
HAL Id: hal-00991015
https://hal.science/hal-00991015

Submitted on 14 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-awareness for Next-Generation Applications
Servers

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

To cite this version:
Yves-Gael Billet, Christophe Gravier, Jacques Fayolle. Context-awareness for Next-Generation Ap-
plications Servers. CONTEXT 2011, 7th Modeling and Reasoning in Context workshop, Sep 2011,
Karlsruhe, Germany, France. pp.1-10. �hal-00991015�

https://hal.science/hal-00991015
https://hal.archives-ouvertes.fr

Context-awareness for Next-Generation Applications

Servers

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

Université de Lyon, F-42023, Saint-Etienne, France;
Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France;

Télécom Saint-Etienne, école associée de l’Institut Télécom, F-42000, Saint-Etienne, France;
LAvoratoire Télécom Claude Chappe (LT2C), F-42000, Saint-Etienne, France.

{yves-gael.billet, christophe.gravier, jacques.fayolle}
@telecom-st-etienne.fr

Abstract. The design of context-aware applications calls for ad hoc software
patterns. Meantime, most applications are deployed in an application server. An
application server hosts several context-aware application which embeds in its
business logic the ability to tune the service by taking into account significant
context updates. As a consequence, such applications present their own
implementation of context sensing, reasoning and decision-making. Therefore it
is difficult to adapt them to new context information as well as making them
revise their reasoning algorithms. This strong coupling between context
awareness and the business logic of the application is an utmost issue for the
development of context-aware applications. This paper describes how to
generalize context-awareness as a service provided by the application server.
This allows freeing the developer from the task of implementing collecting and
reasoning with context.

1 Introduction

The era of fixed-mobile convergence is imminent, thanks to the Next Generation
Network [1] (henceforth NGN) paradigm. Such approaches encompass converged
networks where users can use any kind of terminals and network access technologies.
These imply that users connected through a mobile broadband connection (e.g.
EDGE, HSPDA) and users connected through a fixed broadband connection (e.g.
xDSL, FTTx) use the same network. Until now, different networks were used for each
access technology.

The fixed/mobile convergence of networks is not the only innovation brought by
NGNs. A NGN is also designed to integrate digital services like multimedia
telephony, push-to-talk over cellular, conferencing, through services providers [2].
Users must be able to consume multimedia telephony services through different
terminals (smartphone, tablet computer or laptop). An utmost issue for NGN is to
provide multimodal digital services, since the user’s terminal or network access are
expected to change over time during his own session. This means services must be
able to shift from one form of service delivery to another according to context
updates. A pragmatic solution is to create as many applications as network access

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

technologies and terminals. This approach obviously does not scale well. Other
approaches encompass middleware for context-awareness in digital services as
described in the following section.

1.1 Context-aware applications

Context-aware applications can self-adapt according to significant elements from
their environment. These elements from the environment shape the situation of use,
called context. Among the existing context-aware definitions [3-5], we base our
definition from [4]. It defines context as "any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the
user and applications themselves."

We apply this definition in the case of digital services. A context-aware
multimedia application is an application (entity), which can use the elements of
context (any information that can be used to characterize the situation) to adapt its
behavior in order to provide the corresponding display and interactions to the end-
user terminal.

1.2 Architectures of context-aware applications

J. Coutaz et al. present in [6] a global architecture for context-aware applications
based on levels of abstraction for a general-purpose context-aware system. They
define four levels:

• The sensing layer provides numeric observables.
• The perception layer provides symbolic observables, which are interpretations

from the numeric observables (i.e. transform GPS coordinates in location name).
• The situation and context identification layer identifies context and proposes

adaptation. That is the reasoning core.
• The exploitation layer. It is an adapter between the application and the context

infrastructure.

Abstraction levels are compulsory for providing loose-coupling between context
handlings services and business logic of applications. Baldauf et al. in [7] also use a
similar layered architecture for reporting a literature review on middleware and
frameworks for context-aware systems.

