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INTRODUCTION

Surface water does not flow according to political boundaries. It flows only according to the topographic limits and along gradients of the land surface. Yet more than 260 river systems of the world are subject to international political boundaries (Wolf et al., 1999). These basins are known as International River Basins (IRB) and they have transboundary rivers flowing from one nation to another within the basin before draining to a lake or an ocean. A total of 145 countries are geographically part of an IRB, which represents more than 40% of the Earth's land mass (Wolf et al., 1999).

Forecasting of transboundary flow in downstream nations of these IRBs however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its realtime sharing among nations. This difficulty is exacerbated by a combination of poor ground infrastructure and poor institutional capacity to manage water resources jointly among riparian nations [START_REF] Bakker | Transboundary River Floods and Institutional Capacity[END_REF]. Survey indicates that about 33 such downstream countries have more than 95% of their territory bounded within IRBs [START_REF] Hossain | Improving Flood Forecasting in International River Basins EOS[END_REF][START_REF] Hossain | Satellites as the Panacea to Transboundary Limitations to Longer Range Flood Forecasting?[END_REF], making such countries heavily dependent on hydrologic data from not just within their borders but also beyond from upstream nations. While transboundary river flooding represents only 9.9% of all recorded flood events, they account for 32% of all casualties, almost 60% of affected individuals, and 14% of financial damage [START_REF] Bakker | Transboundary River Floods and Institutional Capacity[END_REF]. The disproportionate relationship between occurrence and impact of transboundary floods can often be traced to the lack of realtime communication between countries on rainfall and stream flow data that are essential for flood monitoring [START_REF] Balthrop | A Review of State of the Art on Treaties in Relation to Management of Transboundary Flooding in International River Basins and the Global Precipitation Measurement Mission[END_REF]. Bangladesh, like several flood prone nations in IRBs around the world, represents one such classic example, where transboundary flow accounts for more than 90% of the surface water during the Monsoon season, and its operational forecasting capability remains severely limited to only a 3 day lead based purely on persistence (Figure 1). Two specific issues make the extension of the lead time difficult: 1) because Bangladesh occupies only 7% of the total drainage area of the Ganges-Brahmaputra (GB) basins, 90% or more of the required spatial coverage of hydrologic data is controlled by the upstream nations of India and Nepal [START_REF] Paudyal | Forecasting and warning of water-related disaster in a complex hydraulic setting: The case of Bangladesh[END_REF]; and 2) increasing human impoundment of rivers by nations upstream of Bangladesh makes conventional forecasting based on stand-alone hydrologic and atmospheric/climate models very difficult (see Figure 1 for location of dams) (Vorosmarty et al., 2009;[START_REF] Hossain | Have Large Dams altered Extreme Precipitation Patterns?[END_REF][START_REF] Siddique-E-Akbor | Inter-comparison Study of Water Level Estimates Derived from Hydrodynamic-Hydrologic Model and Satellite Altimetry for a Complex Deltaic Environment[END_REF].

Recent studies however have shown that a combination of satellite estimates of rainfall and modeling can forecast stream flow in Bangladesh [START_REF] Nishat | Water Resources Modeling of the Ganges-Brahmaputra-Meghna River Basins using Satellite Remote Sensing Data[END_REF]Moffit et al., 2011). Such studies collectively provide a very useful platform to address emerging challenges to forecasting dictated by the increasing impoundment of rivers upstream of flood-prone downstream nations. For example, as a low lying delta, Bangladesh is most vulnerable to unilateral human activity by the upstream nations, such as extraction, diversion and dam impoundment of river waters (Figure 1). Some pertinent examples are the Farakka barrage on the Ganges (commissioned in 1976), and the recently revived Indian River Linking Project (IRLP; [START_REF] Misra | Proposed River Linking Project of India: Boon or Bane to Nature?[END_REF]. Such diversions stand to make persistence-based or hydrologic model-based forecasting less effective without prior knowledge of the day-to-day flow regulation schedule from India. Other notable and man-made issues are the plans by the Chinese Government to impound the Brahmaputra River in Tibet [START_REF] Evans | Characterization of the 2000 Yigong Zangbo River (Tibet) Landslide Dam and Impoundment by Remote Sensing, Natural and Artificial Rockslide Dams[END_REF].

