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We study an optimal switching problem with a state constraint: the controller is only allowed to choose strategies that keep the controlled diffusion in a closed domain. We prove that the value function associated with this problem is the limit of value functions associated with unconstrained switching problems with penalized coefficients, as the penalization parameter goes to infinity. This convergence allows to set a dynamic programming principle for the constrained switching problem. We then prove that the value function is a solution to a system of variational inequalities (SVI for short) in the constrained viscosity sense. We finally prove that uniqueness for our SVI cannot hold and we give a weaker characterization of the value function as the maximal solution to this SVI. All our results are obtained without any regularity assumption on the constraint domain.

Introduction

Optimal control of multiple switching regimes consists in looking for the value of an optimization problem where the allowed strategies are sequences of interventions. It naturally arises in many applied disciplines where it is not realistic to assume that the involved quantities can be continuously controlled. More precisely, the optimal switching problem supposes that the control strategies are sequences α = (τ k , ζ k ) k where the sequence (τ k ) k represents the intervention times of the controller and ζ k corresponds to the level of intervention of the agent at each time τ k . Such a class of strategies allows to consider discrete actions for the controller which can be more relevant than continuous time controls. Therefore, the modelization with optimal switching problems has attracted a lot of interest during the last decades (see e.g. Brennan and Schwarz [START_REF] Brennan | Evaluating natural resource extraction[END_REF] for resource extraction, Dixit [START_REF] Dixit | Entry and exit decisions under uncertainty[END_REF] for production facility problems, Carmona and Ludkovski [START_REF] Carmona | Valuation of Energy Storage: An Optimal Switching Approach[END_REF] for power plant management or Ly Vath, Pham and Villeneuve [START_REF] Vath | A mixed singular/switching control problem for a dividend policy with reversible technology investment[END_REF] for dividend decision problem with reversible technology investment).

Another specificity to take into account in the modelization with optimal switching is the limitation of the quantities involved in the control problem. Indeed, in most of management problems the controlled system is subject to a constraint on the possible states that it can take. For example, a solvency condition is usually imposed to the investors of a financial market and the energy producer has to take into account the limited storage capacities. This leads to impose a state constraint on the controlled diffusion X of the form

X s ∈ D for all s,
where D is a closed set. We therefore need to restrict our control problem to the set A D t,x of strategies that keep the controlled diffusion starting from (t, x) in the constraint domain D. Unfortunately, such a constraint leads to strong difficulties due, in particular, to the complicated structure of the set valued function (t, x) → A D t,x . To the best of our knowledge, no rigorous study of the optimal switching problem in the constrained case has been done before and our aim is to fill this gap.

In the continuous time control case, H. M. Soner gives in [START_REF] Soner | Optimal control with state-space constraint I[END_REF] a first study of the constrained problem in a deterministic framework where he introduces the notion of constrained viscosity solutions. To characterize the value function, his approach relies on a continuity argument under an assumption on the boundary of the constraint domain ∂D. He then extends this result to the case of piecewise deterministic processes in [START_REF] Soner | Optimal control with state-space constraint II[END_REF]. The continuous time stochastic control case is studied by M. A. Katsoulakis in [START_REF] Katsoulakis | Viscosity Solutions of Second Order Fully Nonlinear Elliptic Equations with State Constraints[END_REF]. His approach also relies on continuity and he imposes regularity conditions on the constraint domain D. In our case, such an approach is not possible since the value function may be discontinuous even for a smooth domain D as shows the counter-example presented in Sub-section 2.2.

Let us also mention the recent approach of D. Goreac et al. presented in [START_REF] Goreac | LP Approach to Dynamic programming principles for Stochastic Control problems with State Constraints[END_REF]. They formulate the initial problem as a linear problem which concerns the occupation measures induced by the controlled diffusion processes. Under convexity assumptions, the authors characterize (see Theorem 11 in [START_REF] Goreac | LP Approach to Dynamic programming principles for Stochastic Control problems with State Constraints[END_REF]) the value function associated to the weak formulation of the continuous time stochastic control problem under state constraints (the weak formulation means that the controller is allowed to choose the probability space in addition to the control strategy). Unfortunately, such an approach cannot be applied to the optimal switching under state constraints since the the set of values taken by the controls is not convex.

In this work, we present an original approach which allows to deal with the lack of regularity of the associated value function. Moreover, our method does not need any regularity or convexity assumption. In particular, we only need to assume that the constraint domain D is closed.

To be more precise, our approach relies on the simple structure of switching controls. Indeed, they can be seen as random variables taking values in ([0, T ]×I) N where I is a finite set and T > 0 is a given constant. From Tychonov theorem, we get the compactness of this space which allows to prove the tightness of a sequence (α n ) n of switching strategies and hence the convergence in law up to a subsequence. Then applying Skorokhod representation theorem, we are able to provide a probability space and a sequence (α n ) n that converges almost surely to some α and such that αn is equal in law to α n for all n.

We use this sequential compactness property in the following way. We first introduce a sequence (v n ) n of unconstrained switching problems with n-penalized terminal and running reward coefficients out of the constraint domain D. For each penalized switching problems v n , we take α n as a 1 n -almost optimal strategy for v n and we make αn converge to α as described previously. Then we construct a switching strategy α * which is equal in law to α. To this end we prove stability results for measurability and convergence properties for sequence of diffusion driven by converging Brownian motions. These results that have their own interest are presented separately in the Appendix.

The strong convergence of αn to α allows to prove that α * is optimal for the switching problem under constraint. As a byproduct, we get the convergence of the unconstrained penalized switching problems to the constrained one. Using existing results on classical optimal switching problems, this convergence allows to set a dynamic programming principle for the constrained switching problem.

We then focus on the PDE characterization of the value function. Using the dynamic programming principle proved before, we show that the value function is a constrained viscosity solution to a system of variational inequalities (SVI for short) defined on the constraint domain D. We then investigate the uniqueness of a solution to this SVI. The usual approach to get uniqueness of a viscosity solution consists in proving a comparison theorem for the PDE. As a consequence of such a comparison theorem, the unique solution has to be continuous. Unfortunately, the continuity of the value functions is not true in general as shown by the counter-example given in Sub-section 2.2. Therefore, we cannot hope to state such a uniqueness result for the SVI on D. Instead, we characterize our value function as the maximal viscosity solution of the SVI under an additional growth assumption. This maximality property is also obtained from the convergence of the penalized unconstrained problems to the constrained one.

We end the introduction by the description of the organization of the paper. In Section 2 we expose in detail the formulation of the optimal switching problem under state constraints and we provide a simple example to stress the possible lack of regularity for the value function. We then give in Section 3 some examples of application. In Section 4, we provide an approximation of our constrained problem by unconstrained problems with penalized coefficients. We prove the convergence of the penalized problems to the constrained one as the penalization parameter goes to infinity. In Section 5, we state a dynamic programming principle and we prove that the value function is a constrained viscosity solution to a SVI. Finally, in section 6 we focus on uniqueness. Since we cannot prove uniqueness of a solution for the SVI, we characterize the value function as the maximal constrained viscosity solution to the SVI under an additional growth assumption. Some examples where this additional growth condition is satisfied are then given.

Problem formulation 2.1 Optimal switching under state constraints

We fix a complete probability space Ω, G, P which is endowed with a Brownian motion W = (W t ) t≥0 valued in R d . We denote by F the complete and right continuous filtration generated by W . We also consider a terminal time given by a constant T > 0.

Controls. We then define the set A t of admissible switching controls at time t ∈ [0, T ] as the set of double sequences α = (τ k , ζ k ) k≥0 where • (τ k ) k≥0 is a nondecreasing sequence of F-stopping times with τ 0 = t and lim k→∞ τ k > T ,

• ζ k is an F τ k -measurable random variables valued in the set I defined by I = {1, . . . , m}.

With a strategy α = (τ k , ζ k ) k≥0 ∈ A t we associate the process (α s ) s≥t defined by

α s = k≥0 ζ k 1 [τ k ,τ k+1 ) (s) , s ≥ t .
Controlled diffusion. We are given two functions µ : R d × I → R d and σ : R d × I → R d×d . We make the following assumption.

(H1) There exists a constant L such that

|µ(x, i) -µ(x ′ , i)| + |σ(x, i) -σ(x ′ , i)| ≤ L|x -x ′ | , for all (x, x ′ , i) ∈ R d × R d × I.
For (t, x) ∈ [0, T ] × R d and α ∈ A t we consider the controlled diffusion X t,x,α defined by the following SDE

X t,x,α s = x + s t µ X t,x,α r , α r dr + s t σ X t,x,α r , α r dW r , s ≥ t .
(2.1)

Under (H1), we have existence and uniqueness of an F-adapted solution X t,x,α to (2.1) for any initial condition (t, x) ∈ [0, T ] × R d and any switching control α ∈ A t . We also have the following classical estimate (see e.g. Corollary 12, Section 5, Chapter 2 in [START_REF] Krylov | Controlled diffusion processes, Stochastic Modelling and Applied Probability[END_REF]): for any q ≥ 1 there exists a constant C q such that sup

α∈At E sup s∈[t,T ] X t,x,α s q ≤ C q 1 + |x| q (2.2) for all (t, x) ∈ [0, T ] × R d .
Expected Payoff. We consider terminal and running reward functions g : R d × I → R and f : R d × I → R and a cost function c : R d × I × I → R on which we impose the following assumption.

