ, we have

- ∂ϕ ∂t (t n , x n , a n ) -L h(an) ϕ(t n , x n , a n ) -f (x n , h(a n )) - 1 2 tr D 2 a ϕ(t n , x n , a n ) -n D a ϕ(t n , x n , a n ) ≥ 0, which implies D a ϕ(t n , x n , a n ) ≤ 1 n - ∂ϕ ∂t (t n , x n , a n ) -L h(an) ϕ(t n , x n , a n ) -f (x n , h(a n )) - 1 2 tr D 2 a ϕ(t n , x n , a n ) .
Sending n to infinity, we get from (4.18) and the continuity of b, σ, β, f , and h:

D a ϕ(t, x, a) = 0,
which is the thesis. ✷

We can now state the main result of this subsection. 

v(t, x, a) = v(t, x, a ′ ), a, a ′ ∈ Å, for any (t, x) ∈ [0, T ) × R d .
Proof. From Lemma 4.1, we have that v h is a viscosity supersolution to the first-order PDE:

-D a v h (t, x, a) = 0, (t, x, a) ∈ [0, T ) × R d × Åh ,
where A h was introduced in assumption (HA). Then, from Proposition 5.2 in [START_REF] Kharroubi | Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs[END_REF] we conclude that v h does not depend on the variable a in Åh :

v h (t, x, a) = v h (t, x, a ′ ), (t, x) ∈ [0, T ) × R d , a, a ′ ∈ Åh .
Since, from assumption (HA) we have h( Åh ) = Å, we deduce the thesis. ✷

Viscosity properties of the function v

From Proposition 4.2, by misuse of notation, we can define the function v on [0,

T ) × R d by v(t, x) = v(t, x, a), (t, x) ∈ [0, T ) × R d ,
for some a ∈ Å. Since h( Åh ) = Å, we also have

v(t, x) = v h (t, x, a), (t, x, a) ∈ [0, T ) × R d ,
for some a ∈ Åh . Moreover, from estimate (4.3) we deduce the linear growth condition for v (recall that h(a) ∈ A and A is a compact set, so that h is a bounded function):

sup (t,x)∈[0,T )×R d |v(t, x)| 1 + |x| < ∞. (4.19)
The present subsection is devoted to the remaining part of the proof of Theorem 4.1, namely that v is a viscosity solution to (3.1)-(3.2).

Proof of the viscosity supersolution property to (3.1). We know that v is the pointwise limit of the nondecreasing sequence of functions (v h n ) n , so that v is lower semicontinuous and we have

v(t, x) = v * (t, x) = lim inf n→∞ * v h n (t, x, a), (4.20) 
for all (t, x, a)

∈ [0, T ) × R d × Åh . Let (t, x) ∈ [0, T ) × R d and ϕ ∈ C 1,2 ([0, T ] × R d ) such that (v -ϕ)(t, x) = min [0,T ]×R d (v -ϕ).
From the linear growth condition (4.19) on v, we can assume, without loss of generality, that ϕ satisfies sup

(t,x)∈[0,T ]×R d |ϕ(t, x)|/(1 + |x|) < ∞.
Fix some a ∈ Åh and define, for any ε > 0, the test function

ϕ ε (t ′ , x ′ , a ′ ) = ϕ(t ′ , x ′ ) -ε |t ′ -t| 2 + |x ′ -x| 2 + |a ′ -a| 2 , for all (t ′ , x ′ , a ′ ) ∈ [0, T ] × R d × R q .
Notice that ϕ ε ≤ ϕ with equality if and only if (t ′ , x ′ , a ′ ) = (t, x, a), therefore v -ϕ ε has a strict global minimum at (t, x, a). From the linear growth condition on the continuous functions v h n and ϕ, there exists a bounded sequence (t n , x n , a n ) n (we omit the dependence in ε)

in [0, T ) × R d × R q such that (v h n -ϕ ε )(t n , x n , a n ) = min [0,T ]×R d ×R q (v h n -ϕ ε ).
By standard arguments, we obtain that, up to a subsequence,

t n , x n , a n , v h n (t n , x n , a n ) -→ t, x, a, v(t, x) , as n → ∞.
Now, from the viscosity supersolution property of v h n at (t n , x n , a n ) with the test function ϕ ε , we have

- ∂ϕ ε ∂t (t n , x n , a n ) -L h(an) ϕ ε (t n , x n , a n ) -f (x n , h(a n )) - 1 2 tr D 2 a ϕ ε (t n , x n , a n ) -n D a ϕ ε (t n , x n , a n ) ≥ 0. Therefore - ∂ϕ ε ∂t (t n , x n , a n ) -L h(an) ϕ ε (t n , x n , a n ) -f (x n , h(a n )) - 1 2 tr D 2 a ϕ ε (t n , x n , a n ) ≥ 0.
Sending n to infinity in the above inequality, we obtain, from the definition of ϕ ε ,

- ∂ϕ ε ∂t (t, x, a) -L h(a) ϕ ε (t, x, a) -f (x, h(a)) + ε ≥ 0.
Sending ε to zero, recalling that ϕ ε (t, x, a) = ϕ(t, x), we find

- ∂ϕ ∂t (t, x) -L h(a) ϕ(t, x) -f (x, h(a)) ≥ 0.
Since a ∈ Åh and h( Åh ) = Å, the above equation can be rewritten in an equivalent way as follows

- ∂ϕ ∂t (t, x) -L a ϕ(t, x) -f (x, a) ≥ 0,
where a is arbitrarily chosen in Å. As a consequence, using assumption (HA) and the continuity of the coefficients b, σ, β, and f in the variable a, we end up with

- ∂ϕ ∂t (t, x) -sup a∈A L a ϕ(t, x) -f (x, a) ≥ 0,
which is the viscosity supersolution property. ✷

Proof of the viscosity subsolution property to (3.1). Since v is the pointwise limit of the nondecreasing sequence (v h n ) n , we have (see, e.g., page 91 in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]):

* (t, x) = lim sup n→∞ * v h n (t, x, a), (4.21) 
for all (t, x, a)

∈ [0, T ) × R d × Åh , where lim sup n→∞ * v h n (t, x, a) = lim sup n→∞ (t ′ ,x ′ ,a ′ )→(t,x,a) t ′ <T, a ′ ∈ Åh v h n (t ′ , x ′ , a ′ ), (t, x, a) ∈ [0, T ) × R d × R q . Let (t, x) ∈ [0, T ) × R d and ϕ ∈ C 1,2 ([0, T ] × R d ) such that (v * -ϕ)(t, x) = max [0,T ]×R d (v * -ϕ).
We may assume, without loss of generality, that this maximum is strict and that ϕ satisfies a linear growth condition sup

(t,x)∈[0,T ]×R d |ϕ(t, x)|/(1 + |x|) < ∞. Fix a ∈ Åh and consider a sequence (t n , x n , a n ) n in [0, T ) × R d × Åh such that t n , x n , a n , v n (t n , x n , a n ) -→ t, x, a, v * (t, x) , as n → ∞.
Let us define for n ≥ 1 the function

ϕ n ∈ C 1,2 ([0, T ] × (R d × R q )) by ϕ n (t ′ , x ′ , a ′ ) = ϕ(t ′ , x ′ ) + n |t ′ -t n | 2 + |x ′ -x n | 2 , for all (t ′ , x ′ , a ′ ) ∈ [0, T ] × R d × R q .
From the linear growth condition on v h n and ϕ, we can find a sequence ( tn , xn , ān

) n in [0, T ) × R d × A h such that (v h n -ϕ n )( tn , xn , ān ) = max [0,T ]×R d ×A h (v h n -ϕ n ).
By standard arguments, we obtain that, up to a subsequence,

n | tn -t n | 2 + |x n -x n | 2 n→∞ -→ 0.
As a consequence, up to a subsequence, we have

( tn , xn , ān ) n→∞ -→ (t, x, ā),
for some ā ∈ A h . Now, from the viscosity subsolution property of v h n at ( tn , xn , ān ) with the test function ϕ n , we have:

- ∂ϕ n ∂t ( tn , xn , ān ) -L h(ān) ϕ n ( tn , xn , ān ) -f (x n , h(ā n )) - 1 2 tr D 2 a ϕ n ( tn , xn , ān ) -n D a ϕ n ( tn , xn , ān ) ≤ 0.
Therefore, using the definition of ϕ n ,

- ∂ϕ n ∂t ( tn , xn , ān ) -L h(ān) ϕ n ( tn , xn , ān ) -f (x n , h(ā n )) ≤ 0.
Sending n to infinity in the above inequality, we obtain

- ∂ϕ ∂t (t, x) -L h(ā) ϕ(t, x) -f (x, h(ā)) ≤ 0.
Setting ã = h(ā), the above equation can be rewritten in an equivalent way as follows

- ∂ϕ ∂t (t, x) -L ãϕ(t, x) -f (x, ã) ≤ 0.
As a consequence, we have 

- ∂ϕ ∂t (t, x) -sup a∈A L a ϕ(t, x) -f (x, a) ≤ 0,
) n valued in [0, T ) × R d × R q such that t n , x n , a n , v h n (t n , x n , a n ) -→ T, x, a, v * (T, x) , as n → ∞, for some a ∈ Åh . Since the sequence (v h n ) n is nondecreasing and v h n (T, •, •) = g, we have v * (T, x) ≥ lim n→∞ v h 1 (t n , x n , a n ) = g(x).

