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Abstract

We study an optimal switching problem with a state constraint: the controller is

only allowed to choose strategies that keep the controlled diffusion in a closed domain.

We prove that the value function associated with this problem is the limit of value

functions associated with unconstrained switching problems with penalized coefficients,

as the penalization parameter goes to infinity. This convergence allows to set a dynamic

programming principle for the constrained switching problem. We then prove that the

value function is a solution to a system of variational inequalities (SVI for short) in the

constrained viscosity sense. We finally prove that uniqueness for our SVI cannot hold

and we give a weaker characterization of the value function as the maximal solution

to this SVI. All our results are obtained without any regularity assumption on the

constraint domain.
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equalities, energy management.
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1 Introduction

Optimal control of multiples switching regimes consists in looking for the value of an opti-

mization problem where the allowed strategies are sequences of interventions. It naturally

arises in many applied disciplines where it is not realistic to assume that the involved quanti-

ties can be continuously controlled. More precisely, the optimal switching problem supposes

that the control strategies are sequences α = (τk, ζk)k where the sequence (τk)k represents

the intervention times of the controller and ζk corresponds to the level of intervention of

the agent at each time τk.

Such a class of strategies allows to consider discrete actions for the controller which can

be more relevant than continuous time controls. Therefore, the modelization with optimal

switching problems has attracted a lot of interest during the last decades (see e.g. Brennan
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and Schwarz [2] for resource extraction, Dixit [8] for production facility problems, Carmona

and Ludkovski [4] for power plant management or Ly Vath, Pham and Villeneuve [14] for

dividend decision problem with reversible technology investment).

Another specificity to take into account in the modelization with optimal switching is the

limitation of the quantities involved in the control problem. Indeed, in most of management

problems the controlled system is subject to a constraint on the possible states that it can

take. For example, a solvency condition is usually imposed to the investors of a financial

market and the energy producer has to take into account the limited storage capacities.

This leads to impose a state constraint on the controlled diffusion X of the form

Xs ∈ D for all s,

where D is a closed set. We therefore need to restrict our control problem to the set AD
t,x

of strategies that keep the controlled diffusion starting from (t, x) in the constraint domain

D. Unfortunately, such a constraint leads to strong difficulties due, in particular, to the

complicated structure of the set valued function (t, x) 7→ AD
t,x. To the best of our knowledge,

no rigorous study of the optimal switching problem in the constrained case has been done

before and our aim is to fill this gap.

In the continuous time control case, H. M. Soner gives in [15] a first study of the con-

strained problem in a deterministic framework where he introduces the notion of constrained

viscosity solutions. To characterize the value function, his approach relies on a continuity

argument under an assumption on the boundary of the constraint domain ∂D. He then

extends this result to the case of piecewise deterministic processes in [16]. The continuous

time stochastic control case is studied by M. A. Katsoulakis in [12]. His approach is also

based on continuity and he imposes some regularity conditions on the constraint domain D.

In our case, such an approach is not possible since the value function may be discontinuous

even for a smooth domain D as shown by the counterexample presented in Subsection 5.1.

Let us also mention the recent approach of D. Goreac et al. presented in [10]. They

formulate the initial problem as a linear problem which concerns the occupation measures

induced by the controlled diffusion processes. Under convexity assumptions, the authors

characterize (see Theorem 11 in [10]) the value function associated to the weak formulation

of the continuous time stochastic control problem under state constraints (the weak formu-

lation means that the controller is allowed to choose the probability space in addition to

the control strategy). Unfortunately, such an approach cannot be applied to the optimal

switching under state constraints since the the set of values taken by the controls is not

convex.

In this work, we present an original approach which allows to deal with the lack of regu-

larity of the associated value function. Moreover, our method does not need any regularity

or convexity assumption. In particular, we only need to assume that the constraint domain

D is closed.

To be more precise, our approach relies on the simple structure of switching controls.

