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[1] This paper describes and evaluates a procedure that integrates radar altimetry data into
the automatic calibration of large-scale flow routing schemes (LFRS). The Hydrological
Modeling and Analysis Platform, coupled in off-line mode with the Interactions between
Soil, Biosphere, and Atmosphere land surface model, is used to simulate daily surface water
dynamics of the Amazon basin at a 0.25� spatial resolution. The Multiobjective Complex
Evolution optimization algorithm is used to optimize one parameter (subsurface runoff time
delay) and other three parameter multiplier factors (Manning roughness coefficient for
rivers, river width, and bankfull height) by minimizing two objective functions for the 2002
to 2006 period. Four calibration experiments are performed by combining water discharge
observations and Envisat data to evaluate the potential of using radar altimetry in the
automatic calibration of LFRS. One experiment is based on daily discharge observations,
other combines discharge with altimetric data, and the other two ones are driven exclusively
by radar altimetry data, at 16 or four virtual stations, depending on the experiment. The
calibration process is validated against discharge observations at five gauging stations
located on the main tributaries. This study shows the feasibility of calibrating LFRS using
radar altimetry data. Results demonstrate that reasonable parameters can be obtained by
using radar altimetry in an optimization procedure with competitive computational costs.
However, there is evidence of equifinality among model parameters. Furthermore, the
automatic calibration driven by altimetric data can reliably reproduce discharges time
series, and significant improvements are noticed in simulated water level variations.

Citation: Getirana, A. C. V., A. Boone, D. Yamazaki, and N. Mognard (2013), Automatic parameterization of a flow routing scheme
driven by radar altimetry data: Evaluation in the Amazon basin, Water Resour. Res., 49, doi:10.1002/wrcr.20077.

1. Introduction

[2] Currently, no accurate global river geometry data set
is available for hydrological studies. River width and bank-
full height are usually parameterized globally via empirical
mathematical formulations as functions of the upstream
drainage area or water discharge at grid cells [e.g.,
Decharme et al., 2012; Yamazaki et al., 2011]. Other hy-
draulic characteristics such as the river bed roughness (fre-
quently represented by the Manning roughness coefficient)
are also unknown for most rivers in the world and must be
guessed intelligently. Although efforts have been made to-
ward refined estimates of hydrological variables by taking
into account climatologically similar regions [e.g.,
Decharme et al., 2012], such coarse estimates are important

sources of uncertainty in global water surface modeling
studies. Recent studies on large-scale flow routing schemes
(LFRS) have shown advances in representing backwater
effects on water level and discharge, water storage in flood-
plains, and interactions between floodplains, soil, and
atmosphere [e.g., Dadson et al., 2010; Decharme et al.,
2012; Yamazaki et al., 2011]. Some of these studies, in
addition to several previous ones [e.g., see Chow, 1988],
demonstrate the high sensitivity of flow routing schemes to
the river geometry and hydraulic coefficients.

[3] A common way to estimate model parameters is the
automatic calibration based on optimization techniques. In
the past decades, optimization techniques have been widely
used in the calibration of lumped, semidistributed and dis-
tributed hydrological models at the mesoscale and regional
scale. In most of these situations, model parameters are
conceptual representations of abstract watershed character-
istics and are simply determined through a trial-and-error
process adjusting the parameter values to minimize the
error between the model output and observed data [Gupta
et al., 1998]. Water discharge time series have been tradi-
tionally assumed as the ‘‘truth’’ in model parameter calibra-
tion processes. This assumption assures, in most cases,
satisfactory streamflow simulations.

[4] Recent advances in radar altimetry have improved
the monitoring of river and lake water height variability

1Laboratoire d’Etudes en G�eophysique et Oc�eanographie Spatiales
(LEGOS), CNES, Toulouse, France.

2GAME-Centre National de Recherche M�et�eorologique, Toulouse,
France.

3Institute of Industrial Science, University of Tokyo, Tokyo, Japan.

Corresponding author: A. C. V. Getirana, Hydrological Sciences Labo-
ratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
(augusto.getirana@nasa.gov)

©2013. American Geophysical Union. All Rights Reserved.
0043-1397/13/10.1002/wrcr.20077

614

WATER RESOURCES RESEARCH, VOL. 49, 614–629, doi:10.1002/wrcr.20077, 2013



located in ungauged or poorly gauged regions [e.g., Koblin-
sky et al., 1993; Birkett, 2000; Calmant et al., 2008; Roux
et al., 2010]. The accuracy of radar altimetry has motivated
the application of these data for (1) estimating discharge in
poorly gauged basins based on rating curve fitting and river
bed slope estimates [e.g., Le�on et al., 2006; Getirana and
Peters-Lidard, 2012; Michailovsky et al., 2012] and (2)
evaluating hydrodynamic [e.g., Wilson et al., 2007] and
hydrological [e.g., Coe et al., 2008; Getirana et al., 2010]
models. The next and most promising step for the spatial
altimetry technology is the surface water and ocean topog-
raphy (SWOT) mission [Durand et al., 2010], planned to
be launched within the decade. SWOT will measure water
elevation with a spatial resolution on the order of 100 m
with two to four revisits at low latitudes to midlatitudes and
up to 10 revisits at high latitudes per 22 day orbit repeat pe-
riod. In this sense, efforts have been made toward the
improvement of model parameter estimation techniques
based on assimilation [e.g., Pereira-Cardenal et al., 2011]
and optimization techniques [e.g., Getirana, 2010]. These
efforts have mainly addressed mesoscale and regional scale
models. Till date, the combination of optimization techni-
ques and radar altimetry has been explored very little, espe-
cially with LFRS. Indeed, as a general rule, LFRS are
parameterized based on few available river geometry infor-
mation and by evaluating maximum likelihood functions
for measuring the ‘‘closeness’’ of model outputs and in situ
or satellite-based observations. However, the potentially
readily available and massive quantity of altimetric data
and the successful results obtained by previous studies
using these data make one ask whether similar methodolo-
gies could be used to drive LFRS and to represent spatial
and temporal surface water fluxes consistently.

[5] A previous study demonstrated the viability of inte-
grating spatial altimetry data into the automatic calibration
of rainfall-runoff models [Getirana, 2010] used to simulate
the Branco River basin in the Amazon basin. A robust post-
processing approach was used to convert simulated dis-
charges into water depths by using stage-discharge
relationships (also known as rating curve) at the catchment
scale. Eight parameters related to vertical water and energy
fluxes were automatically calibrated. This study adopts a dif-
ferent approach, evaluating the feasibility of using altimetric
data in the automatic parameterization of LFRS, while
assuming both the meteorological forcings and the default
land surface model (LSM) parameterization as the truth in
the simulation of vertical water and energy fluxes. The
Hydrological Modeling and Analysis Platform (HyMAP)
[Getirana et al., 2012] and the Multiobjective Complex Evo-
lution (MOCOM-UA) [Yapo et al., 1998] multicriteria
global optimization algorithm are considered in this context.
As both HyMAP and MOCOM-UA have been comprehen-
sively described and discussed in previous papers, sensitivity
analyses evaluating the different options of these tools are
not provided in this study. However, it must be mentioned
that HyMAP parameters have been set for the Amazon basin
in a previous study [Getirana et al., 2012] based on expert
knowledge and observed data. As described later in this pa-
per, this parameter set is used as the basis to the construction
of the optimization experiments.