✷

Proof of the viscosity subsolution property to (3.2). Let x ∈ R d . From (4.21), for every ε > 0 and a ∈ Åh there exist N ∈ N and δ > 0 such that

v h n (t ′ , x ′ , a ′ ) -v * (T, x) ≤ ε, (4.22) 
for all n ≥ N and |t ′ -T |, |x ′ -x|, |a ′ -a| ≤ δ, with t ′ < T and a ′ ∈ Åh . Now, we recall that v h n (T, x, a) = g(x), therefore, from the continuity of v h n , for every n ∈ N, there exists From the arbitrariness of ε, we get the thesis. ✷

δ n > 0 such that v h n (t ′ , x ′ , a ′ ) -g(x) ≤ ε, ( 4 

Appendices A. Martingale representation theorem

We present here a martingale representation theorem, which is one of the fundamental result to derive our nonlinear Feynman-Kac representation formula. It is indeed a direct consequence of Theorem 4.29, Chapter III, in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], which is however designed for local (instead of square integrable) martingales.

Theorem A.1 Let (t, a) ∈ [0, T ] × R q and M = (M s ) t≤s≤T be a càdlàg square integrable F-martingale, with M t constant. Then, there exist Z ∈ L 2 t,a (W), V ∈ L 2 t,a (B), and U ∈ L 2 t,a (π) such that M s = M t + s t Z r dW r + s t V r dB r + s t E
U r (e)π(dr, de), for all t ≤ s ≤ T , P t,a almost surely.

Proof. Since M is a local martingale, we know from Theorem 4.29, Chapter III, in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], that

M s = M t + s t Z r dW r + s t V r dB r + s t E
U r (e)π(dr, de), for some predictable processes (Z s ) t≤s≤T , (V s ) t≤s≤T , and (U s ) t≤s≤T , satisfying M r Z r dW r ) t≤s≤T satisfies, using Burkholder-Davis-Gundy inequality and the fact that

E t,a T ∧τ Z n t |Z s | 2 ds < ∞, E t,a T ∧τ V n t |V s | 2 ds < ∞, E t,a T ∧τ U n t E |U s (e)| 2 λ(I t,a s , de)ds < ∞, for all n ∈ N, where (τ Z n ) n∈N , (τ V n ) n∈N ,
E t,a [sup t≤s≤T |M s | 2 ] < ∞ (which is a consequence of Doob's inequality), E t,a sup t≤s≤T s∧τn t M r Z r dW r < ∞.
In particular, (

s∧τn t M s Z s dW s ) t≤s≤T is a martingale. Similarly, ( s∧τn t 
M r V r dB r ) t≤s≤T and ( s∧τn t E M r U r (e)π(dr, de)) t≤s≤T are martingales. Therefore, taking the expectation in (A.1) yields

E t,a M 2 τn = M 2 t + E t,a τn t |Z s | 2 ds + E t,a τn t |V s | 2 ds + E t,a τn t E |U s (e)| 2 π(ds, de) . (A.2)
Recall that

E t,a τn t E |U s (e)| 2 π(ds, de) = E t,a τn t E
|U s (e)| 2 λ(I t,a s , de)ds .

Moreover, we have

E t,a [M 2 τn ] ≤ E t,a [sup t≤s≤T M 2 s ] < ∞. Therefore, from (A.
2) it follows that there exists a positive constant C, independent of n, such that

E t,a τn t |Z s | 2 ds + E t,a τn t |V s | 2 ds + E t,a τn t E |U s (e)| 2 λ(I t,a s , de)ds ≤ C.
Letting n → ∞, by Fatou's lemma we conclude that Z ∈ L 2 t,a (W), V ∈ L 2 t,a (B), and U ∈ L 2 t,a (π). ✷ B. Characterization of π and Markov property of (X, I)

In the following lemma, inspired by the results concerning Poisson random measures (see, e.g., Proposition 1.12, Chapter XII, in [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]), we present a characterization of π in terms of Fourier and Laplace functionals. This shows that π is a conditionally Poisson random measure (also known as doubly stochastic Poisson random measure or Cox random measure) relative to σ(I z ; z ≥ 0).

Proposition B.1 (Fourier and Laplace functionals of π) Assume that (HFC) holds and fix

(t, a) ∈ [0, T ] × R q . Let ℓ : R + × E → R be a B(R + ) ⊗ B(E)-measurable function such that ∞ 0
E |ℓ u (e)|λ(I t,a u , de)du < ∞, P t,a a.s., then, for every s ≤ ∞, E t,a e i s 0 E ℓu(e)π(du,de) σ(I t,a z ; z ≥ 0) = e s 0 E (e iℓu(e) -1)λ(I t,a u ,de)du , P t,a a.s.

If ℓ is nonnegative, then the following equality holds:

E t,a e -s 0 E ℓu(e)π(du,de) σ(I t,a z ; z ≥ 0) = e -s 0 E (1-e -ℓu(e) )λ(I t,a u ,de)du , P t,a a.s.

In particular, if (F k ) 1≤k≤n , with n ∈ N\{0}, is a finite sequence of pairwise disjoint Borel measurable sets from R + × E, with F k λ(I t,a u , de)du < ∞, P t,a a.s., then

E t,a e i n k=1 θ k π(F k ) σ(I t,a z ; z ≥ 0) = n k=1
e F k (e iθ k -1)λ(I t,a u ,de)du , P t,a a.s.

for all θ 1 , . . . , θ n ∈ R. In other words, π(F 1 ), . . . , π(F n ) are conditionally independent relative to σ(I t,a z ; z ≥ 0).

Proof. Let J s = s 0 E ℓ u (e)π(du, de), for any s ≥ 0, and define

φ(s) = E t,a e iJs σ(I t,a z ; z ≥ 0) , ∀ s ≥ 0.
Applying Itô's formula to the process e iJs , we find

e iJs = 1 + s 0 E
e iJ u -e iℓu(e) -1 π(du, de).

Taking the conditional expectation with respect to σ(I t,a u ; u ≥ 0), we get

E t,a e iJs σ(I t,a z ; z ≥ 0) = 1 + E t,a s 0 E e iJ u -e iℓu(e) -1 λ(I t,a u , de)du σ(I t,a z ; z ≥ 0) = 1 + s 0 E E t,a e iJ u -σ(I t,a z ; z ≥ 0) e iℓu(e) -1 λ(I t,a u , de)du. 
In terms of φ this reads φ(s) = 1 + s 0 φ(u -)ψ(u)du, P t,a a.s., where ψ(u) = E e iℓu(e) -1 λ(I t,a u , de), P t,a a.s.

Notice that ψ belongs to L 1 (R + ), as a consequence of the integrability condition on f . We see then that φ is continuous, so that φ(s) = e s 0 ψ(u)du , P t,a a.s., which yields the first formula of the lemma. The second formula is proved similarly. ✷

We shall now study the Markov properties of the pair (X, I) in the following two propositions.

Proposition B.2

Under assumption (HFC), for every (t, x, a) ∈ [0, T ] × R d × R q the stochastic process (X t,x,a s , I t,a s ) s≥0 on (Ω, F, F, P t,a ) is Markov with respect to F: for every r, s ∈ R + , r ≤ s, and for every Borel measurable and bounded function h : R d × R q → R we have E t,a h(X t,x,a s , I t,a s ) F r = E t,a h(X t,x,a s , I t,a s ) σ(X t,x,a r , I t,a r ) , P t,a a.s.