(H2)

(i) The function f , g and c are locally Lipschitz: for any R > 0 there exists a constant L R such that

|g(x, i) -g(x ′ , i)| + |f (x, i) -f (x ′ , i)| + |c(x, i, j) -c(x ′ , i, j)| ≤ L R |x -x ′ | , for all i, j ∈ I and x, x ′ ∈ R d such that |x| ≤ R and |x ′ | ≤ R.
(ii) There exists a constant C and an integer q such that

|g(x, i)| + |f (x, i)| + |c(x, i, j)| ≤ C 1 + |x| q ) ,
for all x ∈ R d and i, j ∈ I.

(iii) There exists a constant c > 0, such that c(x, i, j) ≥ c , for all x ∈ R d and i, j ∈ I.

We then define the functional pay-off J up to time T by

J t, x, α = E g X t,x,α T , α T + T t f X t,x,α s , α s ds - k≥1 c X t,x,α τ k , ζ k-1 , ζ k 1 τ k ≤T for all (t, x) ∈ [0, T ] × R d and α ∈ A t .
Under (H1) and (H2) we get from (2.2) that J t, x, α is well defined for any initial condition (t, x) ∈ [0, T ] × R d and any control α ∈ A t .

State constraint. Let D be a nonempty closed subset of R d . For (t, x, i) ∈ [0, T ] × D × I we denote by A D t,x,i the set of strategies α ∈ A t such that ζ 0 = i and

P X t,x,α s ∈ D for all s ∈ [t, T ] = 1 .
Value function. We then define the value function v associated with the switching problem under state constraints by

v(t, x, i) = sup α∈A D t,x,i J t, x, α (2.3) 
for all (t, x, i) ∈ [0, T ] × D × I, with the convention v(t, x, i) = -∞ if A D t,x,i = ∅. Our aim is to give an analytic characterization of the function v.

Lack of smoothness for the value function

In general control theory, we expect to get a continuous value function as we assume that the parameters are continuous. In the framework of optimal switching under constrains such a property fails to be true. Indeed, the following simple example provides a discontinuous value function.

Fix d = 2 and consider the case where D is the smooth domain R × R + . Take I = {1, 2} and define the diffusion coefficients µ and σ by µ(x, 1) = 0 -1 , µ(x, 2) = 0 0 and σ(x, 1) = σ(x, 2) = 0 0 0 0 for all x ∈ R 2 . Define the gain coefficients g and f and the cost functions c(., 1, 2) and c(., 2, 1) by

g(x, 1) = g(x, 2) = 0 , f (x, 1) = f (x, 2) = 1 and c(x, 1, 2) = c(x, 2, 1) = c > 0 ,
for all x ∈ R 2 . Since the reward coefficients f and g do not depend on the state position x we only need to focus on the constraint. In particular a strategy is optimal if it minimizes the number of switching orders and satisfy the state constraint.

x As shown by Figure 2.3, in the case x 2 < Tt and i = 1, the agent has to act at time t * to keep the second component non-negative (see the red curve). On the contrary, in the case x 2 ≥ Tt and i = 1, the blue curve shows that the system will satisfy the constraint until terminal time T and there is no need to switch. We therefore get the following expression for the value function

v(t, x, 1) = T -t if x 2 ≥ T -t , T -t -c if x 2 < T -t , (2.4) 
for all x = x 1 x 2 ∈ D and all t ∈ [0, T ].

In particular the function v(., 1) is discontinuous at each point (t, (x 1 , Tt)) for all t ∈ [0, T ] and all x 1 ∈ R. Hence the function v is discontinuous even on the interior Int(D) of the constraint domain. These discontinuities are induced by the state constraints that forces the operator to act so as to keep the diffusion in D, even if this action is sub-optimal.

Examples of application

We present in this section some models involving an optimal switching problem under state constraint.

Hydroelectric pumped storage model

The following simplified hydroelectric pumped storage model is inspired by [START_REF] Carmona | Valuation of Energy Storage: An Optimal Switching Approach[END_REF]. Pumped Storage (currently, the dominant type of electricity storage) consists of large reservoir of water held by a hydroelectric dam at a higher elevation. When desired, the dam can be opened which activates the turbines and moves the water to another, lower reservoir. The generated electricity is sold to a power grid. As the water flows, the upper reservoir is depleted. Conversely, in times of low electricity demand, the water can be pumped back into the reservoir with required energy purchased from grid. A strategy α consists in a sequence of F-stopping times (τ k ) k representing the intervention times and a sequence of F τ k -measurable random variables (ζ k ) k representing the changes of regime. There are three possible regimes.

(i) ζ k = 1 : pump, in this case we set µ 1 (x, 1) = 1 and σ 1 (x, 1) = 0.

(ii) ζ k = 2: store, in this case we set µ 1 (x, 1) = 0 and σ 1 (x, 1) = 0.

(iii) ζ k = 3: generate, in this case we set µ 1 (x, 1) = -1 and σ 1 (x, 1) = 0.

For a given strategy α = (τ k , ζ k ) k , we denote by L α t the controlled water level in the upper reservoir. It satisfies the equation

L α t = L 0 + t 0 µ 1 (L α s , α s )ds + t 0 σ 1 (L α s , α s )dW s , t ≥ 0 .
Denote by P the electricity price process and suppose that it is a diffusion defined on (Ω, G, P) by

P t = P 0 + t 0 µ 2 (P s )ds + t 0 σ 2 (P s )dW s , t ≥ 0 .
Let X α be the controlled process defined by X α = L α P

. Then it satisfies the SDE

X α t = X 0 + t 0 µ(X α s , α s )ds + t 0 σ(X α s , α s )dW s , t ≥ 0 , with µ = µ1 µ2
and σ = σ1 σ2

. Suppose also that the cost of changing the regime from i to j is given by a constant c(i, j). The expected pay-off for a strategy α is then given by

J(0, X 0 , α) = E T 0 -P t dL α t - τ k ≤T c(ζ k-1 , ζ k ) = E T 0 f (X α t , α t )dt - τ k ≤T c(ζ k-1 , ζ k )
where f is defined by

f (p, ℓ, i) = -p × µ 1 (ℓ, i) for all (p, ℓ, i) ∈ R × R × {1, 2, 3}.
Since the reservoir capacity is not infinite, the strategy α has to satisfy the constraint 0 ≤ L α t ≤ ℓ max for all t ∈ [0, T ]. This corresponds to the general constraint X α t ∈ D where D = R × [0, ℓ max ]. The goal of the energy producer is to maximize J(0, X 0 , α) over the strategies α satisfying the constraint on the water level L α .

Valuation of natural ressources

The following model comes from [START_REF] Brennan | Evaluating natural resource extraction[END_REF]. We consider an agent that holds a mine that produces a single homogeneous commodity. We suppose that the commodity price S is given by

S t = S 0 + t 0 µ 1 (S u )du + t 0 σ 1 (S u )dW u , t ≥ 0 .
The agent can choose to extract or not the commodity from the mine. Thus, the strategy α consists in a sequence of F-stopping times (τ k ) k representing the intervention times and a sequence of F τ k -measurable random variables (ζ k ) k representing the changes of regime. There are two possible regimes.

(i) ζ k = 1: extraction, in this case we set µ 2 (x, 1) = -1 and σ 2 (x, 1) = 0. (ii) ζ k = 0: no extraction, in this case we set µ 2 (x, 2) = 0 and σ 2 (x, 2) = 0.
For a strategy α = (τ k , ζ k ) k , we denote by Q α t the physical inventory of the mine at time t. Therefore, it satisfies the equation

Q α t = Q 0 + t 0 µ 2 (Q α s , α s )ds + t 0 σ 2 (Q α s , α s )dW s , t ≥ 0 .
Denote by X α the controlled process defined by

X α = S Q α . Then it satisfies the SDE X α t = X 0 + t 0 µ(X α s , α s )ds + t 0 σ(X α s , α s )dW s , t ≥ 0 , with µ = µ1 µ2 and σ = σ1 σ2
. Suppose also that the cost of changing the regime from i to j is given by a constant c(i, j). The expected pay-off for a strategy α is then given by

J(0, X 0 , α) = E T 0 S t dQ α t - τ k ≤T c(ζ k-1 , ζ k ) = E T 0 f (X α t , α t )dt - τ k ≤T c(ζ k-1 , ζ k ) where f is defined by f (s, q, i) = -s × µ 2 (q, i) for all (s, q, i) ∈ R × R × {0, 1}.
Since the physical inventory is non-negative, the strategy α has to satisfy the constraint Q α t ≥ 0 for all t ∈ [0, T ]. This corresponds to the general constraint X α t ∈ D where D = R × R + . Thus, the aim of the agent is to maximize J(0, X 0 , α) over the strategies α satisfying the constraint on the inventory Q α .

Reversible technology investment

We present a simplified version of the model studied in [START_REF] Vath | A mixed singular/switching control problem for a dividend policy with reversible technology investment[END_REF]. We consider a firm whose activities generate cash process by using some technology. The firm has at any time the possibility to choose between two technologies: a modern one and an old one. Therefore, its strategy α consists in a sequence of F-stopping times (τ k ) k representing the times of change of technology and a sequence of F τ k -measurable random variables (ζ k ) k representing the chosen technology at each time τ k . Thus, there are two possible regimes.

(i) ζ k = 1: old technology, in this case we set µ(x, 1) = δ 1 x and σ(x, 1) = γ 1 x.