INSERT FIGURE 1 HERE

Thus, human intervention through extensive upstream flow regulation will likely be a critical factor in future that will control the downstream forecasting accuracy, no matter how well the forecasting system adequately represents the natural dynamics of atmospheric and terrestrial flows. However, if satellites could provide a proxy way of timely monitoring the upstream regulation of flow, such as estimating river level behind a dam or barrage, then the accuracy of a downstream forecasting system could be preserved at tactical timescales (days to weeks) of decision making. Using NASA/CNES TOPEX/POSEIDON (T/P) satellite altimetry measurements of water levels in India, [START_REF] Biancamaria | Forecasting Transboundary Flood with Satellites[END_REF] have demonstrated exactly this point. Their work has revealed that it is feasible to practically forecast water elevation anomalies (i.e., fluctuations) during the critical Monsoon season (June to September) near the Bangladesh border. The T/P-based forecasting scheme reported an RMSE of about 0.40 m (0.6-0.8 m) for lead times up to 5-days (10 days) without having to rely on any upstream in-situ (gauge) river level data. The need to extend forecasting lead time has a strong motivation from the standpoint of preventing loss of life and economic damages (ADPC, 2002;Bakker, 2006).

Satellite-based flood forecasting is also important for gauging the societal value of the planned future NASA/CNES satellite hydrology mission called the Surface Water and Ocean Topography (SWOT). The body of research over the past two decades on evaluating the feasibility of measuring discharge from space (e.g, [START_REF] Birkett | Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry[END_REF]Frappart et al., 2005Frappart et al., , 2008;;Lee et al., 2009, among others) has now culminated in the planned SWOT mission dedicated to space-based surface discharge measurements using the concept of water elevations and slope (Alsdorf et al., 2003). With a launch date timeframe around 2019, SWOT's nadir Kaband altimeter and wide-swath interferometric altimetry has an aim to provide global sampling of surface water elevations to derive discharge and water storage change for rivers with widths greater than 50 m, at an accuracy of a few centimeters when averaged over ~1 km 2 of river area [START_REF] Alsdorf | Measuring surface water from space[END_REF]. In particular, for the humid tropics (the focus of our study), where most of the world's populous delta nations (in international river basins) are located, the planned 22-day (maximum) repeat sampling of SWOT will provide at least 2 observations in 3 weeks over these humid tropics (see http://swot.jpl.nasa.gov). An innovative aspect of SWOT will be the estimate of water surface elevation and slope from the 120 km wide-swath interferometric altimeter (known as KaRIn, Ka-band Radar Interferometer) to measure the hydraulic gradient line of river flow. Combined with an estimate of the river width and the inundated area of flow that will also be available, SWOT represents currently the only space mission planned exclusively for discharge estimation over land.

It is important at this stage to briefly review the state of the art of river discharge estimation from a remote sensing perspective. Discharge can be estimated by utilizing the one of commonly extractable physical variables from space-borne observables, such as, 1) water level (height) change by radar altimeters (e.g. [START_REF] Birkett | Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry[END_REF]Kouarev et al., 2004;Papa et al., 2010;[START_REF] Biancamaria | Forecasting Transboundary Flood with Satellites[END_REF]; 2) river width/inundated area by passive microwave (PMW) sensors (e.g. [START_REF] Brakenridge | Space-based measurement of river runoff[END_REF][START_REF] Brakenridge | Orbital microwave measurement of river discharge and ice status[END_REF][START_REF] Bjerklie | Estimating discharge in rivers using remotely sensed hydraulic information[END_REF][START_REF] Temimi | A multi-temporal analysis of AMSR-E data for flood and discharge monitoring during the 2008 flood in Iowa[END_REF][START_REF] Khan | Satellite remote sensing and hydrological modeling for flood inundation mapping in Lake Victoria Basin: Implications for hydrologic prediction in ungauged basins[END_REF]; see also: http://floodobservatory.colorado.edu/IndexMapweb.htm); and 3) slope of water level change (e.g. [START_REF] Alsdorf | Measuring surface water from space[END_REF][START_REF] Lefavour | Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model[END_REF][START_REF] Jung | Characterization of Complex Fluvial Systems via Remote Sensing of Spatial and Temporal Water Level Variations[END_REF]Woldemichael et al., 2010). The slope-based techniques have only been assessed against Shuttle Radar Topography Mission (SRTM) measurements of water elevations over a small sampling period of 11 days in the year 2000.

Our study is specifically focused on the river water level (i.e., height) based technique of discharge estimation using radar altimeters. For large river basin, such as the one studied here (Ganges-Brahmaputra), there are sufficient altimeter ground tracks over major rivers and neighboring tributaries to collectively guarantee at least two samples per basin per day as an indication of flow. For example, for the Ganges-Brahmaputra basins, there are more than twenty JASON-2 ground tracks on the main stem rivers and neighboring tributaries. Second, the collective sampling of the constellation of nadir altimeters that can be expected to fly in the near future (JASON-2, AltiKa, JASON-3 and Sentinel-3) will considerably improve sampling further.

We discuss the sampling issue later in the paper (sections 3 and 5). We believe that the synergistic use of all the techniques requires a thorough assessment of the individual methods.

