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Abstract The erosion score is a Mathematical Morphology tool used
primarily to detect periodicity in data. In this paper, three new compu-
tation methods are proposed, to decrease its computational cost and to
allow to process data streams, in an incremental variant. Experimental
results show the significant computation time decrease, especially for
the efficient levelwise incremental approach which is able to process a
one million point data stream in 1.5s.
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1 Introduction

Mathematical Morphology (MM) defines a set of techniques for the analysis
of spatial structures, and is widely used in image processing, understanding,
segmentation or compression [10,13]. Functional MM applies its principles to
function values and has been used for several types of data processing tasks, such
as such as signal sieving [1,14], signal pre-processing [17], text categorisation [4],
fuzzy classes identification [5] or gradual rule extraction [11].

This paper focuses on the erosion score operator, that has been applied to
efficiently detect periodicity in time series, interpreted as functions associating
xt at each time t [9]. The erosion score is based on the fundamental MM erosion
operator and is more precisely defined as the sum of successive erosions until
total erosion.

This paper considers the implementation issue for this operation and proposes
three computation methods both to decrease the computational cost and to allow
to process data incrementally: the proposed levelwise approach is based on the
identification of levels in the data, to reduce the number of steps required to
compute the erosion score for all data points. On the other hand, the proposed
incremental extensions of both the basic and the levelwise computation methods
make it possible to progressively update erosion scores when new data points
become available, so as to process data streams.

The paper is organised as follows: Section 2 recalls the general MM principles
and the erosion score as well as existing works related to optimised methods to
compute MM operations. The following sections then respectively introduce the
Levelwise, Incremental and Levelwise Incremental approaches. Lastly, Section 6
presents the experiments carried out to compare the proposed approaches.



2 Fast and Incremental Erosion Score Computation

2 Context and Motivations

Erosion Score Operation Mathematical Morphology relies on two basic op-
erators, erosion and dilation, combined in various ways to define more complex
composed operators (see [13] for a detailed presentation). In functional MM,
given a function f : E → F and a structuring element B defined as a subset
of E of a known shape, e.g. an interval centred at the origin, erosion is the
function ǫB(f) : E → F defined as [ǫB(f)](x) = infb∈B f(x + b). Dilation is
defined in a similar way, using the sup operator. These two basic operations
can be used repeatedly or alternatively, leading to different types of composed
operators, such as opening, closing or alternated filters [13].

The operator proposed in [9] to detect periodicity relies on the computation
and aggregation of successive erosions. Given a time series X containing n val-
ues {x1, . . . xn} in [0, 1] obtained at regular time intervals and the structuring
element B = (−1, 0, 1), the previous erosion definition induces the following re-
cursive form for the jth erosion of the ith value: xj

i = min(xj−1
i−1 , x

j−1
i , xj−1

i+1 ),
denoting by convention x0

i = xi, x0 = xn+1 = +∞. The iterativity property of

this erosion yields xj
i = min(xi−j , . . . , xi+j).

The erosion score is defined for a minimum zero X satisfying the property
∃i ∈ {1...n} such that xi = 0 as the sum of the successive erosions until total
erosion: denoting zi the number of erosion steps needed for xi to be totally
eroded, i.e. the smallest erosion step j such that xj

i = 0

esi =

zi∑

j=0

xj
i (1)

Other methods based on successive erosions mostly aim at being used in 2D
contexts, as the erosion curve [6] or the ultimate erosion [3].

Implementation Optimisation Efficient implementation methods have been
proposed for many MM operations, to make it possible to compute them faster [16]
or to allow them to process data incrementally [2].

In particular, various optimisations to quickly compute successive erosions
have been proposed (see [7] for a recent state of the art): for instance they reduce
the number of redundant operations when using various structuring elements [12]
or propose a two pass optimisation to ensure a constant time computation of an
erosion for any structuring element. However, such methods are not relevant for
the erosion score computation where a single and simple structuring element is
considered.