1.3 Related works on context-aware frameworks

Current approaches in context-aware frameworks make a clear separation between
context logic (i.e. acquisition and processing), and business logic of applications. This
introduces a separation of concerns as proposed by Dey [4]. He proposes a conceptual
framework for supporting context-aware applications and an implementation known
as the Context-Toolkit [3]. It aims to ease development and evolution of context-
aware applications using object-oriented programming. For this goal, he provides an
API for context-aware applications. Each object from the API, which can be used to

Context-awareness for Next-Generation Applications Servers

construct an application, endorses a role (i.e.: collecting, transforming, aggregating,
and serving context). Although this API ease the development of context-aware
application, creates a tight coupling between context processing and the application
business logic. Hong et al. [8] point out advantages of infrastructure for providing
context abstraction. Then, recent works, such as CoBrA or SOCAM are
infrastructure-based approaches rather than API.

CoBrA project from Chen et al. [9] is agent-oriented. A central unit, so-called, a
“context broker”, maintains and manages context on behalf of software agents. An
agent could be an application running on mobile devices, a service provided by a
room, a Web service, etc. The broker collects information about context and shares it
with agents. This design addresses the issue of providing context-awareness to
resource-limited computing devices.

The Service-Oriented Context-Aware Middleware (SOCAM) project introduced
by Gu et al. [8] exists as a middleware. In SOCAM, different services are working
together to acquire, to process, to reason and to deliver context to software agents.
The main contribution of this work is the context model description logics, which take
part into the foundation of OWL1. The use of OWL ontology allows them to describe
context in a semantic way that is independent of the programming language.

Works presented in this section are related to the physical world. The main use is
to provide services fitted to users’ activity (e.g.: forward calls to voice mails when
users is currently sleeping in the bedroom, switch off the lights when the room is
empty, etc).

This paper presents a way to implement context-awareness for digital services in
Next Generation Networks in order to adapt content to terminal features and network
capacity. Section 2 describes the architecture of our middleware and the context-
signature. Section 3 concludes.

2 Proposal

2.1 Context-awareness for digital services

We propose to implement context awareness for digital services in NGNs by
providing context-awareness to application servers hosted in a NGN. These services
running on applications servers (AS) are consumed through a network using the
client-server paradigm. In this situation, the context is composed of information about
the network and features of the end-user terminal. The context is therefore specific
and describes machine-oriented information, unlike in the aforementioned related
works. Furthermore, as applications are hosted on an application server, context-
awareness is provided as a service from the application server to the hosted
applications.

The objective is to design and implement a middleware that provides sensing,
perception and reasoning over context for application running in a NGN environment.
Because context processing is common to each application and externalize as a
middleware, software developers only care about business logic and adaptation

1 Web Ontology Language

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

behavior of the applications they create. Adaptation behaviors, which are specific for
each application, are described and implemented with the business logic. That is to
say, software developers describe each possible context they want to provide to their
end-users, and communicate it to the context-aware middleware on the application
server. The application server will adapt applications according to these context
descriptions

Like the related works presented before, we propose a separation of concerns to
split context-aware applications in two logics: business and context logic. We call
business logic every line of code related to the core of applications (e.g. providing
telephony, conferencing...). Whereas context logic is every line of code relative to
context-awareness (e.g. collecting data, reasoning, brokering context updates, etc.).
The coupling between the context and business logics must be loose for the leverage
of context-aware architecture on application servers. In order to achieve this goal,
context logic is externalized as a middleware inside the AS. Each service exploiting
this inner middleware (i.e. taking advantage of the context logic) becomes a context-
aware service. We suggest going further as we aim at freeing the software developers
from the task of developing the interface between the business logic of his/her
application and the context logic provided as a service by the application server.

We propose to use context-driven applications in NGN AS using our middleware.
It musts help deploy applications, which are able to adapt their behavior according to
context changes. Through this proposition, applications using the client/server
paradigm choose the most suitable behavior for each connection (client). Furthermore
we provide a solution to create context-aware applications for distributed
environments, allowing moving them from one server to another to create context-
aware applications that are agnostic to application servers. In a distributed system,
applications are deployed in a cluster and migrate dynamically between AS instances.
So, context-aware applications need to be easily and rapidly deployed. It is expected
that applications migrate with their context-awareness. Such approaches for dealing
with context-aware applications in AS must therefore provide:

• Context-driven applications: continuously adapt their behavior according to
consumer’s environment in order to provide the best user experience.