This study extends the work of [START_REF] Biancamaria | Forecasting Transboundary Flood with Satellites[END_REF] and assesses the accuracy of a currently operational (as of June 2012) satellite altimeter -JASON-2 -for forecasting transboundary flow (i.e., river levels in this case) at locations further inside the downstream nation of Bangladesh. This is achieved by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The goal of this study is to answer the questionhow practically useful is satellite altimeter for forecasting flows further inside Bangladesh for the public? Detailed knowledge of the forecasting accuracy of a purely altimeter-based system can help guide the future development of more complex schemes involving data assimilation [START_REF] Durand | Estimation of Bathymetric Depth and Slope from Data Assimilation of Swath Altimetry into a Hydrodynamic Model[END_REF], statistical regression and persistence methods [START_REF] Pingel | Estimating forecasting lead times[END_REF], to extend further the forecast lead time.

The paper is organized as follows. Section 2 provides an overview of the study region (Bangladesh in the larger setting of the GB basins) and the forecasting domain. It also presents the hydrodynamic river model used for propagating the altimeter-based forecast further inside Bangladesh. Section 3 addresses the methodology. This comprises an overview of the JASON-2 altimeter and the derivation of forecasts from Indian river locations. This section also describes in detail how a daily streaming of 5-day forecast of river water level was created on the basis of the infrequent JASON-2 sampling over the GB basins. Finally, section 4 presents the results and discussions of study findings.

FORECASTING DOMAIN AND HYDRODYNAMIC RIVER MODEL

The domain for testing the forecasting accuracy of altimeter-based system was Bangladesh (Figure 2), which is the world's largest delta with extensive in-situ hydraulic and hydrologic data available to the authors through a Memorandum of Understanding (MOU) between the Institute of Water Modeling (IWM) of Bangladesh and Tennessee Technological University (TTU). As mentioned earlier, the lack of a data sharing treaty or basin-wide ground instrumentation in the GB basins means that flow data in transboundary regions is unavailable to Bangladesh at timescales of operational forecasting (daily) [START_REF] Balthrop | A Review of State of the Art on Treaties in Relation to Management of Transboundary Flooding in International River Basins and the Global Precipitation Measurement Mission[END_REF]. One of the rivers, the Ganges, is already impounded immediately upstream of the India-Bangladesh border (Figure 1), wherein the regulated nature of flow during the dry season limits the effectiveness of stand-alone hydrologic models to forecast flow downstream into Bangladesh.

Inside Bangladesh, a dense drainage network comprising more than 300 rivers, make the delta one of the most riverine in the world (Figure 2).

INSERT FIGURE 2 HERE

Seventeen (17) locations on the Ganges, Brahmaputra river system, inside Bangladesh were chosen for testing of the forecasting accuracy of JASON-2 altimeter. These 17 locations are also the stations where the Flood Forecasting and Warning Center (FFWC) of the Bangladesh Government provide official forecasts of river level to the public at 3-day lead time during the Monsoon season. We deliberately selected these 17 warning stations with the view to engineer (for FFWC and the people of Bangladesh) an operational forecasting system based on altimetry for real-time decision making in the near future. The internet (web-site at http://www.ffwc.gov.bd), cell-phone text messaging, and state-run media (TV and radio) are the three main delivery mechanisms by which the general public gets access to this official 3 day forecast. The stations "Noonkhawa" for the Brahmaputra river, "Jangipur Barrage" for the Ganges river and "Amalshid" for the Meghna river are the upstream-most locations of the current forecasting domain for Bangladesh. Hence, these locations represent the upstream boundary condition points for the hydrodynamic river model (discussed next), while for the downstream boundary condition point, the tidal station in the Meghna estuary (near the Bay of Bengal) is "Daulatkhan" (Figure 2).

The hydrodynamic river model used in this study was the HEC River Analysis Software (RAS), developed at the Hydrologic Engineering Center (HEC), of the U.S. Army Corps of Engineers. This hydrodynamic modeling software allows one-dimensional steady and unsteady flow river hydraulics calculations. In this study, the water surface profile computation module of HEC-RAS (version 4.0) was used to simulate the daily water level of the major rivers of Bangladesh shown in Figure 3. We used the model set up that was developed and verified by Siddique-E-Akbor et al. ( 2011), wherein HEC-RAS was used to compare the detection of river levels by satellite altimetry (ENVISAT in this case) against in-situ data or model-based simulations. For details on the model set up and simulation accuracy of nowcasting, the reader is referred to Siddique-E-Akbor et al. (2011). Herein, we provide only a very brief summary to help readers understand how altimeter-based forecasting skill was evaluated.

The HEC-RAS model was schematized at 226 river cross section locations on the major rivers of Bangladesh shown in Figure 2 (Siddique-E [START_REF] Siddique-E-Akbor | Inter-comparison Study of Water Level Estimates Derived from Hydrodynamic-Hydrologic Model and Satellite Altimetry for a Complex Deltaic Environment[END_REF]. These river cross sections were obtained from IWM as part of its periodic field campaign to update river bathymetry of major rivers during the post-Monsoon season. River bathymetry requires frequent check through field surveys because of the shifting nature and extensive bank erosion of Bangladesh rivers. The spacing between river cross sections varied from 2.5 km to 10 km. This allowed the simulation of river level dynamics at close spacing and consequently resulted in 17 locations that matched with FFWC forecast stations. Using chainage information from the bathymetry survey provided by the IWM, cross section data was entered in to the HEC-RAS schematization system.

