N
N

N

HAL

open science

SWRL-based context awareness for application servers
hosting digital services

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle

» To cite this version:

Yves-Gael Billet, Christophe Gravier, Jacques Fayolle. SWRL-based context awareness for application
servers hosting digital services. Rule-Based Modeling and Computing on the Semantic Web, 5th
International Symposium, RuleML 2011 - America, Lecture Notes in Computer Science, 2011, Volume

7018/2011, Nov 2011, Ft. Lauderdale, Florida, USA, France. pp.223-229. hal-00991005

HAL Id: hal-00991005
https://hal.science/hal-00991005

Submitted on 14 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00991005
https://hal.archives-ouvertes.fr

SWRL -based context awar eness for application servers
hosting digital services

Yves-Gaél Billet, Christophe Gravier, Jacques Hayol

Université de Lyon, F-42023, Saint-Etienne, France;
Université de Saint-Etienne, Jean Monnet, F-428@ht-Etienne, France;
Télécom Saint-Etienne, école associée de I'Instiélécom, F-42000, Saint-Etienne, France;
LAvoratoire Télécom Claude Chappe (LT2C), F-42000nS&tienne, France.
{yves-gael .billet, christophe.gravier, jacques.fayolle}
@el ecomst-etienne.fr

Abstract. As the number of context-aware applications ingeeain the real

world, it can be quite difficult to deploy such dipptions in traditional

application servers, which are context-agnosticstesys. To address this
challenge, we propose a novel approach for eabi@gléployment of context-
aware applications into application serversContexricoded within an OWL-
driven knowledge base. We couple this knowledge lvaith SWRL rules to

encode context-awareness thresholds. SWRL rulesa@reredefined in the
application server. They are instead embedded anié application bundle
built by the developer, next to the business lagfiche application. At the

application deployment time, SWRL rules are extrdtethe knowledge base
in order to monitor the relevant context for thelamtion to be deployed. At
runtime, the context of each session of the apgicais monitored in the

knowledge base. When a rule is triggered (a costextreness threshold is
reached), a broker inside the application servéfie®the application so that it
adapts its behavior by switching to a more relevandality. We show how our
approach eases the work of developers for buildimgtext-aware application
by using our context-aware framework.

Keywords. Rules, SWRL, Semantic, context-awareness computing,
middleware, digital services, application server.

1 Needsfor a Semantic CAS

We want to provide context awareness for digitavise. The idea is to provide a
context-aware framework for software architectsoirder to implement context
awareness in their digital services. These servisaally run on Applications Servers
(henceforth AS) and are consumed through a netwaikg the client-server
paradigm. In this situation, context is composethfdrmation about the network and
features of the terminal. Context is session sjuesiifice applications are hosted on an
AS, context-awareness could be externalized aanaeiwork on them.

The objective is to provide a system that suppeedssing, perception and
reasoning over context. In this way, software depeis could only focus on the

2 Yves-Gaél Billet, Christophe Gravier, Jacques Hayol

business logic and adaptation behavior of theitiegion. Behaviors are specific for
each application. Software developers must deseaniifte model adaptation behavior
for their digital services and communicate it te tontext-aware framework.

Semantic Web technologies allow describing context are comprehensible by
both humans and computers and offer a loosely-aoypkith the programming
language.

Ontologies are used to model domain by describomgrepts of the domain and
relationships between those concepts [12]. The Wefology Language (OWL) was
developed to provide a way to represent knowledgeerstandable by machines
using a semantic formalization, in order to faeiltomputers to interpret human
knowledge.

The Semantic Web Rule Language (SWRL) allows usnimode context rules on
Horn clauses and designed for OWL. As presentddidhrules are of the form of an
implication between an antecedent (body) and carsgghead). SWRL are logical
expression encoded in Conjunctive Normal Formsusiéd to classify individuals
according conditions. As stated in [14], SPARQL dam used to interrogate an
ontology but it is RDF centric so not efficient whesing OWL. O'Connor et al.
proposes a Semantic Query-enhanced Web Rule Laeg(B8QWRL) based on
SWRL.

We propose a semantic context-aware system usinfy, GWRL and SQWRL to
describe context and model the adaptation beh&mi@pplications.

2 Reated works

2.1 Context-awareness

Among the existing context-aware definitions [1-8k base our definition from
[2]. It defines context as "any information thatnche used to characterize the
situation of an entity. An entity is a person, jglaor object that is considered relevant
to the interaction between a user and an applitatiocluding the user and
applications themselves."

We apply this definition in the case of digital\dees: a context-aware multimedia
application is an application (entity), which caseuthe elements of context (any
information that can be used to characterize theatbn) to adapt his behavior in
order to provide the corresponding interactiorhi terminal.