[6] The objective functions (OFs) derived from radar al-
timetry data are adapted to remove systematic biases

between simulated water levels and altimetric data. The
performance of the calibration procedure is evaluated con-
sidering the following criteria, as suggested by Sorooshian
et al. [1983]: (1) the variation of parameter estimates as a
function of the different data sets used in the calibration
procedure; (2) the reliability of water discharge forecasts
obtained using these parameter estimates ; and (3) the con-
ceptual meaning of parameter estimates.

[7] The Amazon basin has been selected as the study area
for this study. This choice has been motivated by the wide
collection of altimetric data recently made freely available
on the web [Cr�etaux et al., 2011]. In addition, a more
detailed evaluation can be performed at the regional scale
before extending the proposed methodology over the globe.

[8] Four experiments are performed, varying from each
other according to the data set used in the calibration proce-
dure. The data sets are composed of daily discharge obser-
vations at four gauging stations and Envisat data at four or
16 virtual stations (VSs; a VS represents the intersection
between the open water and the satellite ground tracks)
along the Amazon River.

[9] This paper is organized into four sections. Section 2
presents the materials and methods used in this study,
including a brief description of the Envisat altimetric data
set, the main aspects of the HyMAP global flow routing
scheme and the MOCOM-UA global optimization algo-
rithm. Results of the calibration experiments using different
data sources (altimetric data and water discharge) are pre-
sented, compared, and discussed in section 2.1. Finally, sec-
tion 2.2 details the conclusions and next steps of this study.

2. Data Sets and Methods

2.1. HyMAP

[10] HyMAP is a global-scale flow routing scheme
specially designed to be coupled with any LSM. The model is
based on the Catchment-based Macroscale Floodplain (CaMa-
Flood) model [Yamazaki et al., 2011] and Interactions
between the Soil, Biosphere and Atmosphere (ISBA)-Total
Runoff Integrating Pathways (TRIP) [Decharme et al., 2012]
with improvements in the surface and subsurface runoff time
delays, floodplain dynamics, and evaporation from surface
water. HyMAP simulates water level, discharge and storage
in rivers and floodplains at the spatial resolution of 0.25� and
at the daily time step. For this study, the internal computa-
tional time step was set as 3 h. The surface and subsurface
runoffs generated by a LSM are routed using a kinematic
wave formulation through a prescribed river network to
oceans or inland seas. The model is composed of four mod-
ules accounting for (1) the surface and subsurface runoff time
delays, (2) flow routing in river channels, (3) flow routing in
floodplains, and (4) evaporation from open water surfaces.
HyMAP is fully described in Getirana et al. [2012], and only
its main features are presented in the Appendix of this paper.
A multiobjective optimization algorithm has been imple-
mented in the platform in order to calibrate model parameters.

2.2. The ISBA Land Surface Model

[11] In this study, HyMAP is forced by outputs provided
by the ISBA [Noilhan and Mahfouf, 1996]. In terms of hy-
drology, the three-layer force restore approach is used for
the soil [Boone et al., 1999], and the subgrid runoff is
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parameterized following Habets et al. [1999]. The surface
and subsurface runoffs derived from ISBA at the daily time
step are used as inputs in HyMAP. In addition, some mete-
orological forcings and the actual evapotranspiration pro-
vided by the ISBA are also needed to calculate evaporation
from floodplains. The subsurface runoff represents the
gravitational drainage.

[12] The evaporation is computed using a standard resist-
ance analog between the surface and a reference atmos-
pheric level with contributions from transpiration, bare
soil, and intercepted water. A single bulk surface energy
budget temperature is used together with standard surface
layer atmospheric stability corrections based on similarity
theory in order to resolve the daily cycle [for further
details, see Noilhan and Mahfouf, 1996].

2.3. MOCOM-UA Algorithm

[13] The MOCOM-UA is a global multiobjective optimi-
zation algorithm. It is based on the SCE-UA single-criterion
optimization algorithm adapted for multiobjective prob-
lems. It provides an effective and efficient distribution of
solutions on the Pareto optimum space [Boyle et al., 2000].
Its main advantage is the requirement of only one coeffi-
cient to be defined: the set (or population) ns of points ran-
domly distributed within the parameter hyperspace defined
by the n-dimensional feasible parameter space. The popula-
tion of ns points is ranked and sorted according to a Pareto
ranking procedure for each iteration, as suggested by
Goldberg [1989]. A multicriteria version of the downhill
simplex method is used to evolve each simplex in a multi-
objective improvement direction [Boyle et al., 2000].
The optimization process stops when all ns points are
ranked evenly. This means that the entire population con-
verged toward the Pareto optimum. For further details
about the MOCOM-UA algorithm, descriptive papers can
be found in the literature [e.g., Yapo et al., 1998; Boyle
et al., 2000].

2.4. Meteorological Forcings

[14] The meteorological data set used to force ISBA is
provided by the Princeton University on a 3 h time step and
at a 1� resolution [Sheffield et al., 2006]. This data set is
based on the National Center of Environmental Prediction-
National Center for Atmospheric Research (NCEP-NCAR)
reanalysis. Sheffield et al. [2006] carried out corrections of
the systematic biases in the 6 h NCEP-NCAR reanalysis
via hybridization with global monthly gridded observations.
In addition, the precipitation was disaggregated in both
space and time at 1� resolution via statistical downscaling

and at 3 h time step using information from the 3 h Tropical
Rainfall Measuring Mission data set. The 3 h precipitation
from Sheffield et al. [2006] is then corrected to match the
monthly value from the Global Precipitation Climatology
Center Full Data Product V4, as described in Decharme
et al. [2012].

2.5. In Situ Data

[15] Water discharge observations at nine gauging sta-
tions operated by the Brazilian Water Agency (Agência
Nacional de �Aguas (ANA)) were considered in the auto-
matic calibration and validation procedures. Drainage areas
vary from 165,501 to 4,688,170 km2 (see detailed list of
gauging stations in Table 1), and all of them were used to
validate the model. Only four gauging stations located
along the Amazon River (Tabatinga, Sto Antonio do Ic�a,
Manacapuru, and �Obidos) are used in the automatic calibra-
tion. In addition, cross-sectional information (river width
and bankfull height, and wet area) at the latter four stations
are used to be compared with the optimization estimates.