INSERT FIGURE 3a HERE

Daily flow measurements (rated from river level observations) were used at the three most upstream entry points (for each river) in Bangladesh near the India-Bangladesh border (Figure 2). The rating curves for estimating discharge from river level had acceptable accuracy.

For example, for the Bahadurabad station on the Brahamputra river, the 10-year climatologic RMSE and mean error in estimating discharge from river level was found to be 2485 m 3 /s and 70 m 3 /s, respectively (Figure 3a). In terms of percentage of climatologic mean flow (20,563 m 3 /s), the RMSE and mean error represent 12% and 0.3%, respectively. For the downstream boundary, HEC-RAS was forced with measured tidal river stage data at the most downstream point named Daulatkhan on the Lower Meghna river close to the Bay of Bengal (Figure 2). During forecasting, it is acceptable to use in-situ (or nowcast) water level data at the downstream-most boundary point (near the ocean) since that is the only type of information that an operational forecaster will have.

INSERT FIGURE 3B HERE

The simulation period for this study was 2008-2010. Figure 3b shows the calibration of the HEC-RAS model for the period using in-situ boundary condition data (at upstream and downstream points) for the period. Calibration was performed manually against in-situ river level measurements at sampled locations with the goal to minimize the RMSE of river level simulation by HEC-RAS. The primary parameter that was iterated for calibration was Manning's roughness coefficient for each river segment (e.g. Ganges, Brahmaputra and Meghna). Further details of calibration are provided in Siddique-E-Akbor et al. (2011). The simulated river level data at the 17 FFWC locations derived from the calibrated HEC-RAS model and forced with insitu boundary data was therefore considered as 'nowcasting' data. This was then treated as reference for testing the forecasting accuracy of JASON-2.

Before presenting the methodology used in forecasting, it is important to discuss the representativeness of the HEC-RAS as the hydrodynamic for water level simulations. Figure 3b shows that HEC-RAS systematically over-predicts the peaks with an increasing bias further downstream. One potential reason for this could be that the downstream water level boundary condition may be such that the model generates backwater and tidal effects further upstream that are not present in reality. Second, the HEC-RAS model, being essentially a 1-D model, may not be representing floodplain storage adequately for two key reasons: 1) the river cross sections may not extend sufficiently far across the floodplain; 2) the inherent limitations of the 1D representation of HEC-RAS to simulate 2-D lateral overbank flow [START_REF] Prestininzi | Selecting the appropriate hydraulic model structure using low-resolution satellite imagery[END_REF][START_REF] Kalyanapu | Assessment of GPU computational Enhancement to a 2D Flood Model[END_REF].

METHODOLOGY

The general methodology for testing the accuracy of the altimeter forecasting inside Bangladesh is presented below and also summarized as a schematic in Figure 4. First, quantitative relationships in the form of 'rating curves' were derived at various river locations in upstream India that matched with the JASON-2 altimeter ground tracks (also known as 'virtual stations'). Conventional rating curves quantify the instantaneous relationship between estimated discharge and measured river level. To avoid confusion, we name the relationships between upstream river level anomalies and downstream river discharge as "Forecasting Rating Curves" (FRC) because of the primary use in forecasting. The various river locations that formed JASON-2 ground track are shown in Figure 5. Such FRCs were derived by establishing a graphical relationship between the instantaneous altimeter water level anomaly estimates (i.e., anomaly relative to the calibration period, October 2008 -June 2009, in this case) at upstream locations on Indian rivers to the downstream in-situ discharge at the upstream-most boundary points of the forecasting domain of Bangladesh.