Proof. Fix (t, x, a) ∈ [0, T ]×R d ×R q . Notice that it is enough to show the Markov property for t ≤ r ≤ s ≤ T . Therefore, let r ∈ [t, T ] and consider, on (Ω, F, F, P t,a ), the following equation for X:

Xs = X t,x,a r + s r b( Xu , I t,a u )du + s r σ( Xu , I t,a u )dW u (B.1) + s r E
β( Xu -, I t,a u , e)π(du, de), for all s ∈ [r, T ], P t,a a.s., where π(du, de) = π(du, de) -1 {u<T∞} λ(I t,a u , de)du. Under assumption (HFC), it is known (see, e.g., Theorem 14.23 in [START_REF] Jacod | Calcul Stochastique et Problèmes de Martingales[END_REF]) that there exists a unique solution to equation (B.1), which is clearly given by the process (X t,x,a s ) s∈[r,T ] . We recall that this solution is constructed using an iterative procedure, which relies on a recursively defined sequence of processes ( X(n) ) n , see, e.g., Lemma 14.20 in [START_REF] Jacod | Calcul Stochastique et Problèmes de Martingales[END_REF]. More precisely, we set X(0) ≡ 0 and then we define X(n+1) from X(n) as follows:

X(n+1) s = X t,x,a r + s r b( X(n) u , I t,a u )du + s r σ( X(n) u , I t,a u )dW u + s r E β( X(n) u -, I t,a u -, e)π(du, de),
for all s ∈ [r, T ], P t,a a.s., for every n ∈ N. It can be shown that X(n) converges uniformly towards the solution X t,x,a of (B.1) on [r, T ], P t,a a.s., namely sup s∈

[r,T ] | X(n) s -X t,x ,a s 
| → 0 as n tends to infinity, P t,a almost surely. This shows that X t,x,a s (and also (X t,x,a s , I t,a s )) is F-adapted, where F = ( Fs ) s∈[r,T ] is the augmentation of the filtration G = ( Gs ) s∈[r,T ] given by: Gs = σ(X t,x,a r

, I t,a r ) ∨ F W [r,s] ∨ F B [r,s] ∨ F π [r,s] , where F W [r,s] = σ(W u -W r ; r ≤ u ≤ s), F B [r,s] = σ(B u -B r ; r ≤ u ≤ s), and F π [r,s] = σ(π(F ); F ∈ B([r, s]) ⊗ B(E)). Since F W [r,s]
and F B [r,s] are independent with respect to F r , it is enough to prove that F π [r,s] and F r are conditionally independent relative to σ(X t,x,a r , I t,a r ). To prove this, take C ∈ F r and a B(R

+ ) ⊗ B(E)-measurable function ℓ : R + × E → R such that ∞ 0 E |ℓ u (e)|λ(I t,a
u , de)du < ∞, P t,a almost surely. Then, the thesis follows if we prove that E t,a e iθ 1 1 C +iθ 2 s r E ℓu(e)π(du,de) σ(X t,x,a r , I t,a r ) (B.2) = E t,a e iθ 1 1 C σ(X t,x,a r , I t,a r ) E t,a e iθ 2 s r E ℓu(e)π(du,de) σ(X t,x,a r , I t,a r ) , P t,a a.s., for all θ 1 , θ 2 ∈ R. Firstly, let us prove that 1 C and s r E ℓ u (e)π(du, de) are conditionally independent relative to σ(I t,a z ; z ≥ r), i.e., E t,a e iθ 1 1 C +iθ 2 s r E ℓu(e)π(du,de) σ(I t,a z ; z ≥ r)

(B.3) = E t,a e iθ 1 1 C σ(I t,a z ; z ≥ r) e
s r E (e iℓu(e)θ 2 -1)λ(I t,a u ,de)du , P t,a a.s.

Proceeding as in Proposition B.1, let J s = s r E ℓ u (e)π(du, de) and

φ(s) = E t,a e iθ 1 1 C +iθ 2 Js σ(I t,a z ; z ≥ r) , ∀ s ≥ r.
Applying Itô's formula to the process e iJs , we find

E t,a e iθ 1 1 C +iθ 2 Js σ(I t,a z ; z ≥ r) = E t,a e iθ 1 1 C σ(I t,a z ; z ≥ r) + E t,a s r E e iθ 1 1 C +iθ 2 J u -e iℓu(e)θ 2 -1 λ(I t,a u , de)du σ(I t,a z ; z ≥ 0) = E t,a e iθ 1 1 C σ(I t,a z ; z ≥ r) + s r E
E t,a e iθ 1 1 C +iθ 2 J u -σ(I t,a z ; z ≥ r) e iℓu(e)θ 2 -1 λ(I t,a u , de)du.

In terms of φ this reads

φ(s) = 1 + s r φ(u -)ψ(u)du, P t,a a.s.,
where ψ(u) = E e iℓu(e)θ 2 -1 λ(I t,a u , de), P t,a a.s.

Notice that ψ belongs to L 1 (R + ), as a consequence of the integrability condition on f . We see then that φ is continuous, so that φ(s) = E t,a e iθ 1 1 C σ(I t,a z ; z ≥ r) e s r ψ(u)du , P t,a a.s., which yields (B.3). Let us come back to (B.2). We have, using (B.3),

E t,a e iθ 1 1 C +iθ 2 s r E ℓu(e)π(du,de) σ(X t,x,a r , I t,a r ) = E t,a [Y 1 Y 2 |σ(X t,x ,a r , I t,a r )], 
where

Y 1 = E t,a e iθ 1 1 C σ(I t,a z ; z ≥ r) ∨ σ(X t,x,a r , I t,a r ) , Y 2 = E t,a e iθ 2 s
r E ℓu(e)π(du,de) σ(I t,a z ; z ≥ r) ∨ σ(X t,x,a r , I t,a r ) .

Since (I t,a z ) z≥0 is Markov with respect to F, we have that F r and σ(I t,a z ; z ≥ r) are independent relative to σ(I t,a r ). Therefore, Y 1 can be written as

Y 1 = E t,a e iθ 1 1 C σ(X t,x,a r , I t,a r ) .
It follows that Y 1 is σ(X t,x,a r , I t,a r )-measurable, so that

E t,a e iθ 1 1 C +iθ 2 s r E ℓu(e)π(du,de) σ(X t,x,a r , I t,a r ) = Y 1 E t,a [Y 2 |σ(X t,x,a r , I t,a r )], P t,a a.s., which proves (B.2). ✷ Proposition B.3
Under assumption (HFC), the family (Ω, F, (X t,x,a , I t,a ), P t,a ) t,x,a is Markovian with respect to F and satisfies, for every (t, x, a) ∈ [0, T ] × R d × R q , r, s ∈ R + with r ≤ s, and for every Borel measurable and bounded function h :

R d × R q → R, E t,a h(X t,x,a s , I t,a s ) F r = R d ×R q h(x ′ , a ′ )p r, (X t,x,a r , I t,a r ), s, dx ′ da ′ , P t,a a.s. (B.4)
where p is the Markovian transition function given by p r, (x ′ , a ′ ), s,

Γ = P r,a ′ (X r,x ′ ,a ′ s , I r,a ′ s ) ∈ Γ ,
for every r, s ∈ R + , r ≤ s, (x ′ , a ′ ) ∈ R d × R q , and every Borelian set

Γ ⊂ R d × R q .
, de)ds, proceeding as follows. Let Ω ′′ be a copy of Ω ′ , with corresponding canonical marked point process denoted by (T ′′ n , α ′′ n ) n∈N , canonical random measure π ′′ , T ′′ ∞ := lim n T ′′ n , and filtration Set also T ′ ∞ (ω) := T ∞ (ω) and T ′′ ∞ (ω) := T ′′ ∞ (ω ′′ ). Let P t,a,t ′ ,a ′ be the probability measure on ( Ω, F) given by P t,a,t ′ ,a ′ (dω) = P(dω) ⊗ P ′ ,t,a (ω, dω ′ ) ⊗ P ′′ ,t ′ ,a ′ (ω, dω ′′ ). Finally, set ( Xt,x,a , Ît,a )(ω) := (X t,x,a , I t,a )(ω, ω ′ ) and ( Xt ′ ,x ′ ,a ′ , Ît ′ ,a ′ )(ω) := (X t ′ ,x ′ ,a ′ , I 

F ′′ = (F ′ s ) t≥0 . Define ( Ω, F , F = ( Ft ) t≥0 ) with Ω := Ω × Ω ′′ , F := F ⊗ F ′′ ∞ ,
(X t,x,a r , I t,a r ) = i≥1 (x i , a i )1 Γ i ,
for some (x i , a i ) ∈ R d × R q and a Borel partition (Γ i ) i≥1 of R d × R q satisfying P(Γ i ) > 0, for any i ≥ 1. In this case, (B.4) becomes E t,a h(X t,x,a s , I t,a s ) σ(X t,x,a r , I t,a r ) = i≥1 1 Γ i E r,a i h(X r,x i ,a i s , I r,a i s ) , P t,a a.s. (B.5)