Another category of methods rely on the identification of specific values in
the dataset, called anchors [15] or obtained after filtering out useless values to
reduce the computation time [2]. The methods proposed in the paper belong to
this category but they use another definition for the values of interest, as the
latter are used to compute a different score.
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3 Levelwise Method

The “naive” implementation of the erosion score consists in computing the suc-
cessive erosions of the dataset and summing the obtained values until all eroded
values equal 0. Since xi is eroded in zi iterations by definition of zi and the whole
dataset is processed at each iteration, its complexity is O((maxi zi)× n).

In this section, a levelwise approach is proposed: it does not process the
whole dataset at each iteration but reduces the number of iterations for each
data point individually. It is based on the identification of key erosion steps, i.e.
a subset of the initial dataset sufficient to compute the erosion scores.

3.1 Notations

When computing the successive eroded values xj
i , it can be observed that some

of them are equal to the previous one. Identifying only the key ones, defined as
the xj

i different from the previous one, allows to compute the erosion score by
adding the distinct values multiplied by their number of repetitions.

Formally, the key erosion steps are such that xj
i 6= xj−1

i , i.e. xj
i < xj−1

i due

to their definition. Let us denote J<
i = {j ∈ {1, . . . , n}|xj

i < xj−1
i }, ωi its size

and Di the ordered set of its values, sorted in ascending order, to which 0 is
added as di0: Di = {di0, . . . , diωi

} is an ordered subset of {0, . . . , n} where only
the key steps are kept, in that the erosion score can be computed knowing them
only. It can be noted that the maximal value of Di is di,ωi

= zi. It holds that

∀l ∈ {0, . . . , ωi − 1} , dil < dil+1 and xi = xdi0

i = xdi0+1
i = · · · = xdi1−1

i > xdi1

i =

xdi1+1
i = · · · = xdi2−1

i > xdi2

i and so on until x
di,ωi

−1

i > x
di,ωi

i = 0.

We also introduce the notations χil = xdil

i and λil its index such that χil =
xλil

. dil can be seen as the number of points between xi and its lth key value,
χil is its value and λil its index. An illustrative example is given in Fig. 1.

3.2 Levelwise Computation of the Erosion Score

For any data point xi, Di then contains the key erosions, so the erosion score
can be computed knowing these values only, as stated in the following theorem:

Theorem 1. Levelwise computation of esi

esi =

ωi−1∑

l=0

(di,l+1 − dil)χil =

ωi−1∑

l=0

(|λi,l+1 − i| − |λil − i|)xλil

Proof. The demonstration directly follows from the definitions of χ, λ and d
developing the definition given in Eq. (1)

esi = x0
i + · · ·+ xdi1−1

i
︸ ︷︷ ︸

(di1−di0)χi0

+ xdi1

i + · · ·+ xdi2−1
i

︸ ︷︷ ︸

(di2−di1)χi1

+ ...+ x
di,ωi−1

i + · · ·+ x
di,ωi

−1

i
︸ ︷︷ ︸

(diωi
−di,ωi−1)χi,ωi−1

+ x
di,ωi

i
︸ ︷︷ ︸

0

=

ωi−1∑

l=0

(di,l+1 − dil)χil
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Figure 1. Example and computation of D8 = {d80, d81, d82, d83}, χ8l and λ8l

The expression based on λil is obtained from the fact that dil = |λil − i|.

Based on this theorem, the levelwise implementation is computed from the λil

values only. They are computed by searching xi key erosions until a zero is
reached, i.e. for j from 1 to zi, so in zi iterations. Since the erosion score is
computed at the same time, the complexity of this method is O (

∑
zi) which is

lower than the naive one presented previously.

4 Incremental Method

Incremental approaches aim at processing the data successively, updating inter-
mediate results instead of considering each data point independently. They can
decrease the computational time; moreover they make it possible to process data
streams, where the whole dataset is not available at once but data points are
obtained progressively.

