
HAL Id: hal-00991005
https://hal.science/hal-00991005

Submitted on 14 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SWRL-based context awareness for application servers
hosting digital services

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

To cite this version:
Yves-Gael Billet, Christophe Gravier, Jacques Fayolle. SWRL-based context awareness for application
servers hosting digital services. Rule-Based Modeling and Computing on the Semantic Web, 5th
International Symposium, RuleML 2011 - America, Lecture Notes in Computer Science, 2011, Volume
7018/2011, Nov 2011, Ft. Lauderdale, Florida, USA, France. pp.223-229. �hal-00991005�

https://hal.science/hal-00991005
https://hal.archives-ouvertes.fr

SWRL-based context awareness for application servers
hosting digital services

Yves-Gaël Billet, Christophe Gravier, Jacques Fayolle

Université de Lyon, F-42023, Saint-Etienne, France;
Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France;

Télécom Saint-Etienne, école associée de l’Institut Télécom, F-42000, Saint-Etienne, France;
LAvoratoire Télécom Claude Chappe (LT2C), F-42000, Saint-Etienne, France.

{yves-gael.billet, christophe.gravier, jacques.fayolle}
@telecom-st-etienne.fr

Abstract. As the number of context-aware applications increases in the real
world, it can be quite difficult to deploy such applications in traditional
application servers, which are context-agnostics systems. To address this
challenge, we propose a novel approach for easing the deployment of context-
aware applications into application serversContext is encoded within an OWL-
driven knowledge base. We couple this knowledge base with SWRL rules to
encode context-awareness thresholds. SWRL rules are not predefined in the
application server. They are instead embedded inside the application bundle
built by the developer, next to the business logic of the application. At the
application deployment time, SWRL rules are extracted to the knowledge base
in order to monitor the relevant context for the application to be deployed. At
runtime, the context of each session of the application is monitored in the
knowledge base. When a rule is triggered (a context-awareness threshold is
reached), a broker inside the application server notifies the application so that it
adapts its behavior by switching to a more relevant modality. We show how our
approach eases the work of developers for building context-aware application
by using our context-aware framework.

Keywords. Rules, SWRL, Semantic, context-awareness computing,
middleware, digital services, application server.

1 Needs for a Semantic CAS

We want to provide context awareness for digital service. The idea is to provide a
context-aware framework for software architects in order to implement context
awareness in their digital services. These services usually run on Applications Servers
(henceforth AS) and are consumed through a network using the client-server
paradigm. In this situation, context is composed of information about the network and
features of the terminal. Context is session specific since applications are hosted on an
AS, context-awareness could be externalized as a framework on them.

The objective is to provide a system that supports sensing, perception and
reasoning over context. In this way, software developers could only focus on the

2 Yves-Gaël Billet, Christophe Gravier, Jacques Fayolle

business logic and adaptation behavior of their application. Behaviors are specific for
each application. Software developers must describe and model adaptation behavior
for their digital services and communicate it to the context-aware framework.

Semantic Web technologies allow describing context and are comprehensible by
both humans and computers and offer a loosely-coupling with the programming
language.

Ontologies are used to model domain by describing concepts of the domain and
relationships between those concepts [12]. The Web Ontology Language (OWL) was
developed to provide a way to represent knowledge understandable by machines
using a semantic formalization, in order to facilite computers to interpret human
knowledge.

The Semantic Web Rule Language (SWRL) allows us to encode context rules on
Horn clauses and designed for OWL. As presented in [13] rules are of the form of an
implication between an antecedent (body) and consequent (head). SWRL are logical
expression encoded in Conjunctive Normal Forms. It used to classify individuals
according conditions. As stated in [14], SPARQL can be used to interrogate an
ontology but it is RDF centric so not efficient when using OWL. O'Connor et al.
proposes a Semantic Query-enhanced Web Rule Language (SQWRL) based on
SWRL.

We propose a semantic context-aware system using OWL, SWRL and SQWRL to
describe context and model the adaptation behavior for applications.

2 Related works

2.1 Context-awareness

Among the existing context-aware definitions [1-3], we base our definition from
[2]. It defines context as "any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves."

We apply this definition in the case of digital services: a context-aware multimedia
application is an application (entity), which can use the elements of context (any
information that can be used to characterize the situation) to adapt his behavior in
order to provide the corresponding interaction to the terminal.