Now notice that the process ( Xt,x,a s 1 Γ i ) s≥r satisfies on ( Ω, F, F, P t,a,r,a i ) (using the same notation as in Remark B.1) Xt,x,a

s 1 Γ i = x i 1 Γ i + s r b i ( Xt,x,a u 1 Γ i , Ît,a u 1 Γ i )dr + s r σ i ( Xt,x,a u 1 Γ i , Ît,a u 1 Γ i )d Ŵu + s r E β( Xt,x,a u -1 Γ i , Ît,a u -1 Γ i , e) πi (du, de), with b i = b1 Γ i , σ i = σ1 Γ i ,
and πi is the compensated martingale measure associated to the random measure πi , which has 1 Γ i λ( Ît,a s -1 Γ i , de)ds, s ≥ r, as compensator. Similarly, the process ( Xr,x i ,a i s 1 Γ i ) s≥r satisfies on ( Ω, F, F, P t,a,r,a i ) Xr,x i ,a i s

1 Γ i = x i 1 Γ i + s r b i ( Xr,x i ,a i u 1 Γ i , Îr,a i u 1 Γ i )dr + s r σ i ( Xr,x i ,a i u 1 Γ i , Îr,a i u 1 Γ i )d Ŵu + s r E β( Xr,x i ,a i u -
where π′ i is the compensated martingale measure associated to the random measure π′ i , which has 1 Γ i λ( Îr,a i s -1 Γ i , de)ds, s ≥ r, as compensator. Since the two processes ( Ît,a s 1 Γ i ) s≥r and ( Îr,a i s 1 Γ i ) s≥r have the same law, we see that ( Xt,x,a s 1 Γ i ) s≥r and ( Xr,x i ,a i s 1 Γ i ) s≥r solve the same equation, and, from uniqueness, they have the same law, as well. This implies (denoting E t,a,r,a i the expectation with respect to P t,a,r,a i ) E t,a,r,a i h( Xt,x,a s , Ît,a s )1 Γ i = E t,a,r,a i h( Xr,x i ,a i s , Îr,a i s )1 Γ i .

Notice that E t,a,r,a i h( Xt,x,a s , Ît,a s )1 Γ i = E t,a h(X t,x,a s , I t,a s )1 Γ i and

E t,a,r,a i h( Xr,x i ,a i s , Îr,a i s )1 Γ i = E t,a,r,a i E t,a,r,a i h( Xr,x i ,a i s , Îr,a i s )1 Γ i F r = E t,a,r,a i E t,a,r,a i h( Xr,x i ,a i s , Îr,a i s ) F r 1 Γ i = E t,a,r,a i E t,a,r,a i h( Xr,x i ,a i s , Îr,a i s ) 1 Γ i = E t,a E r,a i h(X r,x i ,a i s , I r,a i s ) 1 Γ i .
In other words, we have

E t,a h(X t,x,a s , I t,a s )1 Γ i = E t,a E r,a i h(X r,x i ,a i s , I r,a i s ) 1 Γ i ,
from which (B.5) follows.

Step 2. General case. From estimate (2.5), we see that (X t,x,a r , I t,a r ) is square integrable, so that there exists a sequence (X t,x,a,n r , I t,a,n r ) n of square integrable discrete random variables converging to (X t,x,a r , I t,a r ) pointwisely P t,a a.s. and in L 2 (Ω, F, P t,a ; R d × R q ). The sequence (X t,x,a,n r , I t,a,n r ) n can be chosen in such a way that (X t,x,a,n+1 r , I t,a,n+1 r ) is a better approximation of (X t,x,a r , I t,a r ) than (X t,x,a,n r , I t,a,n r ), in other words such that σ(X t,x,a,n r , I t,a,n r ) ⊂ σ(X t,x,a,n+1 r , I t,a,n+1 r ). Let us denote (X t,x,a,n s , I t,a,n s ) the solution to (2.1)-(2.2) starting at time r from (X t,x,a,n r , I t,a,n r ). Notice that, from classical convergence results of diffusion processes with jumps (see, e.g., Theorem 4.8, Chapter IX, in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]), it follows that (X t,x,a,n s , I t,a,n s ) converges weakly to (X t,x,a s , I t,a s ). From Step 1, for any n we have E t,a h(X t,x,a,n s , I t,a,n s ) σ(X t,x,a,n r , I t,a,n r ) = p r, (X t,x,a,n r , I t,a,n r ), s, h , P t,a a.s. (B.6) where p(r,

(x ′ , a ′ ), s, h) = E r,a ′ h(X r,x ′ ,a ′ ,n s , I r,a ′ ,n s ) ,
for every r, s ∈ R + , r ≤ s, (x ′ , a ′ ) ∈ R d × R q , and every Borel measurable and bounded function h : R d × R q → R. Let us suppose that h is bounded and continuous. Since the sequence (E t,a [h(X t,x,a,n s , I t,a,n s )|σ(X t,x,a,n r , I t,a,n r )]) n is uniformly bounded in L 2 (Ω, F, P t,a ), there exists a subsequence (E t,a [h(X t,x,a,n k s , I t,a,n k s )|σ(X t,x,a,n k r , I t,a,n k r )]) k which converges weakly to some Z ∈ L 2 (Ω, F, P t,a ). For any N ∈ N and Γ N ∈ σ(X t,x,a,N r , I t,a,N r ), we have, by definition of conditional expectation,

E t,a E t,a h(X t,x,a,n k s , I t,a,n k s ) σ(X t,x,a,n k r , I t,a,n k r ) 1 Γ N = E t,a h(X t,x,a,n k s , I t,a,n k s )1 Γ N , for all n k ≥ N . Letting k → ∞, we deduce E t,a Z1 Γ N = E t,a h(X t,x,a s , I t,a s )1 Γ N .
Since σ(X t,x,a r , I t,a r ) = ∨ n σ(X t,x,a,n r , I t,a,n r ), it follows that Z = E t,a [h(X t,x,a s , I t,a s )|σ(X t,x,a r , I t,a r )], P t,a a.s.

Notice that every convergent subsequence of (E t,a [h(X t,x,a,n s , I t,a,n s )|σ(X t,x,a,n r , I t,a,n r )]) n has to converge to E t,a [h(X t,x,a s , I t,a s )|σ(X t,x,a r , I t,a r )], so that the whole sequence converges. On the other hand, when h is bounded and continuous, it follows again from classical convergence results of diffusion processes with jumps (see, e.g., Theorem 4.8, Chapter IX, in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]), that p = p(r, (x ′ , a ′ ), s, h) is continuous in (x ′ , a ′ ). Since (X t,x,a,n r , I t,a,n r ) n converges pointwisely P t,a a.s. to (X 

+ I 2,δ a (t, x, D x ϕ(t, x), u) + f x, a ≥ (resp. ≤) 0, for any (t, x) ∈ [0, T ) × R d and any ϕ ∈ C 1,2 ([0, T ] × R d ) such that (u -ϕ)(t, x) = min [0,T ]×R d (u -ϕ) (resp. max [0,T ]×R d (u -ϕ)).
As in [START_REF] Barles | Second-order elliptic integro-differential equations: viscosity solutions' theory revisited[END_REF], see Definition 4, for the proof of the comparison theorem it is useful to adopt another equivalent definition of viscosity solution to equation (i) We denote by P 2,-u(t, x) the parabolic subjet (resp. P 2,+ u(t, x) the parabolic superjet) of u at (t, x) ∈ [0, T ) × R d , as the set of triples (p, q, M ) ∈ R × R d × S d (we denote by S d the set of d × d symmetric matrices) satisfying u(s, y) ≥ (resp. ≤) u(t, x) + p(s -t) + q.(y -x) + 1 2 (y -x).M (y -x)

+ o |s -t| + |y -x| 2 ,
as (s, y) → (t, x).