(ii) ζ k = 2: modern technology, in this case we set µ(x, 2) = δ 2 x and σ(x, 2) = γ 2 x.
Here γ 1 , γ 2 , δ 1 and δ 2 are four constants with δ 1 < δ 2 and γ 1 < γ 2 (the modern technology has a better rate but a worse uncertainty than the old technology). For a strategy α = (τ k , ζ k ) k , we denote by X α t the cash reserve at time t of the firm. We suppose that it satisfies the equation

X α t = X 0 + t 0 µ(X α s , α s )ds + t 0 σ(X α s , α s )dW s , t ≥ 0 .
We also suppose that the cost of changing the technology from i to j is given by a constant c(i, j). Then the expected pay-off at terminal time T for a strategy α is given by

J(0, X 0 , α) = E X α T - τ k ≤T c(ζ k-1 , ζ k )
We suppose that the firm have to satisfy the following solvency constraint X α t ≥ 0 for all t ∈ [0, T ]. This corresponds to the constraint domain D = R + . Thus, the goal of the firm is to maximize J(0, X 0 , α) over the strategies α satisfying the constraint on the cash reserve R α .

Unconstrained penalized switching problem 4.1 An unconstrained penalized approximating problem

We now introduce an approximation of our initial constrained problem. This approximation consists in a penalization of the coefficients f and g out of the domain D where the controlled underlying diffusion is constrained to stay.

Consider, for n ≥ 1, the functions f n : R d × I → R and g n : R d × I → R defined by

f n (x, i) = f (x, i) -nΘ n (x) , (4.1) 
g n (x, i) = g(x, i) -nΘ n (x) , (4.2) 
for all (x, i) ∈ R d × I, where the function Θ n : R d → [0, 1] is given by

Θ n (x) = n d x, D ∧ 1 n = nd(x, D) ∧ 1 , (4.3) with d(x, D) = inf x ′ ∈D |x -x ′ | for all x ∈ R d .
Given an initial condition (t, x) and a switching control α = (τ k , ζ k ) k≥0 ∈ A t , we consider the total penalized profit starting from (t, x, i) ∈ [0, T ] × R d × I at horizon T , defined by:

J n (t, x, α) = E g n X t,x,α T , α T + T t f n X t,x,α s , α s ds - k≥1 c X t,x,α τ k , ζ k-1 , ζ k 1 τ k ≤T .
We can then define the penalized unconstrained value function

v n : [0, T ] × R d × I → R by v n (t, x, i) = sup α∈A t,i J n (t, x, α) , (4.4) 
for all n ≥ 1 and all (t, x, i)

∈ [0, T ] × R d × I, where A t,i is the set of strategies α = (τ k , ζ k ) k≥0 ∈ A t such that ζ 0 = i.

Convergence of the penalized unconstrained problems

We now state the main result of this section which concerns the convergence of the functions v n to v. The main line of the proof is to take a sequence of almost optimal strategies for the functions v n and to make it converge to a strategy that we expect to be optimal. To do this, we need to prove measurability and convergence results for diffusion driven by a converging sequence of Brownian motions. These results are presented in details in the Appendix A.1.

Theorem 4.1. Under (H1) and (H2), the sequence (v n ) n≥1 is nonincreasing and converges on [0, T ] × D × I to the function v:

v n (t, x, i) ↓ v(t, x, i) as n ↑ +∞, (4.5) 
for all (t, x, i) ∈ [0, T ] × D × I. Moreover, for any (t, x, i) ∈ [0, T ] × D × I, there exists a strategy α * ∈ A D t,x,i such that

v(t, x, i) = J(t, x, α * ) . Proof. Fix (t, x, i) ∈ [0, T ] × D × I. Since f n+1 ≤ f n and g n+1 ≤ g n we get J n+1 (t, x, α) ≤ J n (t, x, α) ,
for all n ≥ 1 and α ∈ A t . From this last inequality we deduce that

v n+1 (t, x, i) ≤ v n (t, x, i) , n ≥ 1 .
We now prove that (v n ) n converges to v. We first notice that

J n (t, x, α) = J(t, x, α) ,
for any n ≥ 1, any initial condition (t, x, i) ∈ [0, T ] × D × I and any switching strategy α ∈ A D t,x,i . Therefore, we get v n ≥ v for all n ≥ 1. Denote by v the pointwise limit of (v n ) n :

v(t, x, i) = lim n→∞ v n (t, x, i) , (t, x, i) ∈ [0, T ] × D × I . Then we have v(t, x, i) ≥ v(t, x, i). If v(t, x, i) = -∞ we obviously get v(t, x, i) = v(t, x, i).
We now suppose that v(t, x, i) > -∞ and prove that v(t, x, i) ≤ v(t, x, i). We proceed in 3 steps.

Step 1. Convergence of a sequence of almost optimal strategies for the unconstrained problems. Substep 1.1. Bounded sequence of almost optimal strategies.

For n ≥ 1, let α n = (τ n k , ζ n k ) k≥0 ∈ A t,i a switching strategy such that J n (t, x, α n ) ≥ v n (t, x, i) - 1 n .
We can suppose without loss of generality that

τ n k ∈ [0, T ] ∪ {T + 1} P -a.s. (4.6)
for all n ≥ 1 and all k ≥ 0. Indeed, fix n ≥ 1 and consider the strategy αn = (τ n k , ζn k ) k≥0 ∈ A t,i defined by We define for η > 0 and C > 0 the subset

τ n k = τ n k 1 τ n k ≤T + (T + 1)1 τ n k >T , ζn k = ζ n k 1 τ n k ≤T + i1 τ n k >T . Then we have J n (t, x, α n ) = J n (t, x,
K C η of C([0, T ], R d ) by K C η = ℓ≥1 K C η,ℓ
where

K C η,ℓ = h ∈ C([0, T ], R d ) : h(0) = 0 and mc δ ℓ (h) ≤ C 2 ℓ δ ℓ ln 2T δ ℓ η
and mc denotes the modulus of continuity defined by

mc δ (h) = sup s, t ∈ [0, T ] |s -t| ≤ δ h(s) -h(t)
for any h ∈ C([0, T ], R d ) and any δ > 0. Using Arzéla-Ascoli theorem, we get from (4.7) that

K C η is a compact subset of C([0, T ], R d ). We now define the subset K C η of C([0, T ], R d )× R + × I N by K C η = K C η × [0, T + 1] × I N .
From Tychonov theorem and since

K C η is compact, we get that K C η is a compact subset of C([0, T ], R d ) × R + × I N endowed with the norm • defined by h, (t k , z k ) k≥0 = sup t∈[0,T ] |h(t)| + k≥0 (|t k | + |z k |) ∧ 1 2 k for all h ∈ C([0, T ], R d ) and (t k , z k ) k≥0 ∈ (R + × I) N .
We then have from (4.6)

P (W, α n ) ∈ K C η = P W ∈ K C η
for all η > 0, C > 0 and n ≥ 1. Using Markov inequality we get

P W ∈ K C η = 1 -P W / ∈ K C η ≥ 1 - ℓ≥1 P W / ∈ K C η,ℓ ≥ 1 - ℓ≥1 E mc δ ℓ (W ) C 2 ℓ δ ℓ ln 2T δ ℓ η . (4.8) 
From Theorem 1 in [START_REF] Fischer | On the moments of the modulus of continuity of Itô processes[END_REF], there exists a constant C * such that

E mc δ (W ) ≤ C * δ ln 2T δ . (4.9) 
for all δ > 0. Therefore, we get from (4.8) and (4.9)

P (W, α n ) ∈ K C * η ≥ 1 -η ,
for all η ∈ (0, 1), and the sequence (W, α n ) n is tight. We deduce from Prokhorov theorem that, up to a subsequence,

P • (W, α n ) -1 ---→ n→∞ L.
with L a probability measure on

C([0, T ], R d ) × (R × I) N , • .
Step 2. Change of probability space.

Since C([0, T ], R d ) × (R × I) N ,
• is separable, we get from the Skorokhod representation theorem that there exists a probability space ( Ω, G, P) on which are defined Brownian motions W n , n ≥ 1, and W , and random variables αn = (τ n k , ζn k ) k≥0 , n ≥ 1, and α = (τ k , ζk ) k≥0 such that

P • ( W n , αn ) -1 = P • (W, α n ) -1 (4.10)
for all n ≥ 1 and

W n , αn -W , α P-a.s. ----→ n→∞ 0 . (4.11)
In particular we get Since (W, α n ) and ( W n , αn ) have the same law, we deduce from (H1) and (H2) that 

L = P • ( W , α) -1 . Substep 2.
J n (t, x, α n ) = Jn (t, x, αn ) ≥ v n (t, x, i) - 1 n , n ≥ 1 . ( 4 
D ε = x ′ ∈ R d : d(x ′ , D) < ε .
Suppose that there exists some ε > 0 such that

E P T t 1 D c ε ( Xt,x,α s )ds > 0 .
From (4.15) and the dominated convergence theorem we can find η > 0 and n η ≥ 1 such that, up to a subsequence,

E P T t 1 D c ε ( Xt,x,α n s )ds ≥ η
for all n ≥ n η . From the definition of f n and g n and the previous inequality, there exists a constant C such that

J(t, x, αn ) ≤ CE P sup s∈[t,T ] Xt,x,α n s -nη for any n ≥ 1 ε ∨ n η .
Sending n to infinity we get from (4.12) and (2.2) applied on ( Ω, G, P)

v(t, x, i) = lim n→∞ Jn (t, x, αn ) = -∞ which contradicts v(t, x, i) > -∞.
We therefore obtain

E P T t 1 D c ε ( Xt,x,α s )ds = 0
for all ε > 0 and

E P T t 1 { Xt,x,α s /
∈D} ds = 0. Since Xt,x,α is continuous, we get

P Xt,x,α ∈ D , ∀s ∈ [t, T ] = 1 .
Step 3. Back to (Ω, G, P) and conclusion.