2.2 Architecturesof context-awar e applications

J. Coutaz et al. present in [4] a global architecfior context-aware applications
based on levels of abstraction for a general-p@pontext-aware system. They
define four levels:

e Sensing layer provides numeric observables.
» Perception layer provides symbolic observables, which are integti@is from
the numeric observable (i.e. transform GPS infoionah location name).

SWRL -based context awar eness for application servershosting digital services 3

e Situation and context identification layer identifies context and propose
adaptation. It is the reasoning core.

» Exploitation layer. It is an adapter between the application and dbetext
infrastructure.
Baldauf et al. in [5] also use a similar layeredhitecture to compare middleware
and frameworks for context-aware systems.

2.3 Existing workson context-awar e systems

Current approaches in context-aware frameworks raallear separation between
context acquisition, context processing and useaisTho create a separation of
concerns as proposed by Dey [2]. He proposes aeptual framework for supporting
context-aware applications. The implementationhi$ framework is known as the
Context-Toolkit [2]. It aims to ease development awvolution of context-aware
applications using an object-based approach. It ineisseen as an API for context-
aware application. Each object from the API, whidn be use to construct an
application, has a role (i.e.: collect, transfoaggregate and serve context). The API
approach creates a tight coupling between contexiggsing and application.

More recent works, such as CoBrA or SOCAM are sthecture-based approach
rather than API. Hong et al. point out advantagésnfrastructure for providing
context abstraction [6].

CoBrA project from Chen et al. [7] is agent-orighté central unit, so called, a
context broker, maintains and manages context balbef agents. An agent could be
an application running on mobile devices, a serycevided by a room, a web
service, etc). The broker collects information abmntext and shares it with agents.
This design addresses the issue for providing sbia@areness to resource-limited
computing devices.

The Service-Oriented Context-Aware Middleware (S@Q@Aroject introduces by
Gu et al. [8] exists as middleware. In SOCAM, diffet services working together
acquire, process, reason and deliver context tatag&he main contribution of this
work is the context model, which uses ontology tigto OWL. The use of ontology
allows them to describe context in a semantic whgt tis independent of
programming language.

In context-awareness, the usage is a key elememtkd\presented in this section
are related to the physical world. The main usw iprovide services fitted to users
activity (e.g.: forward calls to voice mails wheseus is currently sleeping in the
bedroom, switch off light if the room is empty, etc

3 Ruledriven context-awar eness

Our motivations to use a middleware are drivenHgywill to be unobtrusive (1)
and to create an abstraction for context-aware(@®sdt aims at deploying regular
applications and context-aware applications (rdlate (1)) and evolving the
middleware without impacting the already deploypgl&ations (related to (2)).

We use rules for providing context-awareness tluigshin application through
what we call a context signature. It contains ruleg define behaviors according to

4 Yves-Gaél Billet, Christophe Gravier, Jacques Hayol

context, for each application. In order to creagse rules, the software engineer must
define a set of situations. A situation proposeuaning state for a corresponding
environment, as for example, to stream a videoujinoa 4 Mbit/s connection to a
terminal we must code the video in 480p.

Each situation is made of observations of the cdmguenvironment and a
corresponding reaction. Observations describe tmapating environment for an
application; upon relevant characteristic choserihgysoftware engineer. Indeed, in
our reference scenario, bandwidth is a relevanradberistic. An observation is
formatted as a triple (key, comparison operator aallie). Values are strings or
numeric; in case of a numeric value, a default ismiised. Key is the name of the
characteristic, basically, the name of the datdegatl by the sensors (e.g.: screen
height for an observation about the height of @&esay. The operator fills the gap
between key and value.

Observations can be as simple as the referencarszasr more complex with
additional elements. For example, a situation canbbhsed on observations on
bandwidth and screen size. But there can be onéyreaction. So, a situation is
composed by at least one observable and exactlgamequence.

Each reaction must be a running mode implementedksRallow choosing the
most appropriate running mode for an applicaticor. €ach relevant using case of a
multimedia application, there must be a situatigpressed as a rule. These rules are
used against the knowledge base. Once the devefopeides the context-aware
application as a package which contains the biraemy the context signature, the
middleware unpacks these elements as shown irLFig.

Before deployment After deployment

MIDDLEWARE

APPLICATION
CONTAINER

MIDDLEWARE

APPLICATION
CONTAINER

CONTEXT
PROVIDER

CONTEXT
PROVIDER

APPLICATION B

APPLICATION A

APPLICATION A

APPLICATION SERVER APPLICATION SERVER

Fig. 1. Deployment of app in CAAS

The binary is deployed like a standard applicatiad the signature is parsed in
order to find rules. As stated before, a rule &itn) is composed with an antecedent
(observation) and a consequence (reaction). Eaelisahen injected as knowledge in

SWRL -based context awar eness for application servershosting digital services 5

the KB. Rules are consider as knowledge becauseptesent running modes and
associated necessary conditions for using themmeofiewly deployed application.
Context-logic signature defines requirements, imtef context information, for
changing application’s behavior. We define behag®m@ business logic modulation.
The main functionality does not change, but candlatized under different forms.