2.6. Radar Altimetry Data

[16] Data provided by the altimeter onboard the Envisat
satellite are considered in this study. Envisat orbits on a
35 day temporal resolution (duration of the orbital cycle)
from latitude 81.5�N to 81.5�S and 70 km intertrack spac-
ing at the equator. Its beam footprint width is about 3.5 km.
Time series used in this study are a result of a signal selec-
tion based on a fix-sized window at a VS, which is the loca-
tion where radar satellite ground tracks transect open water
surfaces. The water height at a VS is computed as the aver-
age of all signals selected within the window during an or-
bital cycle. The ranges used in this study are those issued
by the ICE-1 algorithm [Bamber, 1994]. Errors in altimet-
ric time series along rivers within the Amazon basin are in
the order of tens of centimeters. Envisat data are freely
available on Hydroweb (available at http://www.legos.
obs-mip.fr/soa/hydrologie/hydroweb). Readers should refer
to Calmant et al. [2008] for in-depth information related to
the use of altimetry for continental waters. Altimetric data
at 16 VSs along the Amazon River, from 2002 to 2006, are
considered in this study (see Figure 1 and Table 2). The
VSs provide time series with 34–41 altimetric observations
for the study period, depending on the track.

2.7. Calibration Experiments

[17] HyMAP was automatically calibrated for the period
from January 2002 to December 2006 using the MOCOM-
UA algorithm, which is implemented within the modeling

Table 1. Gauging Stations Considered for the Automatic Calibration and Model Evaluation Stepsa

Station Name Station ID (ANA) Drainage Area (km2) River Weight, W (%) Longitude Latitude Mean Discharge (m3 s�1)

Serrinha 14420000 296,847 Negro - �64.81 �0.51 17,665
Gavi~ao 12840000 165,501 Juru�a - �66.86 �4.94 4737
L�abrea 13870000 227,637 Purus - �64.78 �7.26 5529
Porto Velho 15400000 984,108 Madeira - �64.02 �8.84 18,557
Faz. Vista Alegre 15860000 1,310,000 Madeira - �60.02 �4.90
Tabatinga 10100000 873,937 Solim~oes/Amazon 9.8 �69.93 �4.25 36,030
Sto Antonio do Ic�a 11500000 1,144,067 Solim~oes/Amazon 12.8 �67.93 �3.08 55,250
Manacapuru 14100000 2,241,993 Solim~oes/Amazon 25.0 �60.61 �3.31 102,930
�Obidos 17050001 4,688,170 Solim~oes/Amazon 52.4 �55.50 �1.93 173,470

aTabatinga, Sto Antonio do Ic�a, Manacapuru and �Obidos stations were used in the calibration experiments QQ and QH.
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platform. Four calibration experiments have been per-
formed, differing from each other according to the data sets
used to drive the optimization algorithm. These data sets
are composed of (1) daily observed water discharges at
four gauging stations (Tabatinga, Sto Antonio do Ic�a, Man-
acapuru, and �Obidos stations) and (2) spatial altimetry data
at 16 VSs. A third data set (3) composed of only four VSs
derived from (2) is also considered with the objective of
checking the viability of an automatic calibration with a
reduced amount of altimetric data. These four VSs have
been selected with the objective of keeping an equal dis-
tance between two VSs. All of the stations are located
along the Amazon River.

[18] Two OFs have been used in each experiment. To
evaluate the influence of altimetric data on model results,
experiments have the OFs derived (1) both from data set 1
(water discharge at four gauging stations), called experi-
ment QQ hereafter, (2) one from data set 1 and the other
one from data set 2 (altimetric data at 16 VSs), called
experiment QH, (3) both from data set 2 (experiment HH),
and (4) both from data set 3 (altimetric data at four VSs),
called experiment HH4. QQ represents the standard calibra-
tion, i.e., OFs are functions of in situ data, QH allows one
to identify the gains of combining both water discharge and
altimetric data, HH represents a calibration completely free
of in situ observations, and HH4 allows one to evaluate

Figure 1. Detail of the Amazon basin and location of gauging (black triangles) and virtual stations
(red circles) considered in this study. Experiments QQ and QH used water discharge data from Taba-
tinga, Sto Antonio do Ic�a, Manacapuru, and �Obidos stations. Experiment HH4 considered altimetric data
from virtual stations vs1, vs7, vs11, and vs16. Data from Serrinha, Gavi~ao, L�abrea, Porto Velho, and
Faz. Vista Alegre were used in the validation process.

Table 2. Virtual Stations Considered for the Automatic Calibrationa

Station Name
Station ID

(Hydroweb)
Drainage

Area (km2)

Weight in the
Objective

Function (%) Longitude Latitude

Number
of Cycles

(from 2002 to 2006)

vs1 Amz_Env_579_02 1,149,801 3.21 �67.52 �2.76 36
vs2 Amz_Env_035_02 1,210,684 3.38 �66.82 �2.70 41
vs3 Amz_Env_493_02 1,213,384 3.39 �66.17 �2.40 38
vs4 Amz_Env_951_02 1,438,990 4.02 �65.42 �2.50 38
vs5 Amz_Env_951_03 1,441,818 4.02 �65.38 �2.71 38
vs6 Amz_Env_364_02 1,444,713 4.03 �65.16 �2.91 34
vs7 Amz_Env_407_02 1,755,273 4.90 �64.52 �3.37 38
vs8 Amz_Env_278_01 1,770,600 4.94 �63.92 �3.82 37
vs9 Amz_Env_779_02 1,834,404 5.12 �62.28 �3.76 36
vs10 Amz_Env_106_02 2,223,054 6.20 �61.00 �3.61 38
vs11 Amz_Env_693_02 2,223,054 6.20 �60.88 �3.57 35
vs12 Amz_Env_564_02 2,241,993 6.26 �60.22 �3.34 39
vs13 Amz_Env_607_02 2,934,733 8.19 �59.53 �3.19 38
vs14 Amz_Env_478_02 4,303,699 12.01 �58.81 �3.47 38
vs15 Amz_Env_521_02 4,321,864 12.08 �58.14 �2.96 39
vs16 Amz_Env_936_01 4,327,687 12.08 �57.95 �2.82 39

aVirtual stations vs1, vs7, vs11, and vs16 were used to calibrate the model in the experiment HH4.
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how a reduced amount of altimetric data influences dis-
charge simulations. An overview of the calibration experi-
ments performed in this study is given in Table 3.