We construct α * ∈ A t,i such that (W, α * ) has the same law as ( W , α). Using Proposition A.2 we can find Borel functions ψ k and φ k , k ≥ 1 such that τk = ψ k ( Ws ) s∈[0,T ] and ζk = φ k ( Ws ) s∈[0,T +1] Pa.s.

for all k ≥ 0. Define the strategy

α * = (τ * k , ζ * k ) k≥0 by τ * k = ψ k (W s ) s∈[0,T ] and ζ * k = φ k (W s ) s∈[0,T +1]
for all k ≥ 0. Obviously (W, α * ) has the same law as ( W , α). Moreover, from Proposition A.3, each τ * k is an F-stopping time and each

ζ * k is F τ * k -measurable.
We deduce that α * ∈ A t,i . Using Substep 2.3 we also get α * ∈ A D t,x,i . From (4.12) and (4.13) we get, up to a subsequence,

J (t, x, α) ≥ lim sup n→∞ Jn (t, x, αn ) = lim sup n→∞ J n (t, x, α n ) ≥ v(t, x, i) .
Since (W, α * ) and ( W , α) have the same law and α * ∈ A D t,x,i we get

v(t, x, i) ≥ J(t, x, α * ) = J(t, x, α) ≥ v(t, x, i) .
2 In general, proving a regularity result on the value function of a constrained optimization problem is very technical (see e.g. [START_REF] Soner | Optimal control with state-space constraint I[END_REF] or [START_REF] Katsoulakis | Viscosity Solutions of Second Order Fully Nonlinear Elliptic Equations with State Constraints[END_REF]). In our case, Theorem 4.1 gives a semiregularity for v. Proof. Fix i ∈ I. From (H1) and (H2) the value function v n (., i) associated to the penalized optimal switching problem is continuous on [0, T ) × R d (see e.g. [START_REF] Bouchard | A stochastic target formulation for optimal switching problems in finite horizon[END_REF]). From Theorem 4.1, the function v(., i) is upper semicontinuous on [0, T ) × D as an infimum of continuous functions. 2

5 Dynamic programming and variational inequalities

The dynamic programming principle

In this section we state the dynamic programming principle. We first need the following lemmata. We postpone their proofs to the Appendix A.2 to focus on the dynamic programming principle and its proof.

Lemma 5.1. Under (H2), the functions f n and g n are locally Lipschitz continuous and have polynomial growth:

• for any n ≥ 1 and any R > 0, there exists a constant L R,n such that

|g n (x, i) -g n (x ′ , i)| + |f n (x, i) -f n (x ′ , i)| ≤ L R,n |x -x ′ |, for all x, x ′ ∈ R d such that |x| ≤ R and |x ′ | ≤ R
, and all i ∈ I.

• for any n ≥ 1, there exists a constant C n such that

|g n (x, i)| + |f n (x, i)| ≤ C n 1 + |x| q ,
for all x ∈ R d and all i ∈ I.

Lemma 5.2. Under (H1) and (H2), there exists a constant C such that

v n (t, x, i) ≤ C 1 + |x| q (5.1)
for all n ≥ 1 and all (t, x, i) ∈ [0, T ] × D × I.

We are now able to state the dynamic programming principle.

Theorem 5.1. Under (H1) and (H2), the value function v satisfies the following dynamic programming equality:

v(t, x, i) = sup α=(τ k ,ζ k ) k ∈A D t,x,i E ν t f (X t,x,α s , α s )ds - t≤τ k ≤ν c(X t,x,α τ k , ζ k-1 , ζ k ) +v ν, X t,x,α ν , α ν . (5.2) 
for any (t, x, i) ∈ [0, T ] × D × I, and any stopping time ν valued in [t, T ].

Proof. We first notice that the l.h.s. of (5.2) is well defined. Indeed, for a given stopping time ν valued in [t, T ] and a strategy α ∈ A D t,x,i , we get from the regularity of v given by Corollary 4.1 that the random quantity v ν, X t,x,α ν , α ν is measurable. Moreover, from Lemma 5.2, (2.2) and the inequality v ≤ v n , we get that its expectation is well defined. Fix (t, x, i) ∈ [0, T ] × D × I. If A D t,x,i = ∅ then the two hand sides of (5.2) are equal to -∞ so the equality holds.

Suppose now that A D t,x,i = ∅ and let α = (τ k , ζ k ) k ∈ A D t,x,i and ν a stopping time valued in [t, T ]. From Lipschitz properties of f n and g n given by Lemma 5.1, we have by Lemma 4.4 in [START_REF] Bouchard | A stochastic target formulation for optimal switching problems in finite horizon[END_REF] 

v n (t, x, i) ≥ E ν t f n X t,x,α s , α s ds - t≤τ k ≤ν c X t,x,α τ k , ζ k-1 , ζ k + v n ν, X t,x,α ν , α ν , for all n ≥ 1. Since α ∈ A D t,x,i we have from the definition of f n , f n (X t,x,α s , α s ) = f (X t,x,α s , α s )
for dP ⊗ ds-almost all (s, ω) ∈ [t, T ] × Ω. From Theorem 4.1, Lemma 5.2, (2.2) and the monotone convergence theorem, we get by sending n to infinity

v(t, x, i) ≥ E ν t f X t,x,α s , α s ds - t≤τ k ≤ν c X t,x,α τ k , ζ k-1 , ζ k + v ν, X t,x,α ν , α ν .
We now prove the reverse inequality. From the definitions of the performance criterion and the value functions, the law of iterated conditional expectations and Markov property of our model, we get the successive relations

J(t, x, α) = E ν t f (s, X t,x,α s , α s )ds - t≤τ k ≤ν c(X t,x,α τ k , ζ k-1 , ζ k ) +E g(X t,x,α T ) + T ν f (X t,x,α s , α s )ds - ν<τ k ≤T c(X t,x,α τ k , ζ k-1 , ζ k ) F ν = E ν t f X t,x,α s , α s ds - t≤τ k ≤ν c X t,x,α τ k , ζ k-1 , ζ k + J ν, X t,x,α ν , α ≤ E ν t f X t,x,α s , α s ds - t≤τ k ≤ν c X t,x,α τ k , ζ k-1 , ζ k + v ν, X t,x,α ν , α ν .
Since ν and α are arbitrary, we obtain the required inequality. 2

Viscosity properties

We prove in this section that the function v is a solution to a system of variational inequalities. More precisely we consider the following PDE

min - ∂v ∂t -Lv -f, v -Hv = 0 on [0, T ) × D × I, (5.3) 
min vg, v -Hv = 0 on {T } × D × I.

(5.4)

where L is the second order local operator defined by

Lv(t, x, i) = µ ⊺ Dv + 1 2 tr[σσ ⊺ D 2 v)] (t, x, i)
and H is the nonlocal operator defined by

Hv(t, x, i) = max j ∈ I j = i v(t, x, j) -c(x, i, j)
for all (t, x, i) ∈ [0, T ] × D × I. As usual, the value functions need not be smooth, and even not known to be continuous a priori. So, we shall work with the notion of (discontinuous) viscosity solutions (see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]). Generally, for PDEs arising in optimal control problems involving state constraints, we need the notion of constrained viscosity solution introduced by [START_REF] Soner | Optimal control with state-space constraint I[END_REF] for first order equations to take into account the boundary conditions induced by the state constraints. For a locally bounded function u on [0, T ] × D × I, we define its lower semicontinuous (lsc for short) envelope u * , and upper semicontinuous (usc for short) envelope u * by u * (t, x, i) = lim inf

(t ′ , x ′ ) → (t, x), (t ′ , x ′ ) ∈ [0, T ) × D u(t ′ , x ′ , i), u * (t, x, i) = lim sup (t ′ , x ′ ) → (t, x), (t ′ , x ′ ) ∈ [0, T ) × D u(t ′ , x ′ , i).
for all (t, x, i) ∈ [0, T ] × D × I. We now give the definition of a constrained viscosity solutions to (5.3) and (5.4). 

min - ∂ϕ ∂t (t, x, i) -Lϕ(t, x, i) -f (x, i) , u(t, x, i) -Hu(t, x, i) ≥ (resp. ≤) 0 for any (t, x, i) ∈ [0, T ) × Int(D) × I (resp. (t, x, i) ∈ [0, T ) × D × I), and any ϕ ∈ C 1,2 ([0, T ] × R d , R) such that ϕ(t, x) -u(t, x, i) = max [0,T ]×D (ϕ -u(., i)) resp. min [0,T ]×D (ϕ -u(., i))
and min u(T, x, i)g(x, i) , u(T, x, i) -Hu(T, x, i) ≥ ( resp. ≤) 0

for any x ∈ Int(D) (resp. x ∈ D). We can now state the viscosity property of v.

Theorem 5.2. Suppose that the function v is locally bounded. Under (H1) and (H2), v is a constrained viscosity solution to (5.3)- (5.4).