3.1 Storing context in a domain ontology

A context aware application server (CAAS) hosts tipld digital services and
provides context-awareness for them. Each apmicaprovides features under
multiple running modes. A user is typified as asgws which consumes features
offered by an application. Each session deliveydaatures through its environment
called context. Sensors through context providers grab it. Each one is able to
gather only some kind of information (battery, seresize, localization, etc.) but not
all data from the computing environment. In othe@rds, a context-aware application
relies on context providers to sense the enviromianorder to choose the right
business logic modality (or running mode) for asg@s

These observations are the foundation for our tiegubntology. It uses two main
classes (Context and Session) as shown in Fig. 2.

Context stores all necessary context information about @lser computing
environment. It is divided into subsets that repnés context provider.

Session represents all active connections to the CAAShEser, which consumes
an application, is a member of the class sessitke the Session set, this class is
divided into subclasses for representing applicatio

Relation between a session class and a contexd dabasContextinformation.
This property is antisymetric, its domain is Sessiad its range is Context.

Context Session

hasContext

Application
A Modality 3 PP

A A
At//]~ = = - Modality 1

Modality 2

Fig. 2. General representation of our ontology

3.2 Referencescenario

We will use as reference scenario, a video on ddn{&®D) application. The
digital service has 3 behaviors (i.e.: 480p, 720A@80p) for streaming a video to a
user. The context information is the available lveidth. The application changes the
resolution of the video (behavior) according to theer's available bandwidth
(context) as shown in Table 1. The context-sigrafupvides semantic formalization
of these context configurations that is a set afeobations. A context signature maps

6 Yves-Gaél Billet, Christophe Gravier, Jacques Hayol

each context configuration to a specific businegscl behavior. This is a loose-
coupling solution between business logic and cdriac.

We run the above-mentioned ontology against ouereeice scenario. An
application server with our middleware has a canpemvider called “User Terminal
Context” that provide information’s about the tenadi like bandwidth, screen size
and CPU load. The AS hosts a context aware dig@nalice called “Adaptable Video-
on-Demand”, which provide adaptable video accordiser’s bandwidth.

Table2. Classes of the ontology under our reference saenari

Name Parent Description
Context Provider Thing All context providers
Session Thing All sessions using middleware
UserTerminalCtx Context Provider Context provider that gather information
about bandwidth, screen size and CPU
load
AdaptableVoD Session All sessions for the Adaptatidkeo-
on-Demand digital service
C480p AdaptableVoD Sessions for AdaptableVVoD using 480p
resolution
C720p AdaptableVoD Sessions for AdaptableVVoD using 720p
resolution
C1080p AdaptableVoD Sessions for AdaptableVVoD using

1080p resolution

The data gathered by the context provider are septed as datatype relations. In
this scenario the context provider gather infororabout bandwidth, screen size and
CPU.

Table 3 Relations in the ontology under our reference stena

Name Domain Range Description
hasContext Session Context Link a session with a

context provider

hasBandwidth UserTerminalCtx int Available bandidt

gathered by context
provider

hasScreenSize UserTerminalCtx string Screen sitegal by
context provider

hasCPULoad UserTerminalCtx float CPU Load gathéned

context provider

SWRL -based context awar eness for application servershosting digital services 7

As stated before, individuals from the Session exinere sorted according to
rules, which are injected in the KB. We use SWRLntodel the context logic
dynamic using this feature. In our reference sdenéne Video-On-Demand service
must adapt the video coding according to bandviitom the OWL point of view,
individuals from the set AdaptableVoD must be meither in the c480p, c720p or
c1080p subset, each one represents a video cod@ap, 720p and 1080p). This
behavior uses the following SWRL:

For more readability, the common part of equatismepresents as (0)

AdaptableVoD(?s) “hasContext(?s,?c) “hasBandwidth(?c,?b) (0)

(0) * swrlb:greaterThanOrEqual(?b,3000) * swrib:lessThan(?b,6000) — c480p(7?s) Q)
(0) * swrlb:greaterThanOrEqual(?b,6000) * swrib:lessThan(?b,9000) — c720p(?s) (2)
(0) * swrlb:greater ThanOrEqual(?h,9000) — c1080p(?s) 3)

In our model, the reasoner and KB, use OWL and SWRthoose business logic
modality according to context. Each time a new eation is setup, the middleware
injects information about the session and the ocaritethe KB. In order to switch
modality, the application must be aware of the Ki¥ssification. We use SQWRL to
interrogate the ontology in order to notify apptioas about modality to use for each
connection. A typical SQWRL query for this Modality(?s) -> sqwrl:select(?s). In our
reference scenario:

c480p(?s) - sqwrl:select(?s) (4)
c720p(?s) - sqwrl:select(?s) (5)
c1080p(?s) - sqwrl:select(?s) (6)

The first one provides all sessions that must u$80p resolution, the second one
for sessions use a 720p and the last one for segsas a 1080p.