• Functional separation: application servers provide context as a service for
applications. Software engineers do not code context-awareness in applications.

• Ease of deployment: deployment of these context-driven applications must be as
simple as possible.

• Embedded context-awareness as a bundle: applications embed context-awareness.
This is required in order to provide ease of deployment and functional separation.

The key idea is to provide architecture for context-awareness in applications which
use the client/server paradigm. In this paper the term "service" refers to a
functionality that an application offers to users.

Context-awareness for Next-Generation Applications Servers

2.2 Functional separation

Fig. 1. Functional separation and environment

We use functional separation for logics (context logic and business logic) as
follows: functions that relate to context are in the context logic whereas what refers to
providing service to user is business-logic (e.g. multimedia telephony,
conferencing...). We modularize context-aware applications by separating them in two
parts. This approach lets developers focus only on business-logic because they do not
have to worry about context implementation. Context logic is then shared among the
hosted applications, as a service delivered by the AS.

Although they do not need to consider context implementation, developers need to
manage application’s behavior according to context. They define the adaptation
conditions that represent the context awareness thresholds, and the subsequent
behavior of the application. Adaptation conditions are thresholds in terms of context
(e.g. low bandwidth and small screen size) for which an adaptation must occur. They
are linked with a consequence that is the fulfillment of this adaptation (e.g. switching
to a 240p encoding). We leave to the developer the task to write rules that formalize
their context awareness thresholds and consequences. Application designers must not
code any context-aware related logic in order to provide a generic and transferable
context-aware application. This model provides an AS service for applications
through a layer-based architecture.

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

In our case, business-logic is the application and context-logic exists as a
middleware, as shown in . Besides it is an architecture scheme for distributed
environments.

Although we implement context sensing in our middleware, we exclude sensors
implementation. Context-awareness could not exist without sensors but implementing
sensors to provide raw data is a different issue from using context to adapt
applications in NGN application servers. Furthermore, there are already works on
sensing context in NGN [9]. Our approach is to rely on monitoring solutions in order
to retrieve data from sensors. In this way, we use them as context datasource in the
application server.

As presented before, developers create applications and in the meantime define
context adaptation conditions with possible behaviors. Adaptation conditions refer to
elements of context that are used to characterize the situation, whereas consequences
are related to the adaptation behavior for providing the corresponding interaction. We
coined the term “context-logic signature” for conditions and consequences of
adaptation, expecting that context signature is actually embedded in the application
bundle, as part of its metadata. Developers define the signature, according to server’s
capabilities (i.e.: sensors reachable by the middleware) and ship it with the
application. Context-awareness thresholds are therefore bound to the application,
whereas the context logic, which is able to process it, is a service offered by the
application server. The application server delivers context-awareness as a service, just
like authentication, authorization, logging, mailing, data persistency, message broker,
etc.

2.3 Context-logic signature

A core element for our model is the context-logic signature. Context-logic
signature is an expression used to denote the aforementioned rules that encode
context-awareness thresholds. It defines requirements, in term of context information,
for changing application’s behavior. We define behavior as a business logic
modulation. The main functionality does not change, but can be realized under
different forms. Each form depends on context.

Table 1. Abstract example of context-logic signature

Context observable Behavior

Bandwidth from 3 to 5 MBit/s 480p

Bandwidth from 7 to 13 MBit/s 720p

Bandwidth from 15 to 20 MBit/s 1080p

For example, a video on-demand (VOD) application may have 3 behaviors (i.e.
480p, 720p or 1080p) for streaming a video to a user. The behavior corresponding to
the user’s situation is chosen according to the available bandwidth (it is context

Context-awareness for Next-Generation Applications Servers

information). So, the application changes the resolution of the video (behavior)
regarding the user’s bandwidth (context) as shown in Table 1. The context-logic
signature provides a semantic formalization of each context configurations that are a
set of observations, in order to map them to a specific business logic behavior. Each
adaptation decision for an application’s session (i.e.: a user consuming the service) is
based on such rules.