Proof of the super-solution property on [0, T ) × Int(D) × I. First, for any (t, x, i) ∈ [0, T ) × D × I, we see, as a consequence of (5.2) applied to ν = t, and by choosing any admissible control α ∈ A D t,x,i with immediate switch j at t, that v(t, x, i) ≥ Hv(t, x, i) .

(5.5)

Now, let ( t, x, i) ∈ [0, T ) × Int(D) × I and ϕ ∈ C 1,2 ([0, T ] × R d , R) s.t. ϕ( t, x) -v * ( t, x, i) = max [0,T ]×D (ϕ -v * (., i)). (5.6)
Since v ≥ Hv on [0, T ) × Int(D) × I, we get from the definition of the operator H and (H2) (i)

v * ( t, x, j) ≥ v * ( t, x, j) -c(x, i, j) ,
for all j ∈ I. Therefore we obtain v * ( t, x, i) ≥ Hv * ( t, x, i) .

So it remains to show that

- ∂ϕ ∂t ( t, x, i) -Lϕ( t, x, i) -f (x, i) ≥ 0 . (5.7)
From the definition of v * there exists a sequence (t m , x m ) m valued in [0, T ) × Int(D) s.t.

(t m , x m , v(t m , x m , i)) ----→ m→∞ ( t, x, v * ( t, x, i))
. 

By continuity of ϕ, γ m := v(t m , x m , i) -ϕ(t m , x m ) -v * ( t, x, i) + ϕ( t,
((t m - η 2 ) ∧ 0, t m + η 2 ) × B(x m , η 2 ) ⊂ ((t -η) ∧ 0, t + η) × B(x, η) ⊂ [0, T ) × Int(D) .
Let us consider an admissible control α m in A D tm,xm,i with no switch until the first exit time τ m before T of the associated process (s, X m s ) := (s,

X tm,xm,α m s ) from (t m -η 2 , t m + η 2 ) × B(x m , η
2 ):

τ m := inf s ≥ t m : (s -t m ) ∨ |X m s -x m | ≥ η 2 .
Consider also a strictly positive sequence (h m ) m s.t. h m and γ m /h m converge to 0 as m goes to infinity. By using the dynamic programming principle (5.2) for v(t m , x m , i) and

ν = τm := inf{s ≥ t m : (s -t m ) ∨ |X m s -x m | ≥ η 4 } ∧ (t m + h m ), we get v(t m , x m , i) = γ m + v * ( t, x, i) -ϕ( t, x, i) + ϕ(t m , x m , i) ≥ E τm tm f (X m s , i)ds + v τm , X m τm , i .
Using (5.6), we obtain

v(t m , x m , i) ≥ E τm tm f (X m s , i)ds + ϕ τm , X m τm .
Applying Itô's formula to ϕ(s, X m s ) between t m and τm and since σ(X m s , i)Dϕ(s, X m s ) is bounded for s ∈ [t m , τm ], we obtain

γ m h m + E 1 h m τm tm - ∂ϕ ∂t -Lϕ -f (s, X m s , i)ds ≥ 0 , (5.8) 
for all m ≥ 1. From the continuity of the process X m , we have

P ∃m, ∀m ′ ≥ m : τm ′ = t m ′ + h m ′ = 1 .
Hence, by the mean-value theorem, the random variable inside the expectation in (5.8) converges a.s. to (-∂ϕ ∂t -Lϕf )( t, x, i) as m goes to infinity. We conclude by the dominated convergence theorem and get (5.7). 2

Proof of the sub-solution property on [0, T ) × D × I. We first recall that v

* = v on [0, T ) × D × I from Remark 5.1. Let ( t, x, i) ∈ [0, T ) × D × I and ϕ ∈ C 1,2 ([0, T ] × R d , R) s.t. ϕ( t, x) -v( t, x, i) = min [0,T ]×D (ϕ -v(., i)).
(5.9)

If v( t, x, i) ≤ Hv( t, x, i) then the sub-solution property trivially holds. Consider now the case v( t, x, i) > Hv( t, x, i) and argue by contradiction by assuming on the contrary that

η := - ∂ϕ ∂t ( t, x) -Lϕ( t, x, i) -f (x, i) > 0 .
By continuity of ϕ and its derivatives, there exists some δ > 0 such that t + δ < T and 

- ∂ϕ ∂t -Lϕ -f (t, x, i) ≥ η 2 , ( 5 
v( t, x, i) ≤ E τ t f ( Xm s , i) - t≤τ m n ≤τ c( Xm τ m n , ζm n , ζm n ) + v(τ, Xm τ , i) + 1 m
where Xm := X t,x, αm . By choosing τ = τm := τ m 1 ∧ ν m where

ν m := inf{s ≥ t : (s, Xm s ) / ∈ V}
is the first exit time of (s, Xm s ) from V, we then get

v( t, x, i) ≤ E τ m t f ( Xm s , i)ds + E v(τ m , Xm τ m , i)1 ν m <τ m 1 +E [v(τ m , Xm τ m , ζm 1 ) -c( Xm τ m , i, ζm 1 )]1 ν m ≥τ m 1 + 1 m ≤ E τ m t f ( Xm s , i)ds + E v(τ m , Xm τ m , i)1 ν m <τ m 1 +E Hv(τ m , Xm τ m , i)1 ν m ≥τ m 1 + 1 m . (5.11)
Now, since v ≥ Hv on [0, T ] × D × I and αm ∈ A D t,x,i , we obtain from (5.9)

ϕ( t, x, i) ≤ E τm t f ( Xm s , i)ds + ϕ(τ m , Xm τ m ) + 1 m .
Applying Itô's formula to ϕ(s, Xm s ) between t m and τ m we get:

0 ≤ E τ m tm ( ∂ϕ ∂t + Lϕ + f )(s, Xm s , i) + 1 m ≤ - η 2 E τ m -t + 1 m . This implies lim m→+∞ E[τ m ] = t .
(5.12)

From the definition of ν m and (5.12) we have, up to a subsequence,

P ν m ≥ τ m 1 ----→ m→∞ 1 .
(5.13)

On the other hand, we get from (5.11)

v( t, x, i) ≤ E τm t f ( Xm s , i)ds + P ν m < τ m 1 sup (t ′ ,x ′ )∈Adh(V) v(t ′ , x ′ , i) + P ν m ≥ τ m 1 sup (t ′ ,x ′ )∈Adh(V) Hv(t ′ , x ′ , i) + 1 m .
From Lemma 5.2, (5.12) and ( 5.13) we get by sending m to ∞ v( t, x, i) ≤ sup

(t ′ ,x ′ )∈Adh(V)
Hv(t ′ , x ′ , i) .

Since v = v * , we get by sending m to infinity and δ to zero

v( t, x, i) ≤ (Hv) * ( t, x, i) ≤ Hv( t, x, i) ,
which is the required contradiction. 2

Proof of the viscosity super-solution property on {T } × Int(D) × I. Fix some (x, i) ∈ Int(D) × I, and consider a sequence (t m , x m ) m≥1 valued in [0, T ) × Int(D), such that

t m , x m , v(t m , x m , i) ----→ m→∞ (T, x, v * (T, x, i) .
Let δ > 0 s.t. B(x, δ) ∈ Int(D). We first can suppose w.l.o.g. that

B(x m , δ 2 ) ⊂ B(x, δ) (5.14) 
for all m ≥ 1. By taking a strategy

α m = (τ m k , ζ m k ) k ∈ A D tm,xm,i with no switch before ν m := inf{s ≥ t m , X m s / ∈ B(x m , δ 2 )} ∧ T with X m := X tm,xm,α m , we have from (5.2) applied to τ m := inf{s ≥ t m , X m s / ∈ B(x m , δ 4 )} ∧ T and α m v(t m , x m , i) ≥ E τ m tm f (X m s , i)ds + E v(τ m , X m τ m , i)
Since v(T, .) = g we obtain from (5.14)

v(t m , x m , i) ≥ E τ m tm f (X m s , i)ds + E v(τ m , X m τ m , i)1 τ m <T + E g(X m τ m , i)1 τ m =T ≥ E τ m tm f (X m s , i)ds + P τ m < T inf t < T x ∈ Adh(B(x, δ)) v(t, x, i) +P τ m = T inf x∈Adh(B(x,δ))
g(x) . ----→ m→∞ 0 .

From the convergence of (x m ) m to x ∈ Int(D), we deduce that

P τ m = T ----→ m→∞ 1 .
Sending m to infinity and δ to 0 in (5.15) we get

v * (T, x, i) ≥ g(x, i) . (5.16) 
On the other hand, we know from (5.5) that v ≥ Hv on [0, T ) × Int(D), and thus

v(t m , x m , i) ≥ Hv(t m , x m , i) ≥ Hv * (t m , x m , i),
for all m ≥ 1. Recalling that Hv * is lsc, we obtain by sending m to infinity

v * (T, x, i) ≥ Hv * (T, x, i).
Together with (5.16), this proves the required viscosity super-solution property of (5.4). 2

Proof of the viscosity sub-solution property on {T } × D × I. We argue by contradiction by assuming that there exists (x, i) ∈ D × I such that min v * (T, x, i)g(x, i) , Hv * (T, x, i) := 2ε > 0.