(ii) We denote by P2,u(t, x) the parabolic limiting subjet (resp. P2,+ u(t, x) the parabolic limiting superjet) of u at for any x ∈ R d , and, for any δ > 0, -p -sup a∈A b(x, a).q + 1 2 tr σσ ⊺ (x, a)M + I 1,δ a (t, x, ϕ)

(t, x) ∈ [0, T ) × R d , as the set of triples (p, q, M ) ∈ R × R d × S d such that (p, q, M ) = lim n→∞ (p n , q n , M n ) with (p n , q n , M n ) ∈ P
+ I 2,δ a (t, x, q, u) + f x, a ≥ (resp. ≤) 0, for any (t, x) ∈ [0, T ) × R d , (p, q, M ) ∈ P2,-u(t, x) (resp. (p, q, M ) ∈ P2,+ u(t, x)), and any ϕ ∈ C 1,2 ([0, T ] × R d ), with ∂ϕ ∂t (t, x) = p, D x ϕ(t, x) = q, and D 2 x ϕ(t, x) ≤ M (resp. D 2 x ϕ(t, x) ≥ M ), such that (u -ϕ)(t, x) = min [0,T ]×R d (u -ϕ) (resp. max [0,T ]×R d (u -ϕ)).
Proof. Using Lemma C.1, we see that the if part is true. We have to prove the only if part. In particular, we prove the equivalence for the supersolution case only, since the subsolution case can be proved similarly. Let u be locally bounded and lsc on [0, T ] × R d and suppose that u is a viscosity supersolution to (3.1)-

(3.2). Fix δ > 0, (t, x) ∈ [0, T ) × R d , (p, q, M ) ∈ P2,-u(t, x) and ϕ ∈ C 1,2 ([0, T ] × R d ), with ∂ϕ ∂t = p, D x ϕ(t, x) = q, and D 2 x ϕ(t, x) ≤ M , such that (u -ϕ)(t, x) = min [0,T ]×R d (u -ϕ).
By classical results (see, e.g., Lemma 4.1, Chapter V, in [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF]), there exists a function

ψ : [0, T ] × R d → R, ψ ∈ C 1,2 ([0, T ] × R d ), such that ψ(t, x) = u(t, x), ∂ψ ∂t (t, x) = p, D x ψ(t, x) = q, D 2
x ψ(t, x) = M , and ψ ≤ u on [0, T ] × R d . For any ε > 0, we define ψ ε as follows:

ψ ε (s, y) = χ ε (s, y)ψ(s, y) + (1 -χ ε (s, y))ϕ(s, y), (s, y) ∈ [0, T ] × R d ,
where χ ε is a smooth function satisfying:

0 ≤ χ ε (s, y) ≤ 1, if (s, y) ∈ [0, T ] × R d , χ ε (s, y) = 1, if (s, y) ∈ ([0, T ] ∩ {|s -t| < ε}) × (R d ∩ {|y -x| < ε}), χ ε (s, y) = 0, if (s, y) ∈ ([0, T ] ∩ {|s -t| > 2ε}) × (R d ∩ {|y -x| > 2ε}). Notice that ψ ε ∈ C 1,2 ([0, T ] × R d ) and min [0,T ]×R d (u -ψ ε ) = (u -ψ ε )(t, x). Moreover, ψ ε = ψ in a neighborhood of (t, x). As a consequence, from Lemma C.1 we have -p -sup a∈A b(x, a).q + 1 2 tr σσ ⊺ (x, a)M + I 1,δ a (t, x, ψ ε ) (C.1) + I 2,δ a (t, x, q, u) + f x, a ≥ 0.
Let us assume, for a moment, the validity of the following result: 

sup a∈A I 1,δ a (t, x, ψ ε ) -I 1,δ a (t, x, ϕ) ε→0 + -→ 0. (C.
(t,x)∈[0,T ]×R d |u(t, x)| + |w(t, x)| 1 + |x| < ∞. (C.5) If u(T, x) ≤ w(T, x) for all x ∈ R d , then u ≤ w on [0, T ] × R d .
Proof We shall argue by contradiction, assuming that sup

[0,T ]×R d (u -w) > 0. (C.6)
Step 1. For some ρ > 0 to be chosen later, set ũ(t, x) = e ρt u(t, x), w(t, x) = e ρt w(t, x),

(t, x) ∈ [0, T ] × R d .
Let us consider the following equation: 

ρṽ - ∂ṽ ∂t -sup a∈A L a ṽ + f (•, a) = 0, on [0, T ) × R d , (C.7) ṽ(T, x) = g(x), x ∈ R d , (C.
, let (t, x) ∈ [0, T ) × R d and φ ∈ C 1,2 ([0, T ] × R d ) such that (ũ -φ)(t, x) = max [0,T ]×R d (ũ -φ).
We can suppose ũ(t, x) = φ(t, x), without loss of generality. Set ϕ(s, y) = e -ρs φ(s, y), for all (s, y) ∈ [0, T ] × R d . Then u(t, x) = ϕ(t, x). Moreover, since ũ -φ ≤ 0 on [0, T ] × R d , we see that max [0,T ]×R d (u -ϕ) = 0. The claimed viscosity subsolution property of ũ to (C.7) then follows from the viscosity subsolution property of u to (3.1). Similarly, we can show the viscosity supersolution property of w.

Step 2. Denote, for all (t, s, x, y) ∈ [0, T ] 2 × R 2d , and for any n ∈ N\{0} and γ > 0,

Φ n,γ (t, s, x, y) = ũ(t, x) -w(s, y) -n |t -s| 2 2 -n |x -y| 2 2 -γ |x| 2 + |y| 2 .
By the linear growth assumption on u and w, for each n and γ, there exists (t n,γ , s n,γ , x n,γ , y n,γ ) ∈ [0, T ] 2 ×R 2d attaining the maximum of Φ n,γ on [0, T ] 2 ×R 2d . Notice that Φ n,γ (t n,γ , s n,γ , x n,γ , y n,γ ) ≥ 0, for γ small enough. Indeed, from (C.6) we see that there exists ( t, x)

∈ [0, T ) × R d such that ũ( t, x) -w( t, x) =: η > 0. Then Φ n,γ (t n,γ , s n,γ , x n,γ , y n,γ ) ≥ Φ n,γ ( t, t, x, x) = η -2γ|x| 2 ,
therefore it is enough to take γ ≤ η/(2|x| 2 ). From Φ n,γ (t n,γ , s n,γ , x n,γ , y n,γ ) ≥ 0 it follows that

n |t n,γ -s n,γ | 2 2 + n |x n,γ -y n,γ | 2 2 + γ |x n,γ | 2 + |y n,γ | 2 ≤ ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ). (C.9)
On the other hand, from the linear growth condition (C.5) of u and w, we deduce that there exists a constant C > 0 such that (recalling the standard inequality ab ≤ a 2 /(2γ) + γb 2 /2, for any a, b ∈ R and γ > 0)

ũ(t, x) -w(s, y) ≤ C 1 + |x| + |y| (C.10) ≤ C + C 2 γ + γ 2 |x| 2 + |y| 2 , ∀ (t, s, x, y) ∈ [0, T ] 2 × R 2d .
Combining (C.9) with (C.10), we obtain 

n |t n,γ -s n,γ | 2 2 + n |x n,γ -y n,γ | 2 2 + γ |x n,γ | 2 + |y n,γ | 2 ≤ ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ) ≤ C + C 2 γ + γ 2 |x n,γ | 2 + |y n,γ | 2 , which implies n |t n,γ -s n,γ | 2 4 + n |x n,γ -y n,γ | 2 4 + γ 2 |x n,γ | 2 + |y n,γ | 2 ≤ C + C 2 γ . ( 
ũ(t γ , x γ ) -w(s γ , y γ ) -2γ|x γ | 2 ≤ lim inf n→∞ Φ n,γ (t n,γ , s n,γ , x n,γ , y n,γ ) ≤ lim sup n→∞ Φ n,γ (t n,γ , s n,γ , x n,γ , y n,γ ) ≤ ũ(t γ , x γ ) -w(s γ , y γ ) -2γ|x γ | 2 . This implies that ũ(t γ , x γ ) -w(s γ , y γ ) = lim n→∞ ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ) -n |t n,γ -s n,γ | 2 2 -n |x n,γ -y n,γ | 2 2 ≤ lim inf n→∞ ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ) ≤ lim sup n→∞ ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ) = ũ(t γ , x γ ) -w(s γ , y γ ),
which proves (C.13) and (C.14). Finally, we derive a useful inequality. More precisely, for any ξ, ξ

′ ∈ R d , from the maximum property Φ n,γ (t n,γ , s n,γ , x n,γ + d, y n,γ + d ′ ) ≤ Φ n,γ (t n,γ , s n,γ , x n,γ , y n,γ ) we get ũ(t n,γ , x n,γ + d) -ũ(t n,γ , x n,γ ) -nd.(x n,γ -y n,γ ) ≤ w(s n,γ , y n,γ + d ′ ) -w(s n,γ , y n,γ ) -nd ′ .(x n,γ -y n,γ ) + n |d -d ′ | 2 2 + γ |x n,γ + d| 2 -|x n,γ | 2 + |y n,γ + d ′ | 2 -|y n,γ | 2 . (C.15)
Step 3. Let us prove that, if γ is small enough, then t γ < T , so that t n,γ , s n,γ < T , up to a subsequence. We proceed by contradiction, assuming t γ = T . From (C.16) we obtain the contradiction (recalling that ũ -w is usc)

0 < lim sup n→∞ ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ) ≤ ũ(T, x γ ) -w(T, x γ ) ≤ 0.
Consider, as in step 3, ( t, x) ∈ [0, T ) × R d such that ũ( t, x) -w( t, x) =: η > 0. Then, from the inequality Φ n,γ (t n,γ , s n,γ , x n,γ , y n,γ ) ≥ Φ n,γ ( t, t, x, x), we obtain ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ) ≥ ũ( t, x) -w( t, x) -2γ|x| 2 .