In this section and the following, we propose incremental methods to compute
the erosion score, respectively based on the basic and the levelwise approaches.

4.1 Notations

In the context of data streams, xn+1 denotes the latest data point received at
time t+1. We denote xi(t) = xi if i ∈ {1, . . . , n} and xi(t) = +∞ otherwise. For
simplicity sake, the notation xi is preferred to xi (t) when no ambiguity arises.
The value x0 = 0 is added in order to ensure the minimum zero property and
thus that the algorithm terminates. At time t, the jth erosion of xi is denoted
xj
i (t) and its erosion score esi (t).
The objective of incremental methods is to compute the new erosion scores

esi (t+ 1) from the existing erosion scores esi (t) and the new value xn+1.



Fast and Incremental Erosion Score Computation 5

4.2 Update Equations for Eroded Values and Erosion Score

The theorem below establishes the update equation that gives the new eroded
values for any data point when a new data point xn+1 is collected.

Theorem 2. Update equations for the successive eroded values

Denoting q = max{k ∈ {1, . . . , n} |xk ≤ xn+1} and m = (n+ 1 + q)/2,

xj
i (t+ 1) =







xj
i (t) if i ≤ m

xj
i (t) if i > m and j < n+ 1− i

xn+1 if i > m and n+ 1− i ≤ j < i− q

x
j−(i−q)
q if i > m and j ≥ i− q

Proof. q is the index of the latest data point less than or equal to the new point
xn+1 and m the middle of the index interval between q and n+ 1.

The proof consists in studying, for any i and j whether xn+1 and/or xq are

involved in the computation of xj
i (t+ 1). Since xj

i = min(xi−j , . . . , xi+j), this is
equivalent to checking whether n+ 1 and/or q belongs to {i− j, . . . , i+ j}.

If xn+1 is not involved, then xj
i (t + 1) = xj

i (t). This is the case if the data
point is closer to xq than to xn+1, so when i ≤ m, since xq ≤ xn+1 by definition.
If i > m and j < n+1− i, xn+1 is not involved too, since n+1 /∈ {i− j, ...i+ j}.

If i > m and n + 1 − i ≤ j < i − q, then xn+1 is involved but not xq, so

xj
i (t+1) = xn+1. Indeed, for all l ∈ {q+1, . . . , n+1}, xl ≥ xn+1 and the minimal

data value on all index intervals included in {q + 1, . . . , n+ 1} is xn+1.
Finally, if i > m and j ≥ i − q, then both xn+1 and xq are involved, so

xj
i (t+ 1) ≤ xq ≤ xn+1, by definition of xq. Therefore:

xj
i (t+ 1) = min(xi−j , . . . , xq, . . . , xn+1, . . . , xi+j) = min(xi−j , . . . , xq)

= min(xq−(j−i+q), . . . , xq, . . . , xq+(j−i+q)) = xj−i+q
q

These update equations lead to the update equations for the erosion score:

Theorem 3. Computation of es (t+ 1)
Denoting q = max {k ∈ {1, . . . , n} |xk ≤ xn+1} and m = (n+ 1 + q) /2,

esi (t+ 1) =







esi (t) if i ≤ m

esq (t) + 2 (i−m)xn+1 +
n−i∑

j=0

xj
i (t) otherwise

Proof. The theorem is a direct consequence of Theorem 2: if i ≤ m, the suc-
cessive erosions are not modified so neither is their sum. If i > m, the following
decomposition of the erosion score proves the theorem:

esi (t+ 1) =

n−i∑

j=0

xj
i (t+ 1)

︸ ︷︷ ︸

=
∑n−i

j=0
x
j

i
(t)

+

i−q−1
∑

j=n+1−i

xj
i (t+ 1)

︸ ︷︷ ︸

=2(i−m)xn+1

+

+∞∑

j=i−q

xj
i (t+ 1)

︸ ︷︷ ︸

=esq(t)
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It is easily proven that the complexity of the incremental method is O
(
φ2

)
,

where φ = n − q, i.e. the distance between the new point and the latest lower
data point.