(5.17)

One can find a sequence of smooth functions (ϕ n ) n≥0 on [0, T ] × R d such that ϕ n converges pointwisely to v * (., i) on [0, T ] × D × I as n → ∞. Moreover, by (5.17) and the upper semicontinuity of v * , we may assume that the inequality min ϕ ng(., i) , ϕ nmax j∈I {v * (., j) + c(., i, j)} ≥ ε, (

holds on some bounded neighborhood

B n of (T, x) in [0, T ] × D, for n large enough. Let (t m , x m ) m≥1 be a sequence in [0, T ) × D such that t m , x m , v(t m , x m , i) ----→ m→∞ (T, x, v * (T, x, i) .
Then there exists δ n > 0 such that B n m := [t m , T ] × B(x m , δ n ) ⊂ B n for m large enough, so that (5.18) holds on B n m . Since v is locally bounded, there exists some η > 0 such that |v * | ≤ η on B n . We can then assume that ϕ n ≥ -2η on B n . Let us define the smooth function φn m by

φn m (t, x) := ϕ n (t, x) + 4η |x -x m | 2 |δ n | 2 + √ T -t for (t, x) ∈ [0, T ) × Int(D) and observe that (v * -φn m )(t, x, i) ≤ -η, (5.19) 
for (t, x) ∈ [t m , T ] × ∂B(x m , δ n ). Since ∂ √ T -t ∂t -→ -∞ as t → T , we have for m large enough - ∂ φn m ∂t -L φn m (., i) ≥ 0 on B n m . (5.20) 
Let α m = (τ m j , ζ m j ) j be a 1 m -optimal control for v(t m , x m , i) with corresponding state process X m = X tm,xm,α m , and denote by

θ m n = inf s ≥ t m : (s, X m s ) / ∈ B n m ∧ τ m 1 ∧ T . From (5.2) we have v(t m , x m , i) - 1 m ≤ E θ m n tm f (X m s , i)ds + E 1 θ m n <τ m 1 ∧T v(θ m n , X m θ m n , i) (5.21) + E 1 θ m n =T <τ m 1 g(X m θ m n , i) +E 1 τ m 1 =θ m n ≤T v τ m 1 , X m τ m 1 , ζ m 1 + c(X m τ m 1 , i, ζ m 1 )
. Now, by applying Itô's Lemma to φm n (s, X m s ) between t m and θ m n we get from (5.18), (

φn m (t m , x m ) ≥ E 1 θ m n <τ m 1 φn m (θ m n , X m θ m n ) + E 1 τ m 1 ≤θ m n φn m τ m 1 , X m τ m 1 ≥ E 1 θ m n <τ m 1 ∧T v * (θ m n , X m θ m n , i) + η + E 1 θ m n =T <τ m 1 g(X m θ m n , i) + ε + E 1 τ m 1 =θ m n ≤T v * τ m 1 , X m τ m 1 , ζ m 1 + c(X k τ m 1 , i, ζ m 1 ) + ε . 5.19) and (5.20) 
Together with (5.21), this implies

φn m (t m , x m ) ≥ v(t m , x m , i) -E θ m n tm f (X m s , i)ds - 1 m + ε ∧ η.
Sending m, and then n to infinity, we get the required contradiction:

v * (T, x, i) ≥ v * (T, x, i)+ ε ∧ η. 2 
6 Uniqueness result

Maximality of the value function as a solution to the SVI

In general, the uniqueness of a viscosity solution to some PDE is given by a comparison theorem. Such a result says that for u an usc super-solution and and w a lsc sub-solution, we have u ≥ w. Applying this result to u = v * the lsc envelope of v and w = v * the usc envelope of v we would get that v * = v * and v would be continuous. As the counter-example presented in Subsection 2.2 shows, such a property cannot hold for SVI (5.3)-(5.4).

We therefore provide a weaker characterization of v. To this end, we introduce, for n ≥ 1, the SVI with penalized coefficients defined on the whole space [0, T ] × R d × I:

min - ∂v ∂t -Lv -f n , v -Hv = 0 on [0, T ) × R d × I, (6.22) min v -g n , v -Hv = 0 on {T } × R d × I. (6.23) 
Under assumption (H1) and (H2), we can use Lemma 5.1 to apply Proposition 5.1 in [START_REF] Bouchard | A stochastic target formulation for optimal switching problems in finite horizon[END_REF] and we get from Proposition 4.12 in [START_REF] Bouchard | A stochastic target formulation for optimal switching problems in finite horizon[END_REF] the following comparison result for this PDE.

Theorem 6.3. Suppose that (H1) and (H2) hold. Let u and w be respectively a subsolution and a super-solution to (6.22)-(6.23). Suppose that there exists two constants C u > 0 and C w > 0 and an integer γ ≥ 1 such that

u(t, x, i) ≤ C u 1 + |x| γ w(t, x, i) ≥ -C w 1 + |x| γ for all (t, x, i) ∈ [0, T ] × R d × I. Then we have u ≤ w on [0, T ] × R d × I.
We now introduce the following additional assumption on the function v.

(H3) There exists a constant C > 0 and an integer q ≥ 1 such that v(t, x, i) ≥ -C 1 + |x| q (6.24) for all (t, x, i) ∈ [0, T ] × D × I.

We give in the next subsection, some examples where (H3) is satisfied. We can state our maximality result as follows. Step 2. Viscosity property of wn .

For C n and ρ n such that (6.27),(6.28) and (6.29) hold, we obtain that wn is a viscosity subsolution to (6.22)-(6.23). Indeed, let ϕ

∈ C 1,2 ([0, T ] × R d , R) and (t, x, i) ∈ [0, T ] × R d × I such that ( w * n -ϕ)(t, x, i) = max [0,T ]×R d ×I ( w * n -ϕ) . (6.30)
We first notice from (6.29) that the upper semicontinuous envelope w * n of wn is given by w

* n (t, x, i) = w * (t, x, i) for (t, x, i) ∈ [0, T ] × D × I , -C n e -ρnt 1 + |x| 2η for (t, x, i) ∈ [0, T ] × (R d \ D) × I . (6.31) 
We now prove that wn is a sub-solution to (6.22)-(6.23). Using (6.28), (6.31) and the viscosity sub-solution property of w, we get w * n ≤ g n on {T } × R d × I .

For the viscosity property on [0, T ) × R d × I, we distinguish two cases.

• Case 1: (t, x, i) ∈ [0, T ) × D × I. From (6.30) and (6.31), we have

( w * n -ϕ)(t, x, i) = max [0,T ]×D×I ( w * n -ϕ) .
Since w is a constrained viscosity solution to (5.3)-(5.4) and f = f n on D we get

min - ∂ϕ ∂t (t, x, i) -Lϕ(t, x, i) -f n (t, x, i), ϕ(t, x, i) -H w * n (t, x, i) ≤ 0 . • Case 2: (t, x, i) ∈ [0, T ) × (R d \ D) × I.
From (6.27), (6.31) we also get

min - ∂ϕ ∂t (t, x, i) -Lϕ(t, x, i) -f n (t, x, i), ϕ(t, x, i) -H w * n (t, x, i) ≤ 0 .
Therefore, wn is a viscosity sub-solution to (6.22)-(6.23).

Step 3. Growth condition on v n . We prove that for each n ≥ 1 there exists a constant C n > 0 such that

v n (t, x, i) ≥ -C n 1 + |x| 2q , (t, x, i) ∈ [0, T ] × R d × I . Fix (t, x, i) ∈ [0, T ] × R d × I
, and denote by 0 α = ( 0 τ k , 0 ζ k ) k the trivial strategy of A t,i i.e. 0 τ 0 = t, 0 ζ 0 = i and 0 τ k > T for k ≥ 1. Then we have

v n (t, x, i) ≥ J n (t, x, 0 α)
From the definition of J n , (2.2) and Lemma 5.1 there exists a constant Cn > 0 such that

v n (t, x, i) ≥ -Cn 1 + |x| q .
for all (t, x, i) ∈ [0, T ] × R d × I.

Step We notice that the counter-example given in the Sub-section 2.2 also satisfies Assumption (H3). In particular this gives an example where the classical uniqueness does not hold and where our maximality result is valid.

Sufficient conditions for (H3)

We end this Section by providing explicit examples where (H3) is satisfied. The idea consists in constructing switching strategies with finite number of switches and satisfying the constraint imposed on the controlled diffusion. This allows to get a lower bound for the value function. Thanks to the estimate of Lemma 5.2, this proves the polynomial growth of the value function.

The first example deals with the case where there exists a regime that stops the controlled diffusion. By switching immediately on it, we keep the controlled diffusion stays in D. The second example considers the case where for any initial condition there exists an associated regime that keeps the associated diffusion in D. By switching on such a regime at the first time the diffusion meets the boundary ∂D of D, we get a strategy satisfying the constraint. Finally, the last example concerns the case of a convex domain D. Using a viability condition involving the normal cone we also ensure the existence of a regime keeping the diffusion in D. We notice that all the presented conditions are satisfied by the examples presented in Section 3. Proposition 6.1. (i) Suppose that for any x ∈ ∂D there exists i x ∈ I such that µ(x, i x ) = 0 and σ(x, i x ) = 0, then (H3) holds.

(ii) Suppose that for each (t, x) ∈ [0, T ] × D, there exists i t,x ∈ I such that the process X t,x defined by

X t,x s = x + s t µ(X t,x r , i t,x )dr + s t σ(X t,x r , i t,x )dW r , s ≥ t , satisifies P X t,x s ∈ D, ∀s ∈ [t, T ] = 1 . (6.32)
Then (H3) is satisfied.