Set γ * := (ũ( t, x) -w( t, x))/(4|x| 2 ) ∧ 1 if |x| 2 > 0, and γ * := 1 if |x| 2 = 0. Then, for any 0 < γ ≤ γ * , we have ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ) ≥ ũ( t, x) -w( t, x) 2 > 0, (C.16) from which we obtain the contradiction (recalling that ũ -w is usc) 0 < lim sup n→∞ ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ ) ≤ ũ(T, x γ ) -w(T, x γ ) ≤ 0.

Step 4. We shall apply the nonlocal Jensen-Ishii's lemma (see Lemma 1 in [START_REF] Barles | Second-order elliptic integro-differential equations: viscosity solutions' theory revisited[END_REF]). To this end, let γ ∈ (0, γ * ] and define Then, for any r > 0, it follows from the nonlocal Jensen-Ishii's lemma that there exists α(r) > 0 such that, for any 0 < α ≤ α(r), we have: there exist sequences (to alleviate the notation, we omit the dependence of the sequences on α) (t n,k , s n,k , x n,k , y n,k ) → (t n , s n , x n , y n ), (t n,k , s n,k , x n,k , y n,k ) ∈ [0, T ) 2 × R 2d , (p n,k , p ′ n,k , q n,k , q ′ n,k ) → (p n , p ′ n , q n , q ′ n ), matrices N n,k , N ′ n,k ∈ S d , with (N n,k , N ′ n,k ) converging to some (M n,α , M ′ n,α ), and a sequence of functions ϕ n,k ∈ C 1,2 ([0, T ] 2 × R 2d ) such that:

ϕ n (t
(i) (t n,k , s n,k , x n,k , y n,k ) is a global maximum point of ũ -w -ϕ n,k ;

(ii) ũ(t n,k , x n,k ) → ũ(t n , x n ) and w(s n,k , y n,k ) → w(s n , y n ), as k tends to infinity;

(iii) (p n,k , q n,k , N n,k ) ∈ P 2,+ ũ(t n,k , x n,k ), (p ′ n,k , q ′ n,k , N ′ n,k ) ∈ P 

-f t n,k , x n,k , a k ≤ 1 k .
From the compactness of A, we can suppose that a k → a ∞ ∈ A, up to a subsequence. Moreover, for every a ∈ A we have ρ w(s n,k , y n,k ) -p ′ n,k -b(y n,k , a).q ′ n,k - -I 1,δ a (s n,k , y n,k , -ϕ n,k (t n,k , •, x n,k , •)) -I 2,δ a (s n,k , y n,k , q ′ n,k , w) -f s n,k , y n,k , a ≥ 0. Set r * := 2 sup (a,e)∈A×(E∩{|e|≤δ}) (|β(x * , a, e)| ∨ |β(y * , a, e)|), where from (C.12) we define (x * , y * ) := lim n→∞ (x n , y n ), and α * := α(r * ). Notice that for all n ∈ N\{0} we have sup (a,e)∈A×(E∩{|e|≤δ}) (|β(x n , a, e)| ∨ |β(y n , a, e)|) < r * , up to a subsequence. Therefore, sending k to infinity, we get ϕ n,k → ψ n,α , as k tends to infinity, uniformly in C 2 (B r * (t n , s n , x n , y n )) for any 0 < α ≤ α * . Moreover, from assumption (Hλ)(iii) we have lim sup k→∞ E∩{|e|≤δ} ũ(t n,k , x n,k + β(x n,k , a k , e)) -ũ(t n,k , x n,k ) -β(x n,k , a k , e).q n,k λ(a k , de) ≤ E∩{|e|≤δ} ũ(t n , x n + β(x n , a ∞ , e)) -ũ(t n , x n ) -β(x n , a ∞ , e).q n λ(a ∞ , de).

Therefore, from (C.18) we obtain ρũ(t n , x n ) -p n -b(x n , a ∞ ).q n -1 2 tr σσ ⊺ (x n , a ∞ )M n,α -I 1,δ a∞ (t n , x n , ψ n,α (•, s n , •, y n )) -I 2,δ a∞ (t n , x n , q n , ũ) -f t n , x n , a ∞ ≤ 0.

A fortiori, if we take the supremum over a ∈ A we conclude ρũ(t n , x n ) -p n -sup a∈A b(x n , a).q n + 1 2 tr σσ ⊺ (x n , a)M n,α +I 

Definition 4 . 1 (

 41 Viscosity solution to (3.1)-(3.2)) (i) A lsc (resp. usc) function u on [0, T ] × R d is called a viscosity supersolution (resp. viscosity subsolution) to (3.1)-(3.2) if u(T, x) ≥ (resp. ≤) g(x)

  ) A locally bounded function u on [0, T ) × R d is called a viscosity solution to (3.1)-(3.2) if u * is a viscosity supersolution and u * is a viscosity subsolution to (3.1)-(3.2).

Theorem 4 . 1

 41 Assume that conditions (HFC), (HBC), (HA), and (Hλ) hold. Then, the function v in (4.1) does not depend on the variable a on [0, T ) × R d × Å:

. 6 )Definition 4 . 2 (

 642 Let us provide the definition of discontinuous viscosity solution to equation (4.5)-(4.6). Viscosity solution to (4.5)-(4.6)) (i) A lsc (resp. usc) function u on [0, T ] × R d × R q is called a viscosity supersolution (resp. viscosity subsolution) to (4.5)-(4.6) if u(T, x, a) ≥ (resp. ≤) g(x)

a viscosity solution to ( 4 . 5 )-( 4 . 6 )

 4546 if u * is a viscosity supersolution and u * is a viscosity subsolution to (4.5)-(4.6).

Proposition 4 . 2

 42 Let assumptions (HFC), (HBC), (HA), and (Hλ) hold. Then, the function v in (4.1) does not depend on its last argument on [0, T ) × R d × Å:

. 23 )

 23 for all |t ′ -T |, |x ′ -x|, |a ′ -a| ≤ δ n ,with a ′ ∈ Åh . Combining (4.22) with (4.23), we end up with v * (T, x) ≤ g(x) + 2ε.

  and Ft := ∩ s>t F s ⊗ F ′′ s . Moreover, set Ŵ (ω) := W (ω), B(ω) := B(ω), π′ (ω, •) := π(ω, •), and π′′ (ω, •) := π ′′ (ω ′′ , •).

  (3.1)-(3.2), see Lemma C.2 below, where we mix test functions and sub/superjets. We first recall the definition of sub and superjets. Definition C.1 Let u : [0, T ] × R d → R be a lsc (resp. usc) function.

2 )

 2 Then, by sending n → ∞ in (C.1), we obtain the thesis -p -sup a∈A b(x, a).q + 1 2 tr σσ ⊺ (x, a)M + I

  x, a) = e ρt f (x, a), g(x) = e ρT g(x), for all (t, x, a) ∈ [0, T ] × R d × A. Then ũ (resp. w) is a viscosity subsolution (resp. supersolution) to (C.7)-(C.8) (the definition of viscosity sub/supersolution to (C.7)-(C.8) is an obvious adaptation of Definition 4.1). Indeed, concerning the subsolution property of ũ

  and (τ U n ) n∈N are nondecreasing sequences of Fstopping times valued in [t, T ], converging pointwisely P t,a a.s. to T . Notice that τ n is an F-stopping time valued in [t, T ], converging pointwisely P t,a a.s. to T . Then, applying Itô's formula to M 2 s between t and τ n , we find

	+	τn	|Z s | 2 ds +	τn	|V s | 2 ds +	τn	|U s (e)| 2 π(ds, de).	(A.1)
	t		t		t	E		
	Observe that the local martingale (	s∧τn t			
								It remains to show
	that Z ∈ L 2 t,a (W), V ∈ L 2 t,a (B), and U ∈ L 2 t,a (π). To this end, set τ n := τ Z n ∧ τ V n ∧ τ U n , for
	every n ∈ N. M 2 τn = M 2 t + 2					