2.2 Architectures of context-aware applications

J. Coutaz et al. present in [4] a global architecture for context-aware applications
based on levels of abstraction for a general-purpose context-aware system. They
define four levels:

• Sensing layer provides numeric observables.
• Perception layer provides symbolic observables, which are interpretations from

the numeric observable (i.e. transform GPS information in location name).

SWRL-based context awareness for application servers hosting digital services 3

• Situation and context identification layer identifies context and propose
adaptation. It is the reasoning core.

• Exploitation layer. It is an adapter between the application and the context
infrastructure.
Baldauf et al. in [5] also use a similar layered architecture to compare middleware
and frameworks for context-aware systems.

2.3 Existing works on context-aware systems

Current approaches in context-aware frameworks make a clear separation between
context acquisition, context processing and use. Thus, to create a separation of
concerns as proposed by Dey [2]. He proposes a conceptual framework for supporting
context-aware applications. The implementation of this framework is known as the
Context-Toolkit [2]. It aims to ease development and evolution of context-aware
applications using an object-based approach. It must be seen as an API for context-
aware application. Each object from the API, which can be use to construct an
application, has a role (i.e.: collect, transform, aggregate and serve context). The API
approach creates a tight coupling between context processing and application.

More recent works, such as CoBrA or SOCAM are infrastructure-based approach
rather than API. Hong et al. point out advantages of infrastructure for providing
context abstraction [6].

CoBrA project from Chen et al. [7] is agent-oriented. A central unit, so called, a
context broker, maintains and manages context on behalf of agents. An agent could be
an application running on mobile devices, a service provided by a room, a web
service, etc). The broker collects information about context and shares it with agents.
This design addresses the issue for providing context-awareness to resource-limited
computing devices.

The Service-Oriented Context-Aware Middleware (SOCAM) project introduces by
Gu et al. [8] exists as middleware. In SOCAM, different services working together
acquire, process, reason and deliver context to agents. The main contribution of this
work is the context model, which uses ontology through OWL. The use of ontology
allows them to describe context in a semantic way that is independent of
programming language.

In context-awareness, the usage is a key element. Works presented in this section
are related to the physical world. The main use is to provide services fitted to users
activity (e.g.: forward calls to voice mails when users is currently sleeping in the
bedroom, switch off light if the room is empty, etc).

3 Rule driven context-awareness

Our motivations to use a middleware are driven by the will to be unobtrusive (1)
and to create an abstraction for context-awareness (2). It aims at deploying regular
applications and context-aware applications (related to (1)) and evolving the
middleware without impacting the already deployed applications (related to (2)).

We use rules for providing context-awareness thresholds in application through
what we call a context signature. It contains rules that define behaviors according to

4 Yves-Gaël Billet, Christophe Gravier, Jacques Fayolle

context, for each application. In order to create these rules, the software engineer must
define a set of situations. A situation propose a running state for a corresponding
environment, as for example, to stream a video through a 4 Mbit/s connection to a
terminal we must code the video in 480p.

Each situation is made of observations of the computing environment and a
corresponding reaction. Observations describe the computing environment for an
application; upon relevant characteristic chosen by the software engineer. Indeed, in
our reference scenario, bandwidth is a relevant characteristic. An observation is
formatted as a triple (key, comparison operator and value). Values are strings or
numeric; in case of a numeric value, a default unit is used. Key is the name of the
characteristic, basically, the name of the data gathered by the sensors (e.g.: screen
height for an observation about the height of a screen). The operator fills the gap
between key and value.

Observations can be as simple as the reference scenario or more complex with
additional elements. For example, a situation can be based on observations on
bandwidth and screen size. But there can be only one reaction. So, a situation is
composed by at least one observable and exactly one consequence.

Each reaction must be a running mode implemented. Rules allow choosing the
most appropriate running mode for an application. For each relevant using case of a
multimedia application, there must be a situation expressed as a rule. These rules are
used against the knowledge base. Once the developer provides the context-aware
application as a package which contains the binary and the context signature, the
middleware unpacks these elements as shown in Fig. 1.

Fig. 1. Deployment of app in CAAS

The binary is deployed like a standard application and the signature is parsed in
order to find rules. As stated before, a rule (situation) is composed with an antecedent
(observation) and a consequence (reaction). Each one is then injected as knowledge in

SWRL-based context awareness for application servers hosting digital services 5

the KB. Rules are consider as knowledge because they present running modes and
associated necessary conditions for using them, of the newly deployed application.

Context-logic signature defines requirements, in term of context information, for
changing application’s behavior. We define behavior as a business logic modulation.
The main functionality does not change, but can be realized under different forms.