(iii) Suppose that D is convex and there exists i * ∈ I such that

p ⊺ µ(x, i * ) + 1 2 tr[σ(x, i * )σ(x, i * ) ⊺ A)] ≤ 0
for all x ∈ ∂D and all (p, A) ∈ N 2 D (x) where N 2 D (x) is the second order normal cone to D at x defined by

N D (x) = (p, A) ∈ R d × S d : p ⊺ (y -x) + 1 2 (y -x) ⊺ A(y -x) ≤ o(|y -x| 2 )
as y → x and y ∈ D , and S d is the set of d × d symmetric matrices.. Then (H3) holds.

Proof. (i) Fix an initial condition (t, x, i) ∈ [0, T ]× D × I. Let X t,x be the diffusion defined by

X t,x s = x + s t µ(X t,x r , i)dr + s t σ(X t,x r , i)dW r , s ≥ t .
Consider the strategy α :

(τ k , ζ k ) k defined by (τ 0 , ζ 0 ) = (t, i), τ 1 = inf s ≥ 0 : X s ∈ ∂D ζ 1 = i Xτ 1 and τ k > T and ζ k = ζ 1 for k ≥ 2.
We then have µ(X t,x,α s , α s )=0 and σ(X t,x,α s , α s ) = 0 for s ∈ [τ 1 , T ]. Therefore, we get α ∈ A D t,x,i and v(t, x, i) ≥ J(t, x, α) .

From (2.2) and (H2) (ii) there exists a constant C > 0 such that

v(t, x, i) ≥ -C(1 + |x| q ) .
By combining this inequality with Lemma 5.2, we get (H3).

(ii) Fix (t, x, i) ∈ [0, T ] × D × I. Consider the strategy α = (τ k , ζ k ) k defined by (τ 0 , ζ 0 ) = (t, i), (τ 1 , ζ 1 ) = (t, i t,x
) and τ k > T for k ≥ 2. From (6.32) we get α ∈ A D t,x,i . We then have v(t, x, i) ≥ J(t, x, α) .

From (2.2) and (H2) (ii) there exists a constant C > 0 such that

v(t, x, i) ≥ -C(1 + |x| q ) .
This inequality with Lemma 5.2 give (H3).

We Pa.s.
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Proposition A.3. Let (Ω i , G i , P i ), i = 1, 2, be two compete probability spaces. Suppose that each (Ω i , G i , P i ) is endowed with a Brownian motion W i and denote by F i = (F i t ) t the filtration satisfying usual conditions generated by W i .

Fix (τ i , ζ i ) a couple of random variables defined on (Ω i , G i , P i ) for i = 1, 2 and suppose that

• τ 1 is an F 1 -stopping time, • ζ 1 is F 1 τ 1 -measurable • (W 2 , τ 2 , ζ 2 
) has the same law as (W 1 , τ 1 , ζ 1 ).

Then τ 2 is an F 2 -stopping time and ζ 2 is F 2 τ 2 -measurable.

Proof. Since τ 1 is an F 1 -stopping time and F 1 is the complete right-continuous filtration of (W 1 s ) s≥0 , we can write from Remark 32, Chapter 2 in [START_REF] Dellacherie | Probabilités et Potentiel[END_REF] for any r ≥ 0 and any ε > 0,

ψ (W 1 s ) s∈[0,r+ε] ≤ 1 τ 1 ≤r ≤ ψ (W 1 s ) s∈[0,r+ε]
and

P 1 ψ (W 1 s ) s∈[0,r+ε] = ψ (W 1 s ) s∈[0,r+ε] = 0
where ψ and ψ are two Borel functions. Since (W 1 , τ 1 ) and (W 2 , τ 2 ) have the same law we get

P 2 ψ (W 2 s ) s∈[0,r+ε] ≤ 1 τ 2 ≤r ≤ ψ (W 2 s ) s∈[0,r+ε] = 1 
and

P 2 ψ (W 2 s ) s∈[0,r+ε] = ψ (W 2 s ) s∈[0,r+ε] = 0 .
Since F 2 is complete this implies that 1 τ 2 ≤r is F 2 r+ε -measurable. Using the right-continuity of F 2 , we deduce that 1 τ 2 ≤r is F 2 r -measurable and τ 2 is an F 2 -stopping time. By the same argument, we get that the random variable ζ 2 1 τ 2 ≤r is F 2 r -measurable for all r ≥ 0, which is equivalent to the F 2 τ 2 -measurability of ζ 2 . 2

We now provide two results on measurability and convergence for a sequence of processes defined on the same space but with different filtrations.

We fix in the sequel a complete probability space (Ω, G, P) on which is defined a sequence of Brownian motions (B n ) n≥0 . For n ≥ 0, we denote by F n = (F n t ) t≥0 the complete rightcontinuous filtration generated by B n . Proposition A.4. For n ≥ 1, let τ n be an F n -stopping time and ζ n be an F n τ n -measurable random variable. We suppose that (i) B n converges to B 0 :

sup t∈[0,T ] |B n t -B 0 t | P-a.s.
----→ n→∞ 0 ,

(ii) the sequences (τ n ) n≥1 and (ζ n ) n≥1 are uniformly bounded, (iii) there exist random variables τ 0 and ζ 0 such that

(τ n , ζ n ) P-a.s. ----→ n→∞ (τ 0 , ζ 0 ) .
Then, τ 0 is an F 0 -stopping time and ζ 0 is F 0 τ -measurable.

Proof. We first prove that τ 0 is an F 0 -stopping time. Fix t > 0 and define for p ≥ 1, the bounded and continuous functions Φ p by Φ p (x) = 1 x≤t-1 p + p1 t-1 p <x≤t (tx) , x ∈ R + From Theorem 3.1 in [START_REF] Briand | Donsker-Type Theorem for BSDEs[END_REF] and (iii) we get

E Φ p (τ n )|F n t P ---→ n→∞ E Φ p (τ 0 )|F 0 t .
Since τ n is an F n -stopping time we have E[Φ p (τ n )|F n t ] = Φ p (τ n ). Indeed, we can write Φ p = lim k∞ Φ k p where Φ k p is defined by

Φ k p (x) = 1 x≤t-1 p + k j=1 j kp 1 t-j kp <x≤t-j-1 kp , x ∈ R + .
Then since τ n is an F n stopping time, the random variable Φ k p (τ n ) is F n t -measurable. Sending k to infinity, we get that Φ p (τ n ) is F n t -measurable. Since Φ p is continuous we get from (iii) Φ p (τ n ) P-a.s.

----→ n→∞ Φ p (τ 0 ). Therefore Φ p (τ 0 ) = E[Φ p (τ 0 )|F 0 t ]. Sending p to infinity we get 1 τ 0 ≤t = E[1 τ 0 ≤t |F 0 t ] and τ 0 is a F 0 -stopping time since F 0 is complete.

To prove that ζ 0 is F 0 τ 0 -measurable, we proceed in the same way and consider ζ n Φ p (τ n ) instead of Φ p (τ n ) for n ≥ 0.

2

We now turn to stability of diffusions. Then, for a given deterministic initial condition X 0 , we can define for each n ≥ 0, the solution X n to the SDE To prove this result we cannot use classical estimates on diffusions processes since the driving Brownian motion evolves with n. In particular the stochastic integrals a n dB 0 are not defined. We therefore need to use approximations by step processes as done in the construction of the Itô integral.

Proof. We proceed in two steps.

Step 1. We first consider the case where the b n and a n do not depend on the variable x. For p ≥ 1, Let H p be an F-adapted piecewise constant process of the form From this last equality and (A.37), we get (A.38).

Step 2. We now consider the general case. For n ≥ 0, we denote by (X n,p ) p≥0 the sequence of processes defined by Sending p to ∞, we get the result. 2

X n,0 t = X 0 , t ≥ 0 ,

x 2 Figure 2 . 3 :

 223 Figure 2.3: Second component of optimal trajectories in the cases x 2 < Tt, i = 1 (red curve) and x 2 ≥ Tt, i = 1 (blue curve) .

  αn ) and we can replace α n by αn which satisfies (4.6). Substep 1.2. Tightness and convergence of (W, α n ) n . We now prove that the sequence of C([0, T ], R d ) × R + × I N -valued random variables (W, α n ) n≥1 is tight. Fix a sequence (δ ℓ ) ℓ of positive numbers such that δ ℓ ---→ ℓ→∞ 0 and 2 ℓ δ ℓ ln 2T δ

Corollary 4 . 1 .

 41 Under (H1) and (H2), the function v(., i) is upper semicontinuous on [0, T ) × D for all i ∈ I.

Remark 5 . 1 .

 51 From Corollary 4.1 and the definition of the usc envelope we have v = v * on [0, T ) × D × I. However, this equality may not to be true on {T } × D × I.

Definition 5 . 1 (

 51 Constrained viscosity solutions to (5.3)-(5.4)).

  (i) A function u, lsc (resp. usc) on [0, T ) × D × I, is called a viscosity super-solution on [0, T ) × Int(D) × I (resp. sub-solution on [0, T ) × D × I) to (5.3)-(5.4) if we have

(

  ii) A locally bounded function u on [0, T ] × D × I is called a constrained viscosity solution to (5.3)-(5.4) if its lsc envelope u * is a viscosity super-solution to (5.3)-(5.4) on [0, T ]× Int(D) × I and its usc envelope u * is a viscosity sub-solution on [0, T ] × D × I to (5.3)-(5.4).

(5. 15 )

 15 Since E[sup s∈[tm,T ] |X m sx m |] converges to zero (see e.g. Corollary 12, Section 5, Chapter 2 in [13]), we have, up to a subsequence, sup s∈[tm,T ] |X m sx m | P-a.s.