τn t M s Z s dW s + 2 τn t M s V s dB s + 2 τn t E M s U s (e)π(ds, de)

  t ′ ,a ′ )(ω, ω ′′ ). Then ( Xt,x,a , Ît,a ) solves (2.1)-(2.2) on [t, T ] starting from (x, a) at time t, and ( Xt ′ ,x ′ ,a ′ , Ît ′ ,a ′ ) solves (2.1)-(2.2) on [t ′ , T ] starting from (x ′ , a ′ ) at time t ′ . ✷

	Proof (of Proposition B.3). We begin noting that from Proposition B.2 the left-hand
	side of (B.4) is equal to E t,a [h(X t,x,a s	, I t,a s )|σ(X t,x,a r	, I t,a r )], P t,a almost surely. Let us now
	divide the proof into two steps.	
	Step 1. (X t,x,a r	, I t,a r ) is a discrete random variable. Suppose that

  We shall prove a comparison theorem for viscosity sub and supersolutions to the fully nonlinear IPDE of HJB type (3.1)-(3.2). Inspired by Definition 2 in[START_REF] Barles | Second-order elliptic integro-differential equations: viscosity solutions' theory revisited[END_REF], we begin recalling the following result concerning an equivalent definition of viscosity super and subsolution to (3.1)-(3.2), whose standard proof is not reported.

					t,x,a r	, I t,a r ), letting n → ∞ in (B.6) we obtain
			E t,a h(X t,x,a s	, I t,a s ) σ(X t,x,a r	, I t,a r ) = p r, (X t,x,a r	, I t,a r ), s, h ,	P t,a a.s.	(B.7)
	for any h bounded and continuous. Using a monotone class argument, we conclude that
	(B.7) remains true for any h bounded and Borel measurable.	✷
	C. Comparison theorem for equation (3.1)-(3.2)
	Lemma C.1 Let assumption (HFC), (HBC), and (Hλ) hold. A locally bounded and lsc
	(resp. usc) function u on [0, T ]×R d is a viscosity supersolution (resp. viscosity subsolution)
	to (3.1)-(3.2) if and only if	
					u(T, x) ≥ (resp. ≤) g(x)
	for any x ∈ R d , and, for any δ > 0,
	-	∂ϕ ∂t	(t, x) -sup a∈A	b(x, a).D x ϕ(t, x) +	1 2	tr σσ ⊺ (x, a)D 2 x ϕ(t, x) + I 1,δ a (t, x, ϕ)

  2,-u(t n , x n ) (resp. P 2,+ u(t n , x n )), where

	(t, x, u(t, x)) = lim

n→∞ (t n , x n , u(t n , x n )).

Lemma C.2 Let assumption (HFC), (HBC), and (Hλ) hold. A locally bounded and lsc (resp. usc) function u on [0, T ]×R d is a viscosity supersolution (resp. viscosity subsolution) to (3.1)-(3.2) if and only if u(T, x) ≥ (resp. ≤) g(x)

  Observe that χ ε (t, x + β(x, a, e))|β(x, a, e)| 2 ≤ |β(x, a, e)| 2 1 {|β(x,a,e)|≤2ε} . Since β(x, a, e) ≤ C(1 ∧ |e| 2 ), we find

			≤ C sup	χ ε (t, x + β(x, a, e))|β(x, a, e)| 2 λ(a, de).
			a∈A E∩{|e|≤δ}	
		sup a∈A	I 1,δ a (t, x, ψ ε ) -I 1,δ a (t, x, ϕ) ≤ C sup a∈A E∩{|e|≤δ}	1 ∧ |e| 2 ∧ (4ε 2 )λ(a, de).	(C.4)
	It follows from assumption (Hλ)(i) that the right-hand side of (C.4) goes to zero as ε → 0 + ,
	from which we deduce (C.2).		✷
	We can now state the main result of this appendix.
	Theorem C.1 Assume that (HFC), (HBC), and (Hλ) hold. Let u be a usc viscosity
	subsolution to (3.1)-(3.2) and w a lsc viscosity supersolution to (3.1)-(3.2), satisfying a
	linear growth condition	
			sup	
					1,δ a (t, x, ϕ)
				+ I 2,δ a (t, x, q, u) + f x, a	≥ 0.
	Therefore, it remains to prove (C.2). Notice that
	sup a∈A	I 1,δ a (t, x, ψ ε ) -I 1,δ a (t, x, ϕ)		(C.3)
	= sup a∈A χ From the regularity of ψ and ϕ, we have E∩{|e|≤δ}
	ψ(t, x + β(x, a, e)) -ϕ(t, x + β(x, a, e)) ≤ |β(x, a, e)| 2 sup |y-x|≤r δ,x	|D 2 x (ψ -ϕ)(t, y)|,
	where r δ,x := sup (a,e)∈A×(E∩{|e|≤δ}) |β(x, a, e)|. In particular, (C.3) becomes (in the sequel
	we shall denote by C a generic positive constant depending only on δ and x)
			sup	

ε (t, x + β(x, a, e)) ψ(t, x + β(x, a, e)) -ϕ(t, x + β(x, a, e)) λ(a, de) . a∈A I 1,δ a (t, x, ψ ε ) -I 1,δ a (t, x, ϕ)

  C.11)From (C.11) it follows that, for each γ, there exists(t γ , x γ ) ∈ [0, T ] × R d such that (t n,γ , s n,γ , x n,γ , y n,γ ) Weierstrass theorem, there exist a subsequence ((t n k ,γ , s n k ,γ , x n k ,γ , y n k ,γ )) k and (t γ , t ′ γ , x γ , x ′ γ ) ∈ [0, T ] 2 × R 2d such that (t n k ,γ , s n k ,γ , x n k ,γ , y n k ,γ) converges to (t γ , t ′ γ , x γ , x ′ γ ) as k goes to infinity. Combining this latter result with lim sup n→∞ (|t n,γ -s n,γ | 2 + |x n,γy n,γ | 2 ) = 0, which follows from (C.11), we finally obtain (C.12). On the other hand, to prove (C.13)-(C.[START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], notice that we have (recalling that ũ -w is usc)

		n→∞ -→ (t γ , t γ , x γ , x γ ),	(C.12)
	n|x n,γ -x γ | 2 + n|y n,γ -y γ | 2 n→∞ -→ 0,	(C.13)
	ũ(t n,γ , x n,γ ) -w(s n,γ , y n,γ )	n→∞ -→ ũ(t γ , x γ ) -w(s γ , y γ ).	(C.14)
	As a matter of fact, we see from (C.11) that, for every γ, there exists a constant C

γ > 0 such that |x n,γ |, |y n,γ | ≤ C γ . Moreover, we obviously have |t n,γ |, |s n,γ | ≤ T . Therefore, from Bolzano-

  , s, x, y) = n |t -s| 2 2 + n |x -y| 2 2 + γ |x| 2 + |y| 2 -Φ n,γ (t n,γ , s n,γ , x n,γ , y n,γ ), for all (t, s, x, y) ∈ R 2+2d and for any n ∈ N\{0}. Then (t n , s n , x n , y n ) := (t n,γ , s n,γ , x n,γ , y n,γ ) is a zero global maximum point for ũ(t, x) -w(s, y) -ϕ n (t, s, x, y) on [0, T ] 2 × R 2d . Set (p n , q n ) := ∂ϕ n ∂t (t n , s n , x n , y n ), D x ϕ n (t n , s n , x n , y n ) , , s n , x n , y n ), D y ϕ n (t n , s n , x n , y n ) .

	(-p ′ n , -q ′ n ) :=	∂ϕ n ∂s	(t n

  2,-w(s n,k , y n,k ), and (p n,k , q n,k ) := ∂ϕ n,k ∂t (t n,k , s n,k , x n,k , y n,k ), D x ϕ n,k (t n,k , s n,k , x n,k , y n,k ) , , s n,k , x n,k , y n,k ), D y ϕ n,k (t n,k , s n,k , x n,k , y n,k ) ;(iv) The following inequalities hold (we denote by I the 2d × 2d identity matrix and by D 2 (x,y) ϕ n,k the Hessian matrix of ϕ n,k with respect to (x, y))) ϕ n,k (t n,k , s n,k , x n,k , y n,k ). (C.17) (v) ϕ n,k converges uniformly in R 2+2d and in C 2 (B r (t n , s n , x n , y n )) (where B r(t n , s n , x n , y n ) is the ball in R 2+2d of radius r and centered at (t n , s n , x n , y n )) towards ψ n,α := R α [ϕ n ](•, (p n , p ′ n , q n , q ′ n )), where, for any ξ ∈ R 2+2d , R α [ϕ n ](z, ξ) := sup |z ′ -z|≤1 ϕ n (z ′ ) -ξ.(z ′ -z) -|z ′ -z| 2 2α , ∀ z ∈ R 2+2d .Then, from Lemma C.2 and the viscosity subsolution property to (C.7)-(C.8) of ũ, we have:+I 1,δ a (t n,k , x n,k , ϕ n,k (•, s n,k , •, y n,k )) + I 2,δ a (t n,k , x n,k , q n,k , ũ) + f t n,k , x n,k , a ≤ 0.On the other hand, from the viscosity supersolution property to (C.7)-(C.8) of w, we have:ρ w(s n,k , y n,k ) -p ′ n,k -sup +I 1,δ a (s n,k , y n,k , -ϕ n,k (t n,k , •, x n,k , •)) + I 2,δ a (s n,k , y n,k , q ′ n,k , w) + f s n,k , y n,k , a ≥ 0. For every k ∈ N * , consider a k ∈ A such that ρũ(t n,k , x n,k ) -p n,k -b(x n,k , a k ).q n,k -12 tr σσ ⊺ (x n,k , a k )N n,k (C.18) -I 1,δ a k (t n,k , x n,k , ϕ n,k (•, s n,k , •, y n,k )) -I 2,δ a k (t n,k , x n,k , q n,k , ũ)