[19] At each iteration of the optimization process, OFs
were computed as the weighted sum of the performance
coefficients at the stations (virtual or gauge, depending on
the OF) and can be generally represented as follows:

OF ¼ minimize 1�
+
n

k¼1

f O; S; tð Þ �Wk

+
n

k¼1

Wk

2
6664

3
7775; (1)

where f is a function of the time step t and the simulated (S)
and observed (O) signals. W is the weight attributed to each
gauging or VS, and k which, in this paper, has been defined
as a function of the drainage area (see Tables 1 and 2). n is
the total number of stations considered in each experiment.
f is represented by different performance coefficients,
which are selected as a function of the experiment. For
experiment QQ, the Nash-Sutcliffe (NS) coefficient for dis-
charges (NSQ) and NS of the logarithm of discharges
(LNSQ) have been considered as functions f. To avoid sys-
tematic biases between simulated water levels and altimet-
ric data (these are mostly due to the digital elevation model
(DEM) used to derive river bed heights), experiments
driven by altimetric data were evaluated with the NS of
unbiased water levels (NSAH) and the weighted determina-
tion coefficient (R2) for water levels (WR 2

H). Not consider-
ing biases between simulated and observed water levels
means that constant biases eventually present in the forc-
ings are neglected during the optimization process. The
four f functions are represented by equations (2)–(5):

NS ¼ 1�
+
nt

t¼1

Ot � Stð Þ2

+
nt

t¼1

Ot � O
� �2

; (2)

LNS ¼ 1�
+
nt

t¼1

ln Otð Þ � ln Stð Þ½ �2

+
nt

t¼1

ln Otð Þ � ln O
� �� �2 ; (3)

NSA ¼ 1�
+
nt

t¼1

Ot � O
� �

� St � S
� �� �2

+
nt

t¼1

Ot � O
� �2

; (4)

WR2 ¼ j�j � R2 if � � 1
j�j�1 � R2 if � > 1

� �
: (5)

[20] In the above equations, nt is the total number of
days disposing of observed data, and O and S the respec-
tive mean values of the target and simulated signals for the
entire period. R2 and � are the determination coefficient
and the tangent derived from a linear regression between
simulated and observed signals, respectively. NSQ, LNSQ,
and NSAH range from �1 to 1, where 1 is the optimal
case and WR2

H ranges from �1 to 1, where 1 is the best
value. R2 is given as

R2 ¼
+
nt

t¼1

Ot � O
� �

� St � S
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
nt

t¼1

Ot � O
� �2

s
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
nt

t¼1

St � S
� �2

s
0
BBBB@

1
CCCCA

2

: (6)

[21] In this study, relatively large parameter domains
have been defined with the purpose of making the auto-
matic calibration an impartial process. The first guess (the
initial parameter set) has been set as far from reliable pa-
rameter values as possible (see Table 4). It has been dem-
onstrated that higher ns values (200 or higher) used to
explore optimal parameter sets within the hyperdomain can
provide better Pareto solutions [Yapo et al., 1998]. How-
ever, as the objective of this study is to evaluate the poten-
tial of using radar altimetry data in the calibration process
of LFRS rather than the optimization algorithm itself, ns
has been fixed as 100.

[22] The calibration experiments have been evaluated
qualitatively, by means of visual inspection of observed
and simulated hydrographs, and quantitatively, through the
analysis of performance coefficients for discharges during a
5 year calibration period, limited between 2002 and 2006

Table 3. List of Optimization Experiments

Experiment Data Set Used Functions f, as Shown in equation (1)

QQ Water discharge at four gauging stations NSQ and LNSQ

QH Water discharge at four gauging stations and altimetric data at 16 virtual stations NSQ and NSAH

HH Altimetric data at 16 virtual stations WR2
H and NSAH

HH4 Altimetric data at four virtual stations WR2
H and NSAH

Table 4. Model Parameters Subjected to the Automatic Calibrationa

Parameter First Guess Domain Hydrological Process

Tb 5 [1–100] Subsurface runoff time delay (days)
H 2.0 � HParDef [0.1–2.5] � HParDef River bankfull height (m)
W 2.0 � WParDef [0.1–2.5] �WParDef River width (m)
nr 0.5 � nParDef [0.25–2.5] � nParDef Manning coefficient for rivers

aExcept for Tb, the values defined for first guess and domain are the product of the default parameter set (ParDef) and a multiplier.
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by Envisat data availability. Results have also been com-
pared against a simulation using the default parameter set
[Getirana et al., 2012], as presented in the Appendix. The
model validation has been performed during the 1997 to
2001 period. Results were analyzed at the nine gauging sta-
tions, including four stations used in the optimization
experiments and 16 VSs. Four parameters are calibrated:
the subsurface runoff time delay (Tb), Manning roughness
coefficient for rivers (nr), river width (W), and bankfull
height (H). The default parameter set and the simulation
outputs derived from it are referred to as ParDef and Def
hereafter. Except for Tb, all the parameters are heterogene-
ously distributed in space. Thus, to reduce the computa-
tional cost, parameter sets are represented by the product
between ParDef and a spatially uniform multiplier. In this
sense, the optimization procedure is performed by means of
the calibration of four multiplier factors.

3. Results and Discussion

3.1. Results of the Automatic Calibration

[23] All of the automatic calibration experiments resulted
in refined solutions, converging to optimal parameter sets.
The objective space with the Pareto solutions of each experi-
ment is shown in Figure 2. As expected, OFs improved con-
siderably when compared with those provided by the initial
guess. Experiment QQ needed 292 evolutions (2328 model
runs). The evolutions represent the number of times a group
of evenly ranked points evolved toward the Pareto front.
Experiment QH converged faster than QQ, with 283 evolu-
tions and 2127 model runs. This can be explained by the low
correlation between water discharge-based and level-based
OFs. On the other hand, experiments guided exclusively by
altimetric data had an increase in computational costs of
39% (HH evolved 405 times and required 3058 model runs
to retrieve the Pareto solutions) and 67% (HH4: 488 evolu-
tions and 3818 model runs).

[24] Figure 3 shows the evolution of OFs and parameters
over the optimization process for the four experiments. One
can first notice that the process can be divided into two
steps: the first one takes about 25% of the optimization
process and is characterized by a fast OF convergence to
near-optimal values, and the second step performs a refine-
ment of OFs in most of cases, consuming 75% of the total
time processing. Second, in most of cases, parameter sets

converged to very different values of the first guess. The
sensitivity of OFs and parameters is discussed below.

[25] Parameter sets varied substantially from an experi-
ment to another, revealing the influence of the type and
quantity of data used as the reference in the automatic
calibration. Discharge-based experiments, i.e., QQ
and QH (technically, QH is a discharge and altimetry-
based experiment), found optimal Tb values with large
ranges, from 30 to 55 days. This indicates its low sensitiv-
ity to water discharge data. On the other hand, altimetry-
based experiments (HH and HH4) resulted in lower ranged
Tb values from 25 to 30 days (HH) and 20 to 25 days
(HH4).