Fig. 2. Deployment process of an application

Applications embed their context-logic signature. At deployment time, we extract
its context-awareness signature from the application bundle. The context-logic
signature is injected in the context-logic middleware and the application in its
container through a standard application server deployment as illustrated in Fig. 2.
After deployment, if the set of rules needs to be changed, it can be flushed for a new
one. Replacing SWRL rules without dropping previously imported and inferred
knowledge was made possible through Protégé-OWL API thanks to previous works
[10].

2.4 Context-logic

As stated before, applications rely on context-logic middleware for context
processing, and middleware relies on monitoring software for context harvesting. We
define monitoring software as an entity (with respect to the context definition
presented at 1.1) that retrieves raw data from some sensors and is able to send them to
another entity. So, the context middleware subscribes to sensors through monitoring

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

systems (context source) according to context data that must be monitored. In other
words, raw data from sensors are published to the context middleware via the
monitoring system. The middleware therefore subscribes to sensors via monitoring
interfaces of this system. Data from sensors is sent to the middleware.

In order to customize the user’s digital experience, raw data is harvested from
sensors. Knowledge is afterwards inferred (e.g.: the user’s location, role, activity,
device, connection, etc.). As a response, the system may go as far as modifying the
delivered user experience. Fig. 3 illustrates our general approach of “context
processing”.

This chain is the process of transforming raw data from sensors into context
information that are understandable and computable by the machine, so that the
business logic of an application could be seen as adaptable or intelligent from the
user’s point of view. In Fig. 3, the different processing blocks are:

• Harvester (H). This unit is usually proprietary. It aims at retrieving raw data from
one, several or a network of sensors. In more elaborated systems, sensor networks
may provide implicit description (basically: RDF2 triples).

• Semantic Formalization (SF). The SF transforms raw data harvested into assertions
in the Knowledge Representation domain.

• Knowledge Base (KB). The KB hosts the Knowledge Representation, which
means:

─ Rules extracted at the deployment time (from the context-signature),
─ Context information harvested from context sensors.

• Context-Querying (CQ). The CQ is held responsible for:

─ Extracting all the rules introduced in the SCAS for context awareness. They are
provided by the applications. It usually corresponds to the thresholds values that
require an adaptation of the service modality. The context has been recognized
as being significantly changed.

─ Querying at regular interval the KB in order to detect changes. An assertion has
changed between two querying samples (i.e. the context has changed), the CQ
notifies the Context-Broker. We plan to enhance the CQ module with temporal
context information querying. Temporal information querying is an emerging
concept in order to encode the temporal dimension of data in knowledge
representation and querying [12]. In ongoing works, we are aiming at providing
knowledge revisions for semantic context-aware systems based on temporal and
OWL explanations [13], yet this is outside the scope of this paper.

• Context-Broker (CB). The CB provides middleware connectivity to the CQ in
order to cast context changes to “adaptive services” (which are looking for possible
changes).

• Application Server (AS). It holds adaptive services that are delivered to the end
user. The signalization process between clients and the AS is taking place in a Next
Generation Network (NGN) in our model [1].

2 Resource Description Framework

Context-awareness for Next-Generation Applications Servers

2.5 Implementation

This work is related to context-awareness for applications in Next Generation
Networks (NGN). We do not present NGN in this paper. We choose IP Multimedia
Subsystem (IMS) [14] as an implementation of a NGN. In order to be IMS compliant,
an application server with the Session Initiation Protocol (SIP) is compulsory. We
looked for a J2EE application server that implements SIP servlets and choose JBoss
Mobicents 3

We implemented the deployment process of our middleware and the registration of
an application. The user upload through a web interface is application container (.war,
.sar, .ear…) with the context signature embedded. The signature is extracted, checked
and injected. If no errors are encountered, the application is then deployed to the
application server and registered to the middleware. As each application is written
using a java interface, it enables the business logic to listen to significant context
changes (a context rule was triggered) and to switch modality accordingly.