Theorem 6 . 4 .Step 1 .

 641 Under (H1), (H2) and (H3) the function v is the maximal constrained viscosity solution to (5.3)-(5.4) satisfying (6.24): for any function w :[0, T ] × D × I → R such that• w is a constrained viscosity solution to (5.3)-(5.4),• there exists a constant C and an integer η ≥ 1 such thatw(t, x, i) ≥ -C 1 + |x| η (6.25) for all (t, x, i) ∈ [0, T ] × D × I, we have v ≥ w on [0, T ] × D × I.Proof. Let w : [0, T ] × D × I → R be a constrained viscosity solution to (5.3)-(5.4) satisfying (6.25). We proceed in four steps to prove that w ≤ v. Extension of the definition of w to [0, T ] × R d × I.For n ≥ 1, we define the function wn on [0, T ] × R d × I bywn (t, x, i) = w(t, x, i) for (t, x, i) ∈ [0, T ] × D × I , -C n e -ρnt 1 + |x| 2η for (t, x, i) ∈ [0, T ] × (R d \ D) × I .(6.26)where ρ n and C n are two positive constants. From (H1), (H2), Lemma 5.1 and (6.25), we can find ρ n and C n (large enough) such that-∂ wn ∂t -L wnf n ≤ 0 on [0, T ) × (R d \ D) × I , (6.27) wng n ≤ 0 on {T } × R d × I , (6.28) and wn (t, x, i) ≥ -C n e -ρnt 1 + |x| 2η for (t, x, i) ∈ [0, T ) × R d × I . (6.29)

  For n ≥ 0, we fix random functions bn : [0, T ] × Ω × R d → R d and a n : [0, T ] × Ω × R d → R d×d . We suppose that (HA) (i) For each n ≥ 0, b n and a n are F n -progressive⊗B(R d )-measurable, (ii) there exists δ > 0 such that E T 0 |b n (t, 0)| 2+δ + |a n (t, 0)| 2+δ dt < +∞ , n ≥ 0 , (iii) there exists a constant L such that |b n (t, x)b n (t, x ′ )| + |a n (t, x)a n (t, x ′ )| ≤ L|xx ′ | , x, x ′ ∈ R d , n ≥ 0 .

  s, x)a 0 (s, x) 2 ds + E T 0 |b n (s, x)b 0 (s, x)| 2 ds -----→ n→+∞ 0 , (A.37)for all x ∈ R d . Then, under (HA), we have

Hp k 1 0 a n dB n - T 0 H p dB 0 2 ≤ 2 E T 0 a n dB n - T 0 H p,n dB n 2 +E T 0 H p,n dB n - T 0 H p dB 0 2 . 0 a n dB n - T 0 H

 100200200200 [t p k ,t p k+1 ) (t) , t ∈ [0, T ] where Hp k ∈ L 2+δ (Ω, F t p k , P) for 0 ≤ k ≤ N p , such that E t) , t ∈ [0, T ] .We can write the following decompositionE T (A.41) From (A.36), we can apply Proposition 2 in [5] and we get ≤ k ≤ N p . (A.42) In particular we get from (A.36) and (A.42) get from (A.37), (A.44) and (A.45) lim sup n→∞ E T p,n dB n 2 ≤ 1 p . From this last inequality, (A.40), (A.41) and (A.43)

| 2 ≤ 2 ≤

 22 s, X n,p s )dB n s , t ≥ 0 , for p ≥ 0. From (HA) (ii) and since X 0 is deterministic, we get by induction on p thatE sup t∈[0,T ] |X n,p t | 2+δ < ∞for all n, p ≥ 1. Still using an induction we get from Step 1 that p ≥ 0. From argument on diffusion processes, we have (see e.g. the proof of Theorem 2ψ(p)where ψ(p) → 0 as p → +∞. 2ψ(p) .

1

  Measurability properties for αn and α. We now prove that each τk is an F-stopping time and ζ k is Fτ k -measurable where F = ( Ft ) t≥0 is the complete right-continuous filtration generated by W .For n ≥ 1, denote by Fn = ( Fn t ) t≥0 the complete right-continuous filtration generated by W n . Using Proposition A.3, we get from (4.10) that τ n k is an Fn -stopping time and that ζn k is Fn -measurable for all n ≥ 1 and k ≥ 0. Then using Proposition A.4, we get from (4.11) that τk is an F-stopping time and that ζk is Fτ k -measurable for all k ≥ 0. Substep 2.2. Equality of the penalized gains and convergence of the associated controlled diffusions.From the previous substep, we can define the diffusions Xt,x,α n and Xt,x,α on ( Ω, G, P) by

	τ n k									
	Xt,x,α n s	= x +	t	s	b( Xt,x,α n r	, αn r )dr +	t	s	σ( Xt,x,α n r	, αn r )d W n r , s ≥ t,
	and									
	Xt,x,α									
						T	f n	Xt,x,α n
						t				

s = x + s t b( Xt,x,α r , αr )dr + s t σ( Xt,x,α r , αr )d Wr , s ≥ t, and the associated gains J n (t, x, αn ) and J(t, x, α) by Jn (t, x, αn ) = E P g n Xt,x,α n T , αn T + s , αn s ds -k≥1 c Xt,x,α n τ n k , ζn k-1 , ζn k 1 τ n k <T and J(t, x, α) = E P g Xt,x,α T , αT + T t f Xt,x,α s , αs ds -k≥1 c Xt,x,α τk , ζk-1 , ζk 1 τk <T .

  x) converges to 0 as m goes to infinity. Since ( t, x) ∈ [0, T ) × Int(D), there exists η > 0 s.t. for m large enough, t m < T and

  4. Comparison on [0, T ] × R d × I. From Proposition 4.2 in[START_REF] Bouchard | A stochastic target formulation for optimal switching problems in finite horizon[END_REF], we know that v n is a viscosity solution to (6.22)-(6.23). Using the results of Steps 2 and 3, we can apply Theorem 6.3 to wn and v n with γ = 2η + q, and we getwn (t, x, i) ≤ w * n (t, x, i) ≤ v n (t, x, i) , for all (t, x, i) ∈ [0, T ] × R d × I.Sending n to infinity and using Theorem 4.1 and (6.26), we get w ≤ v on [0, T ] × D × I. 2

	Remark 6.2.

  Taking ψ = lim sup n→∞ ψn we get τ = ψ (B s ) s∈[0,M ] P-a.s.We now turn toζ. Since ζ is H τ -measurable, ζ1 τ ≤t is H t -measurable for all t ≥ 0.Using τ ≤ M P-a.s. we get ζ is H M -measurable. Using Remark 32, Chapter 2 in[START_REF] Dellacherie | Probabilités et Potentiel[END_REF] as previously done, we get a Borel function φ such thatζ = φ (B s ) s∈[0,M +1]

	then get from (A.33), (A.34) and (A.35)		
	lim sup			
	and			
	P lim sup n→∞	ψ n (B s ) s∈[0,M ] = lim sup n→∞	ψk n (B s ) s∈[0,M ]	= 0

n→∞ ψ n (B s ) s∈[0,M ] ≤ τ ≤ lim sup n→∞ ψn (B s ) s∈[0,M ] , Pa.s.

(iii) From Proposition 8 and Remark 9 in [START_REF] Goreac | LP Approach to Dynamic programming principles for Stochastic Control problems with State Constraints[END_REF] we get that for any initial condition (t, x, i) ∈ [0, T ] × D × I, the control α = (τ k , ζ k ) k defined by (τ 0 , ζ 0 ) = (t, i)

and τ k > T for k ≥ 2, satisfies α ∈ A D t,x,i . We then have v(t, x, i) ≥ J(t, x, α) .

From (2.2) and (H2) (ii) there exists a constant C > 0 such that

Using Lemma 5.2, we get (H3) from this last inequality . 2

A Appendix

A.

Additional results on convergence and measurability

We first present two results about stopping times and measurability.

Proposition A.2. Let (Ω, G, P) be a complete probability space endowed with a Brownian motion B. Let H = (H) t≥0 be the complete right-continuous filtration generated by B, τ an H-stopping time and ζ an H τ -measurable random variable. Suppose that there exists a constant M such that P(τ ≤ M ) = 1. Then there exist two Borel functions ψ and φ such that

Proof. Since τ ≤ M P-a.s. we can write

Since τ is a H-stopping time and H is the complete right-continuous extension of the natural filtration of B, we can write from Remark 32, Chapter 2 in [7] 

for all x, x ′ ∈ R d and i ∈ I. Since d(., D) is Lipschitz continuous, we get from the definition of Θ n and (H2) (i) the existence of a constant L R,n such that

We turn to the grow property. From the definition of f n we have

for all x ∈ R d and i ∈ I. Since d(., D) is Lipschitz continuous, it has a linear growth and we get from the definition of Θ n and (H2) (ii) that there exists a constant C n such that

The proof is the same for the function g n . 2

Proof of Lemma 5.2. Fix n ≥ 1 and (t, x, i) ∈ [0, T ] × D × I. Using the definition of f n and g n we have

J n (t, x, α) ≤ J 1 (t, x, α) (A.47) for any α ∈ A t,i . From (2.2) and (H2) there exists a constant C such that J 1 (t, x, α) ≤ C 1 + |x| q for any α ∈ A t,i . From (A.47) and the definition of v n (t, x, i), we get (5.1). 2