We used the nearest in-situ river level data pertaining to Bahadurabad (Brahmaputra river) and Hardinge Bridge (Ganges river), respectively, in accordance with the practice followed by Siddique-e-Akbor et al. (2011). As an example, Figure 6 shows the 6 day FRC (i.e., for a lead of 6 days) derived for specific JASON-2 ground tracks over Indian locations of Ganges and Brahmaputra rivers. Development of the FRCs were guided by the previous work of [START_REF] Biancamaria | Forecasting Transboundary Flood with Satellites[END_REF] that investigated the relationships as a function of season (Monsoon, and dry season) and lags. Historical data spanning October 2008 -June 2009 was used to derive these FRCs at various lead times for all the JASON-2 ground track stations shown in Figure 5.
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We used the JASON-2 Sensor Geophysical Data Record (SGDR, product version "T") data set, which contains 20-Hz 104-sample radar waveforms, spanning from cycle 7 to 95 (September 2008-February 2011). Geophysical corrections (solid Earth and pole tides), and dry troposphere correction are applied. For these data, wet troposphere correction was calculated from the European Center for Medium Range Weather Forecasts (ECMWF) numerical weather prediction model, and an ionosphere correction derived from the Global Ionosphere Map (GIM) was also applied. Over non-ocean surfaces, various retracking methods have been developed to correct the deviation of the waveform leading edge from the nominal tracking gate (e.g., [START_REF] Martin | Analysis and retracking of continental ice sheet radar altimeter waveform[END_REF]Wingham et al., 1986;[START_REF] Davis | A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeter[END_REF][START_REF] Lee | Laurentia crustal motion observed using TOPEX/POSEIDON radar altimetry over land[END_REF]. JASON-2 data products contain retracked range measurements using the "ICE" retracker that is essentially a 30% threshold retracker using the mean power of the waveform calculated using the Offset Center of Gravity algorithm (P. Thibaut, personal communication, 2010). In this study, we adopted 50% threshold retracking which has been shown to perform well over inland water bodies for Jason-2 waveforms [START_REF] Lee | Application of satellite radar altimetry for near-real time monitoring of floods[END_REF].

In the next step (Figure 4), these FRCs were used to forecast 5-day ahead river discharge at the upstream-most boundary points of the HEC-RAS model setup. An independent validation (assessment) period of July 2009-December 2010 was chosen for assessing the forecast accuracy of JASON-2. For this period, instantaneous JASON-2 river level estimates at the upstream Indian river locations were used to derive the 5-day discharge forecast at Hardinge Bridge and Bahadurabad stations. Because JASON-2 revisit frequency at the same transboundary river ground track is never daily, a scheme was devised to allow daily computation of 5-day forecast of river levels at upstream boundary points of HEC-RAS set up using a combination of the most recent altimeter scan, FRC and interpolation (if necessary). This is elaborated in detail in the paragraph below.

INSERT FIGURE 6 HERE

In this study, the idea was to compute a 5-day forecast in a pseudo "operational mode" using information only from the altimeter itself. The altimeter data spanning October 2008 -June 2009 was treated as 'historical' (calibration) data that the forecaster had access to for derivation of a priori FRCs. For each upstream JASON-2 virtual station (i.e, numbered ground tracks in Figure 5) on each river at Indian locations, an FRC for a given lead time was derived using the methodology used by [START_REF] Biancamaria | Forecasting Transboundary Flood with Satellites[END_REF]. These FRCs correspond to a power law fit between upstream JASON-2 water level anomalies (lagged in time according to a specific lead time) and downstream in-situ discharge. This power law fit is actually derived by doing a linear fit of these two variables in the log space. An example of a 6-day lead time FRC is shown in Figure 6 (grey straight-fit lines). Such FRCs have been computed for lead times ranging from 1 day to 20 days.

Using the period of July 2009 -December 2010 for independent testing of altimeterbased forecasting, 5-day forecast of river discharge for every day at the upstream-most point of Bangladesh domain were "routinely" derived assuming an operational environment as follows.

During the validation 'test' period (July 2009 to December 2010), the aim was to compute for each day, noted D, the 5-day later forecast discharge, using a water level/discharge rating curve as shown on Figure 6, at Bahadurabad and Hardinge Bridge at the day of forecast, noted here as D f (i.e., D f =D+5). To do so, the most recent JASON-2 observation in time from day D was selected for each upstream virtual station located in India. The date of the selected JASON-2 observation is referred as D J2 in the rest of this section. Thus, there are D f -D J2 =D+5-D J2 days between the JASON-2 observation and the day of forecast. So the forecast is done using the JASON-2 water level anomaly and the pertinent FRC computed from historical data for a lead time equal to D f -D J2 . For the Brahmaputra, JASON-2 virtual stations 053_1 and 242_1 have been considered (Figure 5). The FRCs at these locations had the lowest Root Mean Squared Error (RMSE) compared to in-situ measurements during the historical time period. On the Ganges, JASON-2 virtual stations 014_1 and 155_1 have been used (Figure 5). Whenever D f -D J2 exceeded 20 days (an unlikely scenario for JASON-2), the forecast was linearly interpolated from the two previous ones. This case did not occur during the July 2009 -December 2010 time span. Finally, it has been considered that JASON-2 measurements have at least 1-day latency, meaning that the minimum lead time is equal to 6 days (i.e. D f -D J2 ≥ 6).