[26] Except for Tb in experiments QQ and QH, all other
optimal parameters could not retrieve the default parame-
ters, which were chosen on a physical basis. However, if
one is less exigent, i.e., if near-optimal OFs can be accepted
as effective solutions, parameter sets of all experiments
contain the default parameter set. This is explained by the
fact that the optimization process adapts parameters as a
function of errors in the modeling process. For example,
optimal nr values reached the lower domain boundary in
experiments QQ, QH, and HH. This might indicate that the
parameter domains do not represent the entire range of pos-
sible values or optimal parameters have no physical mean-
ing. As results represent Manning coefficients for rivers
ranging from 0.0075 to 0.0125, which are significantly
lower than those suggested in the literature, one can say
that the automatic calibration procedure does optimize OFs
but is not always capable of providing physically based pa-
rameter values.

[27] Optimal W values ranged between 20% and 75% of
WParDef in experiments QQ and QH, respectively. The
river width increases related to the use of altimetry data in
the optimization process is compensated by decreasing
river bankfull heights. Optimal H values in QQ, ranging
from 1.25 � HParDef to 1.55 � HParDef, were reduced to
values ranging from 0.125 � HParDef to 0.45 � HParDef in
QH. Correspondingly, this reveals equifinality among the
model parameters. Except for Tb, all optimal parameter
values were approximately the same in experiments QH
and HH. The use of a reduced number of altimetric obser-
vations in the automatic calibration resulted in a slight
change in parameter values between experiments HH and
HH4.

Figure 2. Performance coefficients used as objective functions at the end of the four experiments. The
black squares represent the validation solution (optimal solution selected to evaluate the model in a dif-
ferent period). The first guess is outside the plot domain.
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[28] Even if the optimal parameter sets differ from those
obtained from the default parameter set, both water dis-
charge time series derived from both cases are very similar
at �Obidos. Figure 4 illustrates hydrographs at Tabatinga,
Sto Antonio do Ic�a, Manacapuru, and �Obidos during 2003
for the four experiments. As one can see, hydrographs
evolved from a very perturbed form (as derived from the
first guess parameter set) to refined results close to observa-
tions. Systematically overestimated peaks observed in all
model outputs can be attributed to errors in the forcing data
set and/or vertical water balance computed by the ISBA.

[29] Based on a visual inspection, water discharge
peaks derived from the joint use of water discharge and
spatial altimetry (experiment QH) are slightly better
phased with observations than the outputs of experiment
QQ. NSQ values at �Obidos evolved from �0.79 (as given

by the first guess parameter set) to optimal values ranging
between 0.65 and 0.70 for the experiment QQ. The NSQ

coefficients were slightly improved by the experiment
QH, when WR2

H replaces LNSQ in the OF, ranging from
0.67 to 0.73. In the case of altimetry-based experiments,
one can see a small degradation of NSQ values in compari-
son with QQ and QH experiments. Experiment HH had
NSQ varying from 0.66 to 0.67, and when a limited num-
ber of altimetric observations is used, the coefficient
remains nearly constant, ranging between 0.64 and 0.65
for HH4.

[30] Results at the other three gauging stations used for
the automatic calibration did not behave in the same way as
at �Obidos. At Tabatinga for example, QQ performed better
than the other three experiments, with NSQ values ranging
from 0.55 to 0.59. QH had the best NSQ equal to 0.49, and

Figure 3. Evolution of optimization experiments. Parameter values are presented as normalized values
of multipliers, where 1 corresponds to the upper limit of the domain defined in Table 4. ParDef repre-
sents the default parameter set, and Calibration is the evolution of the ns 100 points considered through
the optimization process.
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the other best NSQ values were 0.42 (HH) and 0.38 (HH4).
Sto Antonio do Ic�a and Manacapuru also performed better
in experiment QQ than QH. Optimal results of experiments
HH and HH4 had worse performances in comparison with
the first two, but still better than the first guess. Sto Antonio
do Ic�a had best NS values of 0.71, 0.64, 0.59, and 0.58 for
experiments QQ, QH, HH, and HH4, respectively. At
Manacapuru, the best coefficients were of 0.78, 0.77, 0.69,
and 0.70.

[31] Interesting findings are revealed when modeled water
levels derived from calibration experiments are evaluated
against Envisat data. As shown in Figure 5 at VSs vs1, vs7,
vs11, and vs16, the experiment QQ, driven exclusively by
water discharge data, was unable to represent the amplitude

of water level time series satisfactorily. Standard deviations
of Envisat altimetric water levels (sobs) were 2.39, 2.69,
3.10, and 2.93, whereas optimal QQ solutions had mean
standard deviations (scal) of 4.04, 5.84, 8.13, and 8.10,
respectively. This gives scal/sobs ratios of 1.69, 2.17, 2.62,
and 2.77. In addition, the set of solutions resulting from QQ
contained a high degree of water level uncertainty, with a
mean value for the four VSs of 2.03 m, varying up to 5 m
from a solution to another (e.g., time step 26 of vs3).

[32] In the case of QH, the integration of altimetric data
into the optimization process added to the system the abil-
ity of representing water level variations more consistently.
Both amplitude and uncertainty values were decreased. scal/
sobs ratios were shortened to 0.62, 1.13, 0.84, and 1.03,

Figure 4. Hydrographs at Tabatinga, Sto Antonio do Ic�a, Manacapuru, and �Obidos stations during
2003. Ordinates are in days, and abscissas in 103 m3 s�1. Def represents the results with the default
parameter set, and Calibration is the results obtained with the population ns of optimized solutions.
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respectively, and the mean uncertainty was reduced to
about 0.73 m. According to the formulation of the kine-
matic wave equation (equation (A7)), given a discharge Qr,
the amplitude of the water level hr is inherent to the river
width W, Manning coefficient nr, and river slope ir. As ir is
not calibrated and constant over time for a given river
reach, and optimal nr coefficients are nearly the same for
QQ and QH, the adjustment of water level amplitudes
(minimization of scal/sobs ratios) is mainly due to changes
of river cross-sectional geometry, i.e., river bankfull height
and width (see Figure 3). In other words, given the same
discharge variations, low W values (as provided by the opti-
mal solutions of experiment QQ) result in higher H and hr

values. Higher W values (resulting from experiments using
altimetric data in the automatic calibration) are compen-
sated by lower H and hr values.

[33] When the automatic calibration is driven exclu-
sively by spatial altimetry data at 16 VSs (experiment HH),
scal/sobs ratios showed a slight improvement (0.70, 1.11,
1.03, and 0.99, respectively) in comparison with QH. The
mean uncertainty of water levels was reduced to 0.35 m.
Finally, the best agreement between observed and modeled
water levels at VSs vs1, vs7, vs11, and vs16 was obtained

with HH4. scal/sobs ratios were closer to 1 (1.01, 1.02, 0.98,
and 0.99, respectively) in comparison with the previous
experiments. This is certainly expected because HH4 mini-
mizes errors between observed and modeled water levels at
these same four VSs. The uncertainty deteriorated slightly
in comparison with experiment HH, with a mean value of
0.45 m. It is important to mention that the other VSs (not
shown) reveal the same characteristics as illustrated in
Figure 5.