3.1 Storing context in a domain ontology

A context aware application server (CAAS) hosts multiple digital services and
provides context-awareness for them. Each application provides features under
multiple running modes. A user is typified as a session, which consumes features
offered by an application. Each session delivers its features through its environment
called context. Sensors through context providers can grab it. Each one is able to
gather only some kind of information (battery, screen size, localization, etc.) but not
all data from the computing environment. In other words, a context-aware application
relies on context providers to sense the environment, in order to choose the right
business logic modality (or running mode) for a session.

These observations are the foundation for our resulting ontology. It uses two main
classes (Context and Session) as shown in Fig. 2.

Context stores all necessary context information about the user computing
environment. It is divided into subsets that represent a context provider.

Session represents all active connections to the CAAS. Each user, which consumes
an application, is a member of the class session. Like the Session set, this class is
divided into subclasses for representing applications.

Relation between a session class and a context class is hasContextInformation.
This property is antisymetric, its domain is Session and its range is Context.

Fig. 2. General representation of our ontology

3.2 Reference scenario

We will use as reference scenario, a video on demand (VOD) application. The
digital service has 3 behaviors (i.e.: 480p, 720p or 1080p) for streaming a video to a
user. The context information is the available bandwidth. The application changes the
resolution of the video (behavior) according to the user’s available bandwidth
(context) as shown in Table 1. The context-signature provides semantic formalization
of these context configurations that is a set of observations. A context signature maps

6 Yves-Gaël Billet, Christophe Gravier, Jacques Fayolle

each context configuration to a specific business logic behavior. This is a loose-
coupling solution between business logic and context logic.

We run the above-mentioned ontology against our reference scenario. An
application server with our middleware has a context provider called “User Terminal
Context” that provide information’s about the terminal like bandwidth, screen size
and CPU load. The AS hosts a context aware digital service called “Adaptable Video-
on-Demand”, which provide adaptable video according user’s bandwidth.

Table 2. Classes of the ontology under our reference scenario

Name Parent Description

Context Provider Thing

All context providers

Session Thing

All sessions using middleware

UserTerminalCtx Context Provider

Context provider that gather information
about bandwidth, screen size and CPU

load
AdaptableVoD Session All sessions for the Adaptable Video-

on-Demand digital service
C480p AdaptableVoD

Sessions for AdaptableVoD using 480p

resolution
C720p AdaptableVoD

Sessions for AdaptableVoD using 720p

resolution
C1080p AdaptableVoD

Sessions for AdaptableVoD using

1080p resolution

The data gathered by the context provider are represented as datatype relations. In

this scenario the context provider gather information about bandwidth, screen size and
CPU.

Table 3. Relations in the ontology under our reference scenario

Name Domain Range Description

hasContext Session Context Link a session with a
context provider

hasBandwidth UserTerminalCtx int Available bandwidth
gathered by context

provider
hasScreenSize UserTerminalCtx string Screen size gathered by

context provider
hasCPULoad UserTerminalCtx float CPU Load gathered by

context provider

SWRL-based context awareness for application servers hosting digital services 7

As stated before, individuals from the Session context are sorted according to
rules, which are injected in the KB. We use SWRL to model the context logic
dynamic using this feature. In our reference scenario, the Video-On-Demand service
must adapt the video coding according to bandwith. From the OWL point of view,
individuals from the set AdaptableVoD must be move either in the c480p, c720p or
c1080p subset, each one represents a video coding (480p, 720p and 1080p). This
behavior uses the following SWRL:

For more readability, the common part of equations is represents as (0)

 AdaptableVoD(?s) ^hasContext(?s,?c) ^hasBandwidth(?c,?b) (0)

 (0) ^ swrlb:greaterThanOrEqual(?b,3000) ^ swrlb:lessThan(?b,6000) → c480p(?s) (1)

 (0) ^ swrlb:greaterThanOrEqual(?b,6000) ^ swrlb:lessThan(?b,9000) → c720p(?s) (2)

 (0) ^ swrlb:greaterThanOrEqual(?b,9000) → c1080p(?s) (3)

In our model, the reasoner and KB, use OWL and SWRL to choose business logic
modality according to context. Each time a new connection is setup, the middleware
injects information about the session and the context in the KB. In order to switch
modality, the application must be aware of the KB's classification. We use SQWRL to
interrogate the ontology in order to notify applications about modality to use for each
connection. A typical SQWRL query for this is: Modality(?s) -> sqwrl:select(?s). In our
reference scenario:

 c480p(?s) → sqwrl:select(?s) (4)

 c720p(?s) → sqwrl:select(?s) (5)

 c1080p(?s) → sqwrl:select(?s) (6)

The first one provides all sessions that must use a 480p resolution, the second one
for sessions use a 720p and the last one for session uses a 1080p.