For example, let us consider the case of how the 5-day ahead forecast water level at Bahadurabad was computed for D=June 8th, 2010. This means that the forecast date is actually June 13th, 2010 (i.e., D f ). The most recent JASON-2 measurement relative to June 8 th , 2010 was obtained from virtual station 242_1 on June 5 th (D J2 ), 2010 (Figure 5). Thus, for forecasting river discharge for June 13 th , 2010 at Bahadurabad on the Brahmaputra River, an FRC for 242_1 with an 8 day lead time (i.e., D+5-D J2 ) was used. Figure 8 shows an example of such an "operational cycle" of computation for 5-day forecasted water level (red curve) at Bahadurabad on the Brahmaputra River (left y-axis) each day from June 6 th , 2010 to June 15 th , 2010 (bottom x-axis).

The blue curve corresponds to the lead time (right y-axis) of the FRC used to compute the forecasted water level. The top x-axis corresponds to the name of the JASON-2 virtual station used to compute the forecasted rating curve for each day.

Once the 5 day ahead forecast of river discharge, pertaining to the upstream-most boundary point, was derived for each day of the independent assessment (validation) period (July 2009-Dec 2010) according to the methodology elaborated above, the HEC-RAS model was next run at the daily time step. For each day, the model was initialized with the corresponding 5-day forecast of river discharge at the upstream-most boundary points for Brahmaputra and Ganges rivers. For the downstream most boundary point, in-situ river level data at Daulatkhan was used 'as is' due to practical limitations (see last paragraph of section 2). Also, for the upstream boundary point on Meghna river -Amalshid-(Figure 2) in-situ water level data was used. The justifications for using in-situ river level data for the Meghna river are as follows: 1) there are no suitable JASON-2 ground track for Meghna river in Indian locations (Figure 5); 2) Meghna river contributes only an insignificant portion (~3.5%) of total transboundary flow (about 1,777 km 3 per year) into Bangladesh. The simulation of river levels inside Bangladesh in this manner at the 17 FFWC station locations (Figure 2) were then considered as the '5-day forecast' for the specific date of the model run and compared with the '5-day later' nowcast already shown in Figure 3b.

RESULTS AND DISCUSSION

Because the proof-of-concept assessment of forecasting is done relative to nowcasting, which is model derived, it is first important to recognize the caveat that model simulations have inherent uncertainty. In this particular study, the HEC-RAS simulations suffered from an overall positive bias (overestimation) when compared to in-situ river level measurements (see last paragraph of section 2). Nevertheless, the use of model-based nowcasting is the only way to comprehensively assess the accuracy of JASON-2 based forecasting inside Bangladesh at multiple locations where in-situ river level measurements are not routinely available and hence any persistence-based forecasting cannot be performed at those locations.
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For a quantitative assessment of the accuracy of forecasting using JASON-2 altimeter data at upstream Indian river locations, the following assessment metrics has been derived: 1) mean error, 2) Root Mean Squared Error (RMSE), 3) Correlation and 4) Mean Absolute Error.

Here 'error' is defined as the scalar difference between the JASON-2-based "5-day forecast" and the "5-day later" nowcast based on only in-situ boundary condition data. Furthermore, we assessed the skill for two distinct seasons: Monsoon season (July-September) and Dry season (October-June). Finally, we analyzed accuracy as a function of distinct river segments of the forecasting domain. Herein, there were 6 distinct river segments (or stretches): Ganges, Brahmaputra, Padma, Surma, Upper Meghna and Lower Meghna. These river segments are shown in distinct color in Figure 2. The purpose of breaking down the analysis per each river segment was to identify how the accuracy degraded as a function of flow distance downstream and river morphology. Figure 8 shows the 5-day forecast hydrographs of river levels at 6 locations (at the various river segments shown in Figure 2). In comparison to the now cast hydrographs, the 5-day forecasts appear quite acceptable in following the trends and capturing the peak events. In fact, when compared to in-situ river level data at the two gauging stations (Bahadurabad and Hardinge Bridge), the 5-day forecasting agrees a little more closely than the now cast. The systematic overestimation of the HEC-RAS model appears to cancel out somewhat the systematic underestimation of the forecasting approach to yield a relatively more unbiased solution.

INSERT TABLE 1 HERE, INSERT FIGURE 8 HERE

Table 1, Figures 9 and10, summarize the performance of the JASON-2-based 5-day forecast at the 17 FFWC locations and also as a function of season and for the various river segments. Results show that JASON-2 forecasts retain good accuracy (relative to now cast) at 5day lead with an average RMSE ranging from 0.5 m to 1.5 m and mean bias of 0.25 m to 1.25 m in estimating the river level. However, there is a consistent underestimation (negative mean bias) in forecasting of river levels. The forecasting accuracy of JASON-2 is generally found to be higher during the dry season compared to the Monsoon season. This can be a useful finding for water resources management at seasonal timescales for addressing problems such as droughts or saline water intrusion from the Bay of Bengal. A possible reason for higher accuracy (compared to now cast and wet season) during dry season can be attributed to the extensive irrigation and diversion by India that leads to highly steady but reduced flow into Bangladesh, thus making forecasting more accurate.