5 Incremental Levelwise Method

This section proposes an alternative incremental method, based on the levelwise
expression of the erosion score stated in Theorem 1 and on incremental update
equations for the λ indices.

Theorem 4. Incremental computation of λil

Denoting q = max {k ∈ {1, . . . , n} st xk < xn+1}, m = (n+ 1 + q) /2 and ki
defined for i > m such that di,ki−1 (t) < n+ 1− i ≤ diki

(t) and kn+1 = 0

∀i, ∀l, λil (t+ 1) =







λil (t) if i ≤ m

λil (t) if i > m and l < ki

n+ 1 if i > m and l = ki

λq,l−ki−1 (t) if i > m and l > ki

∀i, ωi (t+ 1) =

{

ωi (t) if i ≤ m

ki + ωq (t) if i > m

Proof. The incremental expression stated in Theorem 2 allows the update of xj
i

for j = 0...zi. Since Di is a subset of 0...zi containing only the key erosions, this
proof is based on the one presented for the incremental method. ki is introduced
to represent the index in Di denoting the first erosion involving xn+1.

As in the incremental case, if i ≤ m, or if i > m and xn+1 is not involved,
i.e. l < ki, then the successive erosions are unchanged, so λil (t) = λil (t+ 1).

If l = ki then the eroded value is xn+1, so its index λi,ki
is n+ 1.

Finally, as proved for the incremental method, the next erosions, following
the one equal to xn+1, are the erosions of xq. In the levelwise context, it implies
that the key erosions following the one equal to xn+1 are also the key erosions
of xq for l = 0...ωq, so for i > m and l > ki, λil (t+ 1) = λq,l−ki−1 (t).

Regarding ωi the number of elements in Di, when the eroded values are
unchanged, i.e. i ≤ m, the number of key erosions is unchanged too, and
ωi (t+ 1) = ωi (t). If i > m, then the key erosions are those from 0 to the
first implying xn+1 whose index is ki, plus the ωq key erosions of xq, yielding
ωi (t+ 1) = ki + ωq (t).

This theorem together with the levelwise expression of the erosion score stated in
Theorem 1 lead to the following levelwise incremental expression of the erosion
score:
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Theorem 5. Incremental levelwise computation of esi
Denoting m, q and ki as defined in Theorem 4 and pi defined for i ≥ m such

that λipi
(t) = q:

∀i, esi(t+ 1) =







esi(t) if i ≤ m

χi,ki−1(t)(n+ 1− i− diki
(t)) if m < i < n+ 1

−
pi−1∑

j=ki

χij(t)(di,j+1(t)− dij(t))

+2xn+1(i−m) + esi(t)

2xn+1(n+ 1−m) + esq(t) if i = n+ 1

The variables d and χ are used to improve readability, but esi(t + 1) can be
computed with λ only since dil = |λil − i| and χil = xλil

.
The proof is omitted because of space constraints. It follows from the decom-

position of the sum given in Theorem 1 into 4 terms, corresponding to l lower
than ki−2, equal to ki−1, between ki and pi, and greater than pi. In each term,
the λil(t+ 1) values are replaced by their expression given by Theorem 4.

The implementation then consists in using a Λ matrix storing all λil values.
When a new data point xn+1 is processed, its predecessor xq is first identified.
Then for each row whose index is greater than m, Λ is updated by computing
ki, inserting n+1 as the kthi value in the list, and copying the values from (λql)l
at index ki+1.

6 Experiments

6.1 Experimental Protocol

The 4 methods, namely “naive”, “incremental”, “levelwise”, and “incremental
levelwise”, are compared over artificial datasets generated as noisy repetitions of
identical blocks of different shapes (triangle, rectangle, sine, wave). Noise applies
either on the size of the individual blocks, randomly enlarging or shrinking them,
or on the data points, randomly adding or subtracting small values (see [8] for
a more detailed presentation of the data generation process).