3.2. Validation of the Automatic Calibration Against
Observed Discharge

[34] Results of the optimization experiments were eval-
uated in the 1997 to 2001 period using daily water dis-
charge data at nine gauging stations, including the four
stations used in the automatic calibration. To simplify
the analysis, only one Pareto solution, called hereafter
validation solution (represented by the black square in
Figure 2), is used in the validation process. The validation
solution was defined for each experiment as the solution
providing the 50th (of 100 solutions) best OF1 value (NS
for experiments QQ and QH, and NSA for experiments
HH and HH4).

Figure 5. Unbiased water levels at virtual stations vs1, vs7, vs11, and vs16 for the four optimization
experiments. Ordinates are in number of observations, and abscissas in meters. Def represents the results
with the default parameter set, and Calibration is the results obtained with the population ns of optimized
solutions.
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[35] Figure 6 shows NSQ coefficients derived from the
four experiments (QQ, QH, HH, and HH4) and Def for the
nine gauging stations and the weighted mean of Tabatinga,
Sto Antonio do Ic�a, Manacapuru, and �Obidos, as used in
the automatic calibration process. For comparison pur-
poses, the coefficients are shown for both calibration
(2002–2006) and validation (1997–2001) periods.

[36] At �Obidos, coefficients varied little among experi-
ments. NSQ values for the validation period ranged
from 0.83 (HH4) to 0.87 (QH). Both QQ and Def had
NSQ ¼ 0.86. At Manacapuru, Def performed better
(NSQ ¼ 0.82) than the validation solution of the optimiza-
tion experiments. QQ, QH, HH, and HH4 had NSQ ¼ 0.80,
0.80, 0.73, and 0.75, respectively. The other two gauging

stations located upstream along the Amazon River (Taba-
tinga and Sto Antonio do Ic�a) had similar results for the
validation period, with the best NSQ values for QQ (0.60
and 0.58, respectively) and the worst for HH4 (0.44 and
0.46, respectively). Figure 7 shows hydrographs at the four
gauging stations used in the optimization process in 1999,
within the validation period.

[37] QQ provided the best-weighted mean NSQ (0.78)
and HH and HH4 the worst values (0.72 and 0.73, respec-
tively). The combination of both water discharge and level
data in the optimization process, i.e., the QH experiment,
led to a very good performance coefficient for the weighted
mean (NSQ¼ 0.76), which are close to the results provided
by QQ. However, as one could expect, the replacement of

Figure 6. Nash-Sutcliffe coefficients of the four experiments (QQ, QH, HH, and HH4) and the Def
(simulation with the default parameter set) at nine gauging stations for the calibration, NScal (2002–
2006), and validation, NSval (1997–2001), periods. Weighted mean represents NS coefficients pondered
with the drainage areas of Tabatinga, Sto Antonio do Ic�a, Manacapuru, and �Obidos, as used in the auto-
matic calibration process.
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discharge observations by radar altimetry resulted in a deg-
radation of discharge-based coefficients. Except for QH at
�Obidos, all altimetry-based experiments resulted in equal
or worse NSQ values at all stations used in the calibration
process, including the weighted mean. This observation is
valid for both calibration and validation periods. It is note-
worthy to examine the difference of the NSQ coefficients
between the calibration and validation periods. For most
gauging stations, values for the validation period are signif-
icantly higher than those obtained in the calibration period.
Exceptions are Sto Antonio do Ic�a, Serrinha, and Gavi~ao.
At �Obidos, the difference between the validation and cali-
bration periods is about 0.10. Other stations located along
the Amazon River and used in the optimization process had
differences of 0.05 (Manacapuru) and 0.13 (Sto Antonio do
Ic�a). The weighted means of NSQ coefficients presented an
averaged difference of 0.09 between the calibration and
validation steps. Results at other stations vary randomly, as
a function of the geographic location. Differences at other

stations used in the evaluation varied from 0.09 at Serrinha
station to 0.50, as was the case for experiment QQ at the
Gavi~ao station. These highly heterogeneous coefficients are
explained by both forcing uncertainty and imperfect simpli-
fications of the physical system. This means that certain pa-
rameter sets can explain appropriately the physical
processes or compensate errors intrinsic to forcings and
model simplifications for a given time and location; how-
ever, in other periods and areas, a recalibration might be
needed. In some cases, the forcings and the model are sim-
ply not appropriate for the particular domain.

3.3. Reliability of Parameter Estimates

[38] To evaluate the reliability of automatically cali-
brated parameters, river bankfull height, H, and width, W,
estimates of these parameters were compared with in situ
observations at four gauging stations (Tabatinga, Sto Anto-
nio do Ic�a, Manacapuru, and �Obidos). The observed data
correspond to the average of several measurements

Figure 7. Hydrographs at Tabatinga, Sto Antonio do Ic�a, Manacapuru, and �Obidos stations during 1999.
Ordinates are in days, and abscissas in 103 m3 s�1. Def represents the results with the default parameter
set, and Calibration is the results obtained with the population ns of optimized solutions.
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performed by ANA during the last 50 years. Observed W
represents the observed distance between river banks at the
gauging station, and the observed H is obtained by dividing
the cross-sectional wet area, Aw (m2), by W. This means
that the observed H is the bankfull height of a river with an
equivalent rectangular cross-sectional form. Other esti-
mates provided by previous parameterizations [Decharme
et al., 2012; Yamazaki et al., 2011; Getirana et al., 2012]
are also used for comparison.

[39] As shown in Figure 8, despite a few exceptions,
parameterized H values (optimization outputs and default
parameterizations) underestimate observations at all sta-
tions. QQ provides the closest river bankfull heights
among the four experiments. On the other hand, most of
the parameterized W values overestimate observed data.
One can notice that the three optimization experiments

using Envisat altimetry data provided similar river widths,
which reveal the sensitivity of this parameter to altimetry-
based OFs.

[40] Despite the differences found among W and H, the
estimated cross-sectional areas, Aw, are more homogene-
ous; however, they are underestimated when compared
with the observations. Similar Aw values for different
experiments are a result of a balance between W and H in
order to keep consistency in water discharge variation. This
results in substantial changes in hr values (see the case of
experiments QQ and QH in Figure 5). It must be empha-
sized that the gauging stations are generally installed in
locations where floodplains rarely occur in order to guaran-
tee better accuracy in flow measurements for most time
periods. This suggests that river geometry at these gauging
stations might not be representative of the whole river

Figure 8. Observed and estimated river bankfull heights (H), widths (W), and wet areas (Aw) at four
gauging stations (Tabatinga, Sto Antonio do Ic�a, Manacapuru, and �Obidos). Mean observed data were
provided by the Brazilian Water Agency. Dotted lines represent the standard deviations of observations.
Optimization outputs are represented by the mean (square), minimum, and maximum estimates. Three
other parameterizations [Decharme et al., 2012; Yamazaki et al., 2011; Getirana et al., 2012] are also
shown for comparison reasons.
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system, especially in locations where floodplains are more
frequent. In addition, meteorological forcing uncertainties
and errors from LSM outputs may play a crucial role in the
parameter estimation. This means that completely different
results can be obtained if the flow routing scheme is forced
with outputs from other LSMs. In this sense, comparison
between estimated and observed river width and height
must be carried out with caution.