Indeed, they can be seen as random variables taking values in ([0, T ]×I)N where I is a finite

set and T > 0 is a given constant. From Tychonov theorem, we get the compactness of this

space which allows to prove the tightness of a sequence (αn)n of switching strategies and
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hence the convergence in law up to a subsequence. Then applying Skorokhod representation

theorem, we are able to provide a probability space and a sequence (α̃n)n that converges

almost surely to some α̃ and such that α̃n is equal in law to αn for all n.

We use this sequential compactness property in the following way. We first introduce a

sequence (vn)n of unconstrained switching problems with n-penalized terminal and running

reward coefficients out of the constraint domain D. For each penalized switching problems

vn, we take αn as a 1
n -almost optimal strategy for vn and we make α̃n converge to α̃ as

described previously. Then we construct a switching strategy α∗ which is equal in law to

α̃. The strong convergence of α̃n to α̃ allows to prove that α∗ is optimal for the switching

problem under constraint. As a byproduct, we get the convergence of the unconstrained

penalized switching problems to the constrained one. Using existing results on classical op-

timal switching problems, this convergence allows to set a dynamic programming principle

for the constrained switching problem.

We then focus on the PDE characterization of the value function. Using the dynamic

programming principle proved before, we show that the value function is a constrained

viscosity solution to a system of variational inequalities (SVI for short) defined on the con-

straint domain D. We then investigate the uniqueness of a solution to this SVI. The usual

approach to get uniqueness of a viscosity solution consists in proving a comparison theorem

for the PDE. As a consequence of such a comparison theorem, the unique solution has to

be continuous. Unfortunately, the continuity of the value functions is not true in general as

shown by the counterexample given in Subsection 5.1. Therefore, we cannot hope to state

such a uniqueness result for the SVI on D. Instead, we characterize our value function as

the maximal viscosity solution of the SVI under an additional growth assumption. This

maximality property is also obtained from the convergence on the penalized unconstrained

problems to the constrained one.

We end the introduction by the description of the organization of the paper. In Sec-

tion 2 we expose in detail the formulation of the optimal switching problem under state

constraints. We then give an application to electricity production management. In Section

3, we provide an approximation of our constrained problem by unconstrained problems

with penalized coefficients. We prove the convergence of the penalized problems to the

constrained one as the penalization parameter goes to infinity. In Section 4 we state a

dynamic programming principle and we prove that the value function is a constrained vis-

cosity solution to a SVI. Finally, in section 5 we focus on uniqueness. We first show by a

counterexample that we cannot prove uniqueness of a solution to the SVI. Under an addi-

tional growth assumption, we characterize the value function as the maximal constrained

viscosity solution to the SVI. We end by giving examples where this additional growth

condition is satisfied.

2 Problem formulation

2.1 Optimal switching under state constraints

We fix a complete probability space
(

Ω,G,P
)

which is endowed with a Brownian motion

W = (Wt)t≥0 valued in R
d. We denote by F the complete and right continuous filtration
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generated by W . We also consider a terminal time given by a constant T > 0.

Controls. We then define the set At of admissible switching controls at time t ∈ [0, T ]

as the set of double sequences α = (τk, ζk)k≥0 where

• (τk)k≥0 is a nondecreasing sequence of F-stopping times with τ0 = t and limk→∞ τk >

T ,

• ζk is an Fτk -measurable random variables valued in the set I defined by I = {1, . . . ,m}.

With a strategy α = (τk, ζk)k≥0 ∈ At we associate the process (αs)s≥t defined by

αs =
∑

k≥0

ζk1[τk,τk+1)(s) , s ≥ t .

Controlled diffusion. We are given two functions µ : R
d × I → R

d and σ : R
d × I →

R
d×d. We make the following assumption.

(H1) There exists a constant L such that

|µ(x, i) − µ(x′, i)| + |σ(x, i) − σ(x′, i)| ≤ L|x− x′| ,

for all (x, x′, i) ∈ R
d × R

d × I.
For (t, x) ∈ [0, T ] × R

d and α ∈ At we consider the controlled diffusion Xt,x,α defined

by the following SDE

Xt,x,α
s = x+

∫ s

t
µ
(

Xt,x,α
r , αr

)

dr +

∫ s

t
σ
(

Xt,x,α
r , αr

)

dWr , s ≥ t . (2.1)

Under (H1), we have existence and uniqueness of an F-adapted solution Xt,x,α to (2.1) for

any initial condition (t, x) ∈ [0, T ]× R
d and any switching control α ∈ At.