For this part we mainly use HTTP4 Servlet, JSP5, EJB6 3 Session and JMS7.

Fig. 3. Context processing chain in a next generation application server.

3 Conclusion

Our goal is to constantly adapt an application in client/server mode to provide the
best experience to the user. In this context, we propose architecture for context-
awareness in application servers to go one step further in development of context-
aware applications. For this reason we created a loosely-coupled system which allows
to easily enhance existing applications or future applications with context awareness.

The actual approach is to provide, in the same bundle, context-awareness as a
signature which is bound to applications business-logic. These signatures are
thresholds, which are conditions to adapt the business logic of this application, in
order to deliver the best representation at the right time.

3 Application servers for IMS : http://www.mobicents.org
4 Hypertext Transfer Protocol – RFC 2616
5 JavaServer Pages – Java technology that serves dynamically generated web pages.
6 Enterprise JavaBeans – Server-side component architecture for Java J2EE applications.
7 Java Message Service – An API for sending messages between Java J2EE applications.

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

We will continue to implement our model and focus on interaction between
sensing and context logic and define our context model.

4 References

1. ITU-T Recommendation, Y.2000-Y.2999, Next Generation Networks, Y-Series: Global
Information Infrastructure, Internet Protocol aspects and Next-Generation Networks.

2. C.J. Pavlovski, Service Delivery Platforms in Practice [IP Multimedia Systems (IMS)
Infrastructure and Services], IEEE Communications Magazine, IEEE Communications
Society, March 2007, vol. 45-3, pp. 141-121.

3. AK. Dey, Understanding and using context, personal and ubiquitous computing, 2001, pp. 4-
5.

4. A. Zimmermann, A. Lorenz, R. Oppermann, An operational definition of context, Modeling

and Using Context, Springer Berlin, 2007, pp. 558-578.
5. J. Strassner, Y. Liu, M. Jiang, J. Zhang, S. van der Meer, M. Ó Foghlú, C. Fahy, W.

Donnelly, Modelling Context for Autonomic Networking, 5th IEEE International Workshop

on Management of Ubiquitous Communications and Services (MUCS), April 11, 2008,
Brazil

6. J. Coutaz, J. L. Crowley, S. Dobson, D. Garlan, Context is key, Communication of the ACM,
2005, vol. 48 pp. 49-53

7. M. Baldauf, S.Dustdar, F. Rosenberg, A survey on context-aware systems, International

Journal of Ad Hoc and Ubiquitous Computing, 2007, pp. 263-277.
8. T. Gu, H. K. Pung, D.Q. Zhang, A middleware for building context-aware mobile services,

In Proceedings of IEEE Vehicular Technology Conference (VTC), Milan, Italy, 2004.
9. Y.G. Billet, C. Gravier, J. Fayolle, Can We Streamline QoS in NGN: the half-filled glass,

Proceedings of International Conference on Next Generation Networks & Services
(NGNS’10), Marrakech, Maroc, July 2010.

10. C. Gravier, M. O’Connor, J. Fayolle, J. Lardon, Adaptive System for Collaborative Online
Laboratories, IEEE Intelligent Systems, IEEE computer Society Digital Library, IEEE
Computer Society, accepted 06 Jan 2011, In Press.

11. H. Chen, An Intelligent Broker Architecture for Pervasive Context-Aware Systems. PhD

thesis, University of Maryland, Baltimore County, 2004.
12. M.J. O’Connor, A.K. Das, A Method for Representing and Querying Temporal Information

in OWL, Biomedical Engineering Systems and Technologies, Communications in Computer

and Information Science, Springer, pp. 97-110.
13. M. Horridge, B. PArsia, U. Sattler, Laconic and Precise Justifications in OWL, Internatioal

Semantic Web Conference, Karlsruhe, Germany, 2008.
14. M. Koukal, R. Bestak, Architecture of IP Multimedia Subsystem, Multimedia Siganl

Processing and Communications, June 2006, pp. 323-326.s