INSERT FIGURE 9 and 10 HERE

Except for the Brahmaputra river reach, the forecasting accuracy seemed relatively preserved as a function of downstream flow distance. An additional reason to keep in mind is that the stage variation used to estimate discharge can be less correlated for large rivers as the bank slopes decreases and the river cross-sectional area expands. A point to note is that the skill for the river segments of Surma, Upper and Lower Meghna river (Figure 8) is not representative of the true forecasting potential of JASON-2, since these rivers pertain to the Meghna river basin (the smallest of the three basins) and used in-situ discharge data as the upstream-most boundary condition point in the forecasting domain. Figures 11a and11b depicts an overall graphical summary of forecasting skill of JASON-2 as a function of downstream flow distance for each river segment and for the two seasons.
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As indicated before, the satellite altimeter JASON-2 data are obtained using the 50% threshold radar waveform retracker, which has shown to have good performance for inland water [START_REF] Lee | Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry[END_REF][START_REF] Lee | Application of satellite radar altimetry for near-real time monitoring of floods[END_REF]. However, there has not been an elaborate in situ calibration of JASON-2 conducted to reveal whether a range bias exists. It has been shown that for example, large bias could concur in river basins, e.g., the Amazon, for ENVISAT radar altimeter (Calmant et al., 2013), due primarily to terrains surrounding the river and possibly also meteorological conditions. An uncorrected altimeter bias would have degraded the forecasting accuracy for this study.

A follow-up question that emerges regarding the proof-of-concept forecasting approach using JASON-2 satellite data is what is the true accuracy (skill) of forecasting given that nowcasting has inherent uncertainty? Armed with encouraging results for our proof-of-concept study shown previously, we next embarked on a real-time, truly operational and independent assessment of JASON-2 forecasting against observed water level measurements (where available). As part of a US Department of State (Fulbright) project awarded to the first author, the flood forecasting staff of IWM were trained over a 4 month period to independently learn, apply and troubleshoot the JASON-2 forecasting scheme in a real-time (day to day) environment.

Once the training was complete, the staff then carried out a real-time operational forecasting of JASON-2 during a 20-day period spanning Aug 1, 2012 to Aug 20, 2012. Each day of this 20day period, the 5-day water level forecast at the upstream boundary condition locations of the HEC RAS domain was generated from JASON-2 data available at the shortest latency (called Interim Geophysical Data Records-IGDR). The HEC RAS set up used a 10-day spin-up (hindcast) to remove the effect of initial conditions. Thus, in total, HEC RAS was ran each day for a period of 15 days (10-day hindcast and 5-day forecast) to generate the corresponding forecast water levels further inside Bangladesh.

Comparison against observed water levels at 3 river stations (Bahadurabad, Sirajganj on the Brahmaputra river and Hardinge Bridge on the Ganges river) revealed an average error of forecast ranging from -0.4 m to 0.4 m and an RMSE ranging from 0.2 m to 0.7 m. Table 2 provides a statistical summary of the assessment of the JASON-2 forecast against observed water levels at these 3 locations. As an example for one location (Sirajganj on Brahmaputra river), Figure 12 shows the comparison of the forecast water level against observed water levels at various lead times during the period of Aug 1 2012 to Aug 20 2012. In general, we clearly see that our choice of using nowcasting as the reference to establish proof-of-concept operational feasibility of JASON-2 scheme was not unfounded. In fact, the skill of forecasts at the 5 day lead time is now found to be more accurate against observed water level measurements. Overall, our study shows that satellite altimeters can indeed be an efficient and practical tool for building a robust forecasting system for transboundary flow for the developing world.

CONCLUSION AND PERSPECTIVES

This study provides a proof of concept of how an operational system can be implemented on the basis of satellite altimetry and the fundamentally intractable limitations of insufficient measurements and the transboundary nature of flood forecasting pose in developing nations.

Generally, it is promising to observe that satellite altimeters (including JASON-2) are indeed quite capable of forecasting transboundary flow inside downstream nations at 5 (or higher) day lead time without complex data assimilation, time-series analysis and climate-based forecasting tools. This inherently implies that when such altimeter based transboundary flow forecasting schemes are combined with current state of the art methods involving statistical regression or climate (such as Webster et al., 2010), the potential for extending the lead time, as well as handling unscheduled issues with regulation of flow by upstream nations, can be tremendous.

The more important question is however on operational sustainability. The current suite of concurrently flying altimeters such as JASON-1, JASON-2, ENVISAT (this mission ended in May 2012), CryoSat-2 and SARAL/AltiKa are essentially science-discovery missions with a finite life span of 5-7 years and not tailored for operational needs of an agency (such as NOAA GOES or Landsat of the USGS). Thus, how can such an altimeter-base forecasting system be made operationally sustainable in the long-term with near-real time data availability to the public?