4 Conclusion

We have proposed and implemented a novel archite¢hat makes AS taking
into account the context-awareness of the digeaise they host. The architecture
employs domain ontology in order to monitor the leggtions’ context. Moreover,
when a new context-aware application is deployedthan application server, its
context-logic (a set of SWRL rules which rely tranthin ontology) is extracted from
the application bundle. Each SWRL rule encodes raest-aware threshold for the
application. When a rule is triggered at runtinfee aipplication server notifies the
application, so that the application change itsiserdelivery modality, as the current
context favors another service delivery modaliffedent than the current one.

The primary goal is to help developer of contexaesvapplications to quickly
encode context-aware thresholds. It helps themeteeldp the context logic of the
application for it to adapt its behavior when angfigant context change is detected.
Developers can seamlessly encode those threshgldsriing the SWRL rules
corresponding to the conditions under which theliepiion follows each service
delivery modality and then ship the SWRL file intheir application bundle.

8 Yves-Gaél Billet, Christophe Gravier, Jacques Hayol

Previously, this task was not a service offeredtiy application server, unlike
logging, database mapping, authentication, etct, dmually embedded in each
application business logics as an ad hoc encodgxtitdm. Therefore, this approach
is also a framework, as developers of context-ava@ications no longer have to
write source code for handling context changes.

We are currently developing additional algorithrhattwill enhance the context
assertions in the knowledge base. Especially, wié add to the context logic
parameters for gathering context (e.g. context #ampfrequency) as each
application may have different temporal needs miggr context updates. In future
work, we are planning to consider cluster of cotrgexare application servers.

5 References

1. A. Zimmermann, A. Lorenz, R. Oppermann, An opieral definition of contextModeling
and Using Context, Springer Berlin, 2007, pp. 558-578.

2. AK. Dey, Understanding and using context, peasand ubiquitous computing, 2001, pp. 4-
5.

3. J. Strassner, Y. Liu, M. Jiang, J. Zhang, S. dan Meer, M. O Foghla, C. Fahy, W.
Donnelly, Modelling Context for Autonomic Networkingth |EEE International Workshop
on Management of Ubiquitous Communications and Services (MUCS), April 11, 2008,
Brazil

4. J. Coutaz, J. L. Crowley, S. Dobson, D. Garlan,t&dris key,Communication of the ACM,
2005, 48:49-53

5. M. Baldauf, S.Dustdar, F. Rosenberg, A surveycontext-aware systemsnternational
Journal of Ad Hoc and Ubiquitous Computing, 2007, pp. 263-277

6. JI. Hong, JA Landay, An infrastructure approdohcontext-aware computingiuman
computer-interaction, 2001, vol. 16.

7. H. Chen, An Intelligent Broker Architecture forriPasive Context-Aware SystemBhD
thesis, University of Maryland, Baltimore County, 2004.

8. T. Gu, H. K. Pung, D.Q. Zhang, A middleware lailding context-aware mobile services,
In Proceedings of IEEE Vehicular Technology Conference (VTC), Milan, Italy, 2004.

9. A. Outtagarts and O. Martinot, iISSEE: IMS SeasBearch Engine Enabler for Sensors
Mashups Convergent Applicatiomternational Journal of Computer Science Issues, 1JCS,
November 2009, Volume 6, pp1-7.

10. M.J. O’Connor, A.K. Das, A Method for Represegtand Querying Temporal Information
in OWL, Biomedical Engineering Systems and Technielm@ommunications in Computer
and Information Science, Springer, pp. 97-110.

11. ITU-T Recommendation, Y.2000-Y.2999, Next GetiemmNetworks, Y-Series: Global
Information Infrastructure, Internet Protocol agpeand Next-Generation Networks.

12. M. Horridge, H. Knublauch, A. Rector, R. Stevefs, Wroe, A Practical Guide To
Building OWL Ontologies Using Protege 4 and CO-ODEol§oEdition 1.2. Technical
report, The University Of Manchester, March 2009.

13. Horrocks, I., Patel-Schneider, P.F., Boley, Fabet, S., Grosof, B., & Dean, M. (May
2004).SWRL: A semantic web rule language combiningOWL and RuleML. Available from
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

14. M. J. O'Connor and A. K. Das. SQWRL: A queryglaage for OWL. In R. Hoekstra and
P. F. Patel-Schneider, edito®WLED, volume 529 ofCEUR Workshop Proceedings.
CEUR-WS.org, 2008.