Each method is then applied to compute the erosion score of each data point
in each dataset. For a given dataset, all methods return the same result. The
data points are read one by one for the incremental approaches so as to emulate
a stream.

For each method, the computational time as well as the memory consump-
tion are measured; their average and standard deviation are computed over all
the datasets randomly generated according to the protocol sketched above. Fur-
thermore, the average value of ωi is recorded for the levelwise methods.

The implementation is done in VB.NET and the experiments are run on a
Windows➤ virtual machine started with 4 CPUs and 4 Go of memory on a
physical machine with an Intel i7➤ CPU and 16 Go of memory.
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6.2 Computational Time Comparison

Figure 2 shows the computational time for three levels of dataset sizes: the top
graph compares all 4 methods for datasets containing less than 10,000 data
points. It shows that the incremental methods outperform the non incremental
ones. The naive implementation is significantly slower and less robust as the
high standard deviation shows. Furthermore, the incremental methods run much
faster in a real situation since the arrival of a new data implies only one com-
putation whereas the non incremental ones have to run the computation anew
over the whole dataset.

In order to differentiate more precisely the incremental methods, larger data-
sets are used, ranging from 10,000 to 100,000 data points as showed on the middle
graph of Fig. 2. In this second round of experiments, the incremental levelwise
method appears significantly faster than the incremental one. Moreover, the
large values of standard deviation for the latter indicate a lack of robustness.
This is due to the sensitivity of the position of zero values within the dataset
for the methods not based on the levelwise approach. Indeed, as underlined in
the complexity analysis of the 2 methods (see Section 2), if the largest zi in a
dataset is increased by only 1, another full scan of the dataset is needed with the
naive method. With the levelwise approach on the contrary, one more iteration
is needed only for the concerned data point

Finally, the largest datasets (bottom graph on Fig. 2) show that the incre-
mental levelwise approach for erosion score computation is robust and can handle
efficiently and in a very reasonable amount of time a large dataset on the order
of one million data points. Moreover, since it is incremental, it can handle a
million new data from one stream in 1.5 seconds, or equivalently handle 1 new
data over a million streams in the same time.

6.3 Memory Consumption

In terms of memory, the non levelwise methods, whether incremental or not, are
not based on specific data structures and thus do not need more memory than
the space needed by the dataset and the resulting erosion scores: denoting n the
number of data points, the memory consumption in this case is 2n.

In the levelwise methods, the Λ matrix is stored, entailing an additional
memory usage: it is implemented as a list of n lists each of them containing ωi

values. Its memory requirements is then
∑

ωi or equivalently n× avg(ωi). Over
all carried out experiments, the average ωi is 30, the minimum 2 and maximum
129, thus the required storing capacities remain reasonable.

Hence, the levelwise methods are more greedy in terms of memory than the
non levelwise ones. Nonetheless, this can be mitigated simply for the incremental
levelwise since when a zero value is reached, all previous values become useless
in the erosion score, so the λi before the 0 value can be removed from Λ.
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Figure 2. Computational time for (top) small datasets and all 4 methods, (middle) me-
dium datasets and incremental methods, (bottom) large datasets and the incremental
levelwise method.

7 Conclusion and Future Works

This paper proposed 3 variants to compute the erosion score based on one hand
on a levelwise computation principle and on the other hand on update equations
to progressively adapt to new incoming data points. Such incremental approaches
make it possible to process data streams where data points are not available
simultaneously. Experimental studies show the relevance of these variants and
in particular the performance of the levelwise incremental approach, in terms of
time consumption at the expense of a reasonable increase of memory storage.

Future works aim at integrating the efficient levelwise incremental method to
the periodicity detection task, to identify periodicity in large time series. Other
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perspective include the use of this approach to other time series pre-processing
tasks where the series structure must be identified.
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