4. Conclusions

[41] The potential of using altimetric data in the auto-
matic calibration of a global flow routing scheme was
evaluated in this study, and the first results of the pro-
posed methodology were presented for the Amazon basin
using the HyMAP model. The evaluation considered four
experiments that varied from each other according to the
data set used to calculate the OFs of the optimization
scheme. Three data sets were used to conduct the search
for optimal model parameters : (1) the first was composed
of discharge data at four gauging stations, (2) the second
data set was derived from Envisat satellite data at 16, and
then (3) the third data set at four VSs. The experiments
reported in this paper involved the estimation of four
model parameters : subsurface runoff time delay (Tb), the
Manning coefficient for rivers (nr), river width (W), and
and bankfull height (H). These parameters were selected
to represent the most important aspects of the model
behavior. The evaluation of the optimization experiments
was performed on the basis of the reliability of parameter
estimates and the performance coefficients for water dis-
charges at nine gauging stations located within the basin
for both the calibration (2002–2006) and the validation
(1997–2001) periods.

[42] Results demonstrated the feasibility of using alti-
metric data in the automatic calibration of LFRS parame-
ters. Even if experiments provided different values for
parameter sets, NS for discharge at �Obidos are nearly the
same for all experiments. QQ and QH resulted in better
performances in terms of water discharge than HH and
HH4, as one would expect. The integration of altimetric
data into the automatic calibration, as represented by the
QH experiment, brought significant improvements for the
water level modeling due to the slight augmentation of W
and the decrease of H. However, results provided by the
HH and HH4 are still acceptable. Both experiments pro-
vided competitive results, showing their ability to predict
discharge time series in different time periods and locations
of the Amazon basin. Noise inherent to the altimetric data
acquisition and processing did not seem to be a restriction
for obtaining optimal hydrographs.

[43] The resulting hydrographs reveal errors in the mod-
eling process that are mainly due to both forcing uncer-
tainty and imperfect simplifications of the physical system,
commonly found in hydrological models [Gupta et al.,
1998]. These imperfect simplifications include parameter
estimates. For simplification reasons, all of the model pa-
rameters are considered constant in time and some others
have homogeneous spatial distribution, as it is the case for
Tb. In addition, the assumption of using a single set of em-
pirical equations in the entire Amazon basin for determin-
ing the cross-sectional shape includes large uncertainty.

Other sources of error are the kinematic wave assumption,
which is not capable of simulating hysteresis caused by
backwater effects in flat water surfaces. However, the use
of a diffusive wave approach requires a much finer tempo-
ral resolution in order to avoid numerical instabilities.
These considerations, along with the simplifications of the
representation of the physical system, result in additional
errors and increase the uncertainty of parameter estimates.
These errors are also seen in terms of the large differences
in performance coefficients derived from the same experi-
ment at a few gauging stations (e.g., Gavi~ao, L�abrea, Porto
Velho, and �Obidos), which means that the forcings, an
insufficiently represented physical process in the model or
a parameter set can perform well for one period and poorly
for another. In addition, the meaningful differences
between observed river geometry and parameter estimates
(derived from both the optimization experiments and pro-
posed in the literature) suggest that the parameterization of
global flow routing schemes should be less physically
based in cases where more detailed data sets representing
river geometry are unavailable or inexistent. To improve
the reliability of simulations of the water budget and dis-
charge, future studies should be performed toward the si-
multaneous calibration of both LSM and LFRS. However,
OFs taking into account other observed variables should be
combined with those using discharge and radar altimetry in
order to constraint different physical processes in the cali-
bration process and to reduce the equifinality among model
parameters.

[44] The findings presented in this paper have significant
implication for the benefit that can be obtained by using
satellite-based altimetry data, such as the forthcoming
SWOT mission [Durand et al., 2010]. As a first attempt,
the proposed method has been evaluated in the Amazon ba-
sin. However, it can be easily transferred to other basins
where radar altimetry data are available. Evidently, optimal
parameters will vary as a function of several factors,
including data accuracy and availability and geomorphol-
ogy. In this sense, the use of this method in different
large basins toward a global-scale application is suggested
as a future study. The application of such approach at the
global scale and its adaptation to SWOT Virtual Mission
data will considerably improve the modeling, understand-
ing, and streamflow forecasts in poorly gauged or ungauged
basins.

Appendix A: Model Description

[45] HyMAP is composed of four modules: (1) surface
and subsurface runoff time delays; (2) river-floodplain
interface; (3) flow routing in river channels and flood-
plains; and (4) evaporation from floodplains.

A1. Module 1: Surface and Subsurface Runoff Time
Delays

[46] The concentration time (or time delay factor) is a
physically based process representing the subgrid-scale
routing. For each grid cell, both surface, Is (mm �t�1), and
subsurface, Ib (mm �t�1), runoffs derived from a LSM
pass through separate linear reservoirs with appropriate
time-delay factors. These values can vary from a few hours
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to several days, depending on hydrogeological characteris-
tics of the catchment. The linear reservoir outflows can be
represented by the following equation:

Os;b ¼
Vs;b

Ts;b
; (A1)

where the subscripts s and b represent surface and subsur-
face runoff variables, respectively. Os,b (mm �t�1) stands
for the outflow at time step t, Vs,b (mm) the volume stored
in the linear reservoir, and Ts,b the concentration time
of the grid cell. V is updated twice at each time step: at the
beginning, summing the inflow Is,b, and at the end,
subtracting Os,b.

[47] The subsurface runoff time delay factor Tb is con-
sidered spatially uniform and constant in time. The current
parameterization of HyMAP considers Tb¼ 45 days. Ts is
computed for each grid cell following the Kirpich’s [1940]
formula:

Tsj ¼ 3600 � 0:868 �
Dx3

j

Dhj

 !0:385

; (A2)

where �xj (km) is the distance between the farthest point
within a grid cell and its outlet, and �hj (m) is the differ-
ence between the maximum and minimum elevations of the
pathway. Both �xj and �hj are derived from the high-
resolution DEM. At a 0.25� resolution, Ts values are quite
low in comparison with Tb, varying from several minutes to
a few days.