4 Conclusion

We have proposed and implemented a novel architecture that makes AS taking
into account the context-awareness of the digital service they host. The architecture
employs domain ontology in order to monitor the applications’ context. Moreover,
when a new context-aware application is deployed on the application server, its
context-logic (a set of SWRL rules which rely the domain ontology) is extracted from
the application bundle. Each SWRL rule encodes a context-aware threshold for the
application. When a rule is triggered at runtime, the application server notifies the
application, so that the application change its service delivery modality, as the current
context favors another service delivery modality different than the current one.

The primary goal is to help developer of context-aware applications to quickly
encode context-aware thresholds. It helps them to develop the context logic of the
application for it to adapt its behavior when a significant context change is detected.
Developers can seamlessly encode those thresholds by writing the SWRL rules
corresponding to the conditions under which the application follows each service
delivery modality and then ship the SWRL file into their application bundle.

8 Yves-Gaël Billet, Christophe Gravier, Jacques Fayolle

Previously, this task was not a service offered by the application server, unlike
logging, database mapping, authentication, etc., but actually embedded in each
application business logics as an ad hoc encoded algorithm. Therefore, this approach
is also a framework, as developers of context-aware applications no longer have to
write source code for handling context changes.

We are currently developing additional algorithms that will enhance the context
assertions in the knowledge base. Especially, we will add to the context logic
parameters for gathering context (e.g. context sampling frequency) as each
application may have different temporal needs regarding context updates. In future
work, we are planning to consider cluster of context-aware application servers.

5 References

1. A. Zimmermann, A. Lorenz, R. Oppermann, An operational definition of context, Modeling
and Using Context, Springer Berlin, 2007, pp. 558-578.

2. AK. Dey, Understanding and using context, personal and ubiquitous computing, 2001, pp. 4-
5.

3. J. Strassner, Y. Liu, M. Jiang, J. Zhang, S. van der Meer, M. Ó Foghlú, C. Fahy, W.
Donnelly, Modelling Context for Autonomic Networking, 5th IEEE International Workshop
on Management of Ubiquitous Communications and Services (MUCS), April 11, 2008,
Brazil

4. J. Coutaz, J. L. Crowley, S. Dobson, D. Garlan, Context is key, Communication of the ACM,
2005, 48:49-53

5. M. Baldauf, S.Dustdar, F. Rosenberg, A survey on context-aware systems, International
Journal of Ad Hoc and Ubiquitous Computing, 2007, pp. 263-277

6. JI. Hong, JA Landay, An infrastructure approach to context-aware computing. Human
computer-interaction, 2001, vol. 16.

7. H. Chen, An Intelligent Broker Architecture for Pervasive Context-Aware Systems. PhD
thesis, University of Maryland, Baltimore County, 2004.

8. T. Gu, H. K. Pung, D.Q. Zhang, A middleware for building context-aware mobile services,
In Proceedings of IEEE Vehicular Technology Conference (VTC), Milan, Italy, 2004.

9. A. Outtagarts and O. Martinot, iSSEE: IMS Sensors Search Engine Enabler for Sensors
Mashups Convergent Application, International Journal of Computer Science Issues, IJCSI,
November 2009, Volume 6, pp1-7.

10. M.J. O’Connor, A.K. Das, A Method for Representing and Querying Temporal Information
in OWL, Biomedical Engineering Systems and Technologies, Communications in Computer
and Information Science, Springer, pp. 97-110.

11. ITU-T Recommendation, Y.2000-Y.2999, Next Generation Networks, Y-Series: Global
Information Infrastructure, Internet Protocol aspects and Next-Generation Networks.

12. M. Horridge, H. Knublauch, A. Rector, R. Stevens, C. Wroe, A Practical Guide To
Building OWL Ontologies Using Protege 4 and CO-ODE Tools Edition 1.2. Technical
report, The University Of Manchester, March 2009.

13. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (May
2004). SWRL: A semantic web rule language combiningOWL and RuleML. Available from
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

14. M. J. O'Connor and A. K. Das. SQWRL: A query language for OWL. In R. Hoekstra and
P. F. Patel-Schneider, editors, OWLED, volume 529 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