We contend that although the answer to the above question has not been identified yet by the scientific community, it is only through concept demonstration and operational feasibility studies, such as ours, that nations will step forward as invested stakeholders and plan to launch more operational satellite altimetry missions. Data products from JASON-1/-2 are largely available in almost near-real time, either by efforts of respective cognizant space agencies, or via efforts by scientific investigators. It is worthwhile to note that after the JASON-2 and Envisat altimeters, JASON-3 scheduled to be launched in 2014, and AltiKa mission has been launched in 2013, following the 10-day and 35-day repeat orbits of JASON-2 and Envisat, respectively. In addition, ESA's Sentinel-3 (2-satellite constellation) will be launched in 2013. NASA/CNES' Surface Water and Ocean Topography (SWOT) wide-swath radar interferometric altimetry mission is also scheduled for launch in 2019. Of these planned altimetry missions, JASON-3 and Sentinel-3 are actually designated operational missions, dedicated to providing near-real time data to the general public. Thus, there will be abundant satellite altimetry missions, scientific and operational missions, well into the foreseeable future. With such a prolonged window of data continuity and minimum latency, nations that need a more 'sovereign' approach to forecasting their incoming transboundary flow, may now have the unique opportunity to create something truly operational for serving their society with longer lead times for adaptation.
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 012 Figure 1. Bangladesh as the low lying downstream-most nation of the Ganges-Brahmaputra basins. Red circles denote location of large dams or barrages that divert or regulate flow in the basins. The information on dams was obtained from the GranD dam database available at http://www.gwsp.org/85.html
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 3a Figure 3a. Discharge-versus-river level (or stage) rating curve for the Bahadurabad station on the Brahmaputra river with the associated uncertainty (RMSE: 2485 m 3 /s and Mean Absolute Error=70 m 3 /s).

Estimation of 5 -

 5 day forecast of River Discharge at Upstream boundary point of Model domainUsing independent data period (not used for derivation of forecasting rating curves), 5-day forecast of river discharge for upstream-most boundary points of HEC-RAS are estimated for each day (of the assessment period) by using the most recent JASON-2 scan available at Indian ground tracks and the pertinent FRC.Propagation of 5-day forecast of River Discharge through HEC RAS inside BangladeshHEC-RAS model is initialized each day with the 5-day forecast of river discharge at the upstream-most boundary points and then model runs performed at daily time step. For downstream most boundary point, in-situ river level data at Daulatkhan is used. The simulation of river levels in this manner at the 17 FFWC station locations (Figure2) are then considered as '5-day forecast'.

Figure 4 .

 4 Figure 4. General methodology used for testing forecasting skill of JASON-2 inside Bangladesh using the hydrodynamic river model setup of HEC-RAS. See Figure 6 for location of JASON-2 ground tracks used in this study.

Figure 5 .

 5 Figure 5. Ground tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in orange lines and circles, respectively. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number. Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.
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 6 Figure 6. Example of 6-day forecasting rating curves (FRC) for JASON-2 at ground track (virtual station) location 242_1 (Brahmaputra river -Figure 2) for Bahadurabad station (left panel) and 155_1 (Ganges river -Figure 2) for Hardinge Bridge station (right panel). These rating curves are derived on the basis of historical data during the calibration period (October 2008 -June 2009).

Figure 7 .

 7 Figure 7. Example of 5-day forecasted water level (red curve) at Bahadurabad on the Brahmaputra River (left y-axis) between 6 June 2010 and 15 June 2010 versus time (bottom xaxis). The blue curve corresponds to the lead time (right y-axis) of the JASON-2 FRC used to compute the forecasted water level. The top x-axis corresponds to the name of the JASON-2 virtual station of the pertinent FRC used for each day.
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 8 Figure 8. Forecast (5 day) and Nowcast water level hydrographs at six river stations during the validation

Figure 11a .

 11a Figure 11a. Accuracy of JASON-2 based 5-day forecast in terms of mean error and RMSE of river level at the 17 FFWC river stations inside Bangladesh during dry season.

Figure 11b .

 11b Figure 11b. Accuracy of JASON-2 based 5-day forecast in terms of mean error and RMSE of river level at the 17 FFWC river stations inside Bangladesh during Monsoon season.

  

  Derivation of Forecasting Rating Curves (FRC) for various lead times at JASON-2 ground tracks at river locations inside India. For Ganges river ground tracks (virtual stations), these curves allow the forecast of river discharge at Hardinge Bridge Station (swapped as Jangipur Barrage during model run). For Brahmaputra river ground tracks, these curves allow the forecast of river discharge at Bahadurabad (swapped as Noonkhawa during HEC RAS model run).
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  Assessment of JASON-2 5 day flood forecasting at Sirajganj (see Figure2for location) on Brahmaputra river against observed water level (relative to local datum) in a real-time and operational framework during Aug 1 to Aug 20, 2012. The forecasts were generated entirely and independently by Bangladesh Flood Forecasting Agency staff.
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