[48] Finally, the total discharge produced in each grid
cell Qc (m3 �t�1) is computed as

Qc ¼ Os þ Obð Þ � Ac; (A3)

where Ac stands for the grid cell area.

A2. Module 2: River-Floodplain Interface

[49] The river channel reservoir of a grid cell is com-
posed of three parameters : channel length, L ; channel
width, W ; and bank height, H. If water height in the river
channel hr (m) is higher than H, water is exchanged
between river and floodplain reservoirs. This process is
considered instantaneous at each time step. This means that
water surface elevations of the river channel and the flood-
plain are the same.

[50] A floodplain reservoir has a parameter for the unit-
catchment area, Ac, and a floodplain elevation profile,
hf¼ f(A), as suggested by Yamazaki et al. [2011]. The topo-
graphic parameters used to create the elevation profile are
derived from the 30 arc-second Shuttle Radar Topography
Mission (SRTM30) DEM and the Global Drainage Basin
Database (GDBD) flow direction map at 1 km resolution
[Masutomi et al., 2009] processed with the flexible location
of waterways method [Yamazaki et al., 2009].

[51] The river channel and floodplain water exchanges at
each time step are represented as follows:

if Srmax � S;

Sr ¼ S
hr ¼ Sr= W � Lð Þ
Sf ¼ 0
hf ¼ 0
Af ¼ 0

; (A4)

if Srmax > S;

Sr ¼ S � Sf

hr ¼ Sr= W � Lð Þ

Sf ¼
ZAf

0

hf � h Af

� �� �
dA

hf ¼ hr � H
Af ¼ h�1 hf

� �
(A5)

where subscripts r and f represent river channel and flood-
plain variables, respectively. S (m3) stands for the total
water storage in the grid cell, Sr (m3) and Sf (m3) the river
channel and floodplain water storages, hr (m) and hf (m)
water depths, W (m) the river width, L (m) the river length,
and Af (m2) the flooded area. Srmax (m3) stands for the river
bankfull water storage and is given as Srmax¼H � W � L,
where H (m) is the river bankfull height.

[52] The temporal evolution of water storage in river
channels and floodplains of a grid cell, S, is defined by the
continuity equation (A6) considering linear reservoir out-
puts, Qc, river and floodplain discharges to the downstream
grid point, Qr and Qf, river and floodplain discharges from
the upstream grid points, Qr,k and Qf,k, and evaporation
from floodplains, E :

St ¼ St�1

þ Qct�1 þ +
nUp

k¼1

Qt�1
r;k þ Qt�1

f ;k

	 

� Qt�1

r � Qt�1
f � Et�1

" #
dt

(A6)

where t is time, and dt is time step. The index k stands for
the nUp upstream grid cells of the target grid point.

A3. Module 3: Flow Routing in River Channels and
Floodplains

[53] Water discharge in rivers and floodplains is calcu-
lated by the kinematic wave equation. Using the Manning
formula for a rectangular cross section and large width-to-
depth ratio, water discharge in the river channel, Qr (m3 s�1),
can be defined as

Qr ¼
1

nr
� ir �Wr � h5=3

r ; (A7)

where nr is the roughness coefficient for rivers. ir is a con-
stant river bed slope derived from topographic information
and corresponds to the slope between the target and down-
stream grid cells.

[54] Similarly, water discharge in the floodplains Qf

(m3 s�1) is given as

Qf ¼
1

nf
� if �

S5=3
f

L � A2=3
f

; (A8)
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where nf is the Manning roughness coefficient for flood-
plains, and for simplification, if is considered equal to ir.
A3.1. River Width and Bankfull Height

[55] River width and bankfull height are both defined
based on an empirical relationship between observed river
geometry and the mean annual discharge at each river cross
section:

W ¼ max 10; � � Q0:5
med

� �
; (A9)

where Qmed (m3�s�1) is the annual mean discharge in each
grid cell estimated using the global runoff database from
Cogley [2003]. � is fixed for five different hydrological
regions of the world. For equatorial or subtropical basins,
which include the Amazon basin, �¼ 18.

[56] H is defined as

H ¼ max 2:0; 6:71� 10�2 � Q0:5
med

� �
; (A10)

[57] or via a linear relationship with the river width

H ¼ max 2:0; ��Wð Þ � ¼ 3:73� 10�3: (A11)

A3.2. Manning Coefficient for River Channels
[58] The Manning coefficient of river channels nr varies

according to the following formula:

nr ¼ nmin þ nmax � nminð Þ � Hmax � h

Hmax � Hmin

� �1=3

nmin ¼ 0:03 nmax ¼ 0:05;

(A12)

where nmax and nmin are the maximum and the minimum
value of the Manning coefficient (the current version of
HyMAP has values equal to 0.05 and 0.03, respectively),
and Hmax and Hmin are the maximum and minimum river
bankfull heights as computed by equation (A11).
A3.3. Manning Coefficient for Floodplains

[59] The Manning coefficient for floodplains, nf, is spa-
tially distributed as a function of 12 vegetation types at
0.25� resolution derived from the 1 km ECOCLIMAP data
set [Masson et al., 2003]. nf values are larger in dense vege-
tated areas and lower for sparser vegetated regions.

A4. Module 4: Evaporation From Floodplains
[60] A simple approach is used to estimate the evapora-

tion from the open waters Ew (m3 dt�1). First, the potential
evaporation E (mm�dt�1) rate is calculated by the Penman–
Monteith equation, by setting up the surface resistance to
zero

E ¼
D � Aþ �A � cp � D

ra

D þ �

 !
� M

�� �W

; (A13)

where � (kPa��C�1) is the gradient of the saturated vapor
pressure-temperature function, A (MJ�m�2�s�1) is the
available energy; �A (kg�m�3) and �W (kg�m�3) are the spe-
cific mass of air and water, respectively; cp is the specific
heat of moist air (MJ�kg�1��C�1); D (kPa) is the vapor pres-
sure deficit; � (kPa��C�1) is the psychrometric constant;
ra (s�m�1) is the aerodynamic resistance; � (MJ�kg�1) is
the latent heat of vaporization; and M is a time-step unit

conversion from m�s�1 to mm�dt�1. Available energy and
aerodynamic resistance can be calculated following Shuttle-
worth [1993]. For simplification purposes, water albedo and
emissivity were fixed as 0.07 and 1, respectively.

[61] Then, the actual evapotranspiration rate, ET
(mm�dt�1), diagnosed by the LSM, is subtracted from E
and the result is multiplied by the water surface Af, result-
ing in the effective evaporation from open waters

Ew ¼ max 0; E � ETð Þ � Af½ �: (A14)

[62] The computation is done once per day using stand-
ard input meteorological forcing variables and assuming
that the water in the floodplains and river have the same
temperature as the air (a predicted or prescribed surface
water temperature is not needed).
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