	(-p ′ n,k , -q ′ n,k ) := (t n,k -∂ϕ n,k ∂s 1 α I ≤ N n,k 0 0 -N ′ n,k (x,ya∈A ≤ D 2 b(y n,k , a).q ′ n,k +	1 2	tr σσ ⊺ (y n,k , a)N ′ n,k

ρũ(t n,k , x n,k ) -p n,k -sup a∈A b(x n,k , a).q n,k + 1 2 tr σσ ⊺ (x n,k , a)N n,k

  1,δ a (t n , x n , ψ n,α (•, s n , •, y n )) + I 2,δ a (t n , x n , q n , ũ) + f t n , x n , a ≤ 0, (C.[START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] for any 0 < α ≤ α * . On the other hand, letting k to infinity in (C.[START_REF] Jacod | Quelques remarques sur un nouveau type d'équations différentielles stochastiques[END_REF]) for every fixed a ∈ A, and then taking the supremum, we end up withρ w(s n , y n ) -p ′ n -sup +I 1,δ a (s n , y n , -ψ n,α (t n , •, x n , •)) + I 2,δ a (s n , y n , q ′ n , w) + f s n , y n , a ≥ 0, (C.21)for any 0 < α ≤ α * . Moreover, from (C.17) we have y)ψ n,α (t n , s n , x n , y n ) (C.22)and by direct calculationD 2 (x,y) ψ n,α (t n , s n , x n , y n ) = D 2 (x,y) ϕ n (t n , s n , x n , y n ) + o(1), as α → 0 + . (C.23)Step 5. From (C.20), for any n, consider a n ∈ A such thatρũ(t n , x n ) -p n -b(x n , a n ).q n -1 2 tr σσ ⊺ (x n , a n )M n,α -I 1,δ an (t n , x n , ψ n,α (•, s n , •, y n )) -I 2,δ an (t n , x n , q n , ũ) -f t n , x n , a n ≤ (x n , a n )M n,α -σσ ⊺ (y n , a n )M ′ n,α ,where∆F n = f t n , x n , a n -f s n , y n , a n , an (t n , x n , ψ n,α (•, s n , •, y n )) -I 1,δ an (s n , y n , -ψ n,α (t n , •, x n , •)), ∆I 2,δ n = I 2,δ an (t n , x n , q n , ũ) -I 2,δ an (s n , y n , q ′ n , w). , s n , x n , y n ) + ∂ϕ n ∂s (t n , s n , x n , y n ) = 0.By the uniform Lipschitz property of b with respect to x, and (C.13), we see thatlim n→∞ b(x n , a n ).q n -b(y n , a n ).q ′ n , a n ).D x ϕ n (t n , x n , y n ) + b(y n , a n ).D y ϕ n (t n , x n , y n ) = 0.Regarding the trace term in (C.26), by the uniform Lipschitz property of σ with respect to x, (C.22), (C.23), and (C.13), we obtaintr σσ ⊺ (x n , a n )M n,α -σσ ⊺ (y n , a n )M ′Concerning the integral term ∆I 1,δ n , we have, for some ϑ ′ , ϑ ′′ ∈ (0, 1), (t n , s n , x n + ϑ ′ β(x n , a n , e), y n )β(x n , a n , e).β(x n , a n , e) + D 2 y ψ n,α (t n , s n , x n , y n + ϑ ′′ β(y n , a n , e))β(x n , a n , e).β(x n , a n , e) λ(a n , de).Therefore, using (C.23) we see that there exists a positive constant C ′ n , depending only on (x n , y n ), the Lipschitz constant of β, and on sup ϑ′ ,ϑ ′′ ∈[0,1] |D 2 x ϕ n (t n , s n , x n +ϑ ′ β(x n , a n , e), y n )|∨ |D 2 y ϕ n (t n , s n , x n , y n + ϑ ′′ β(y n , a n , e))|, such thatFinally, it remains to consider the integral term ∆I 2,δ n . Integrating inequality (C.15), with d = β(x n , a n , e) and d ′ = β(y n , a n , e), we find I 2,δ an (t n , x n , q n , ũ) ≤ I 2,δ an (s n , y n , q ′ n , w) + n E∩{|e|>δ} |y n + β(y n , a n , e)| 2 -|y n | 2 λ(a n , de). Then, it follows from assumption (HFC)(ii) that there exists a positive constant C ′′ , depending only on the function β, such that (recalling that by Cauchy-Schwarz inequality we have |a + b| 2 -|a| 2 ≤ |b| 2 + 2|a||b|, a, b ∈ R) I 2,δ an (t n , x n , q n , ũ) ≤ I 2,δ an (s n , y n , q ′ n , w) + nC ′′ |x n -y n | 2 2 ∧ |e| 2 λ(a n , de) + γC ′′ 1 + |x n | 2 + |y n | 2 E 1 ∧ |e| 2 λ(a n , de). (C.28)

	a∈A	b(y n , a).q ′ n +	1 2	tr σσ ⊺ (y n , a)M ′ n,α
	-On the other hand, from (C.21) we deduce that 1 α I ≤ M n,α 0 0 -M ′ n,α ≤ D 2 (x,1 n ρ w(s n + 1 2 tr σσ ⊺ ∆I 1,δ n = I 1,δ We have p n -p ′ n = ∂ϕ n ∂t n→∞ lim sup α→0 + n,α ≤ 0. Moreover, from assumption (HBC) and (C.13)-(C.14), we find lim n→∞ |∆F n | = 0. (t n lim sup ∆I 1,δ n = E∩{|e|≤δ} D 2 x ψ n,α lim sup α→0 + |∆I 1,δ n | ≤ C ′ E∩{|e|≤δ} n 1 ∧ |e| 2 λ(a n , de).	.	(C.24) (C.27)

n , y n ) -p ′ n -b(y n , a n ).q ′ n -

1 2 tr σσ ⊺ (y n , a n )M ′ n,α -I 1,δ an (s n , y n , -ψ n,α (t n , •, x n , •)) -I 2,δ an (s n , y n , q ′ n , w) -f s n , y n , a n ≥ 0. (C.25)

By subtracting (C.25) to (C.24), we obtain:

ρ(ũ(t n , x n ) -w(s n , y n )) ≤ 1 n + p n -p ′ n + ∆F n + ∆I 1,δ n + ∆I 2,δ n (C.26) + b(x n , a n ).q n -b(y n , a n ).q ′ n = lim n→∞ b(

x E∩{|e|>δ} |β(x n , a n , e) -β(y n , a n , e)| 2 2 λ(a n , de) + γ E∩{|e|>δ} |x n + β(x n , a n , e)| 2 -|x n | 2 λ(a n , de) + γ E 1

Γ i , Îr,a i u -1 Γ i , e) π′ i (du, de),

From assumption (HFC)(iii) we see that sup a∈A E (1 ∧ |e| 2 )λ(a, de) < ∞. Moreover, from (C.11) we have that |x n | 2 + |y n | 2 is bounded by a constant, independent of n and γ. So that, enlarging the constant C ′′ appearing in (C.28) if necessary, we find

In conclusion, plugging (C.29) into (C.26), we obtain

Then, taking the lim sup α→0 + in both sides of (C.30) and using (C.27), we get

Now, taking the lim sup δ→0 + in both sides of (C.31), we deduce

Recall from (C.16) that ρ(ũ(t n , x n ) -w(s n , y n )) ≥ ρ(ũ( t, x) -w( t, x))/2. Therefore, taking the lim sup n→∞ in (C.32), we conclude 0 < ũ( t, x) -w( t, x) 2 ≤ γC ′′ , which is a contradiction for γ small enough. ✷