We also have the following classical estimate (see e.g. Corollary 12, Section 5, Chapter

2 in [13]): for any q ≥ 1 there exists a constant Cq such that

sup
α∈At

E

[

sup
s∈[t,T ]

∣

∣Xt,x,α
s

∣

∣

q

]

≤ Cq

(

1 + |x|q
)

(2.2)

for all (t, x) ∈ [0, T ]× R
d.

Expected Payoff. We consider terminal and running reward functions g : R
d × I → R

and f : R
d × I → R and a cost function c : R

d × I × I → R on which we impose the

following assumption.

(H2)

(i) There exists a constant L such that

|g(x, i) − g(x′, i)|+ |f(x, i)− f(x′, i)| + |c(x, i, j) − c(x′, i, j)| ≤ L|x− x′| ,

for all x, x′ ∈ R
d and i, j ∈ I.
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(ii) There exists a constant c̄ > 0, such that

c(x, i, j) ≥ c̄ ,

for all x ∈ R
d and i, j ∈ I.

We then define the functional pay-off J up to time T by

J
(

t, x, α
)

= E

[

g
(

Xt,x,α
T , αT

)

+

∫ T

t
f
(

Xt,x,α
s , αs

)

ds−
∑

k≥1

c
(

Xt,x,α
τk

, ζk−1, ζk
)

1τk≤T

]

for all (t, x) ∈ [0, T ]× R
d and α ∈ At.

Under (H1) and (H2) we get from (2.2) that J
(

t, x, α
)

is well defined for any initial

condition (t, x) ∈ [0, T ] × R
d and any control α ∈ At.

State constraint. Let D be a nonempty closed subset of Rd. For (t, x, i) ∈ [0, T ]×D×I
we denote by AD

t,x,i the set of strategies α ∈ At such that ζ0 = i and

P

(

Xt,x,α
s ∈ D for all s ∈ [t, T ]

)

= 1 .

Value function. We then define the value function v associated with the switching prob-

lem under state constraints by

v(t, x, i) = sup
α∈AD

t,x,i

J
(

t, x, α
)

(2.3)

for all (t, x, i) ∈ [0, T ] × D × I, with the convention v(t, x, i) = −∞ if AD
t,x,i = ∅. Our aim

is to give an analytic characterization of the function v.

2.2 An example of application: a hydroelectric pumped storage model

We present in this subsection an energy management model involving an optimal switching

problem under state constraint.

The following simplified hydroelectric pumped storage model is inspired by [4]. Pumped

Storage (currently, the dominant type of electricity storage) consists of large reservoir of

water held by a hydroelectric dam at a higher elevation. When desired, the dam can be

opened which activates the turbines and moves the water to another, lower reservoir. The

generated electricity is sold to a power grid. As the water flows, the upper reservoir is

depleted. Conversely, in times of low electricity demand, the water can be pumped back

into the reservoir with required energy purchased from grid. A strategy α consists in a

sequence of F-stopping times (τk)k representing the intervention times and a sequence of

Fτk -measurable random variables (ζk)k representing the changes of regime. There are three

possible regimes.

(i) ζk = 1 : pump, in this case we set µ1(x, 1) = 1 and σ1(x, 1) = 0.
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(ii) ζk = 2: store, in this case we set µ1(x, 1) = 0 and σ1(x, 1) = 0.

(iii) ζk = 3: generate, in this case we set µ1(x, 1) = −1 and σ1(x, 1) = 0.

For a given strategy α = (τk, ζk)k, we denote by Lα
t the controlled water level in the upper

reservoir. It satisfies the equation

Lα
t = L0 +

∫ t

0
µ1(L

α
s , αs)ds+

∫ t

0
σ1(L

α
s , αs)dWs , t ≥ 0 .

Denote by P the electricity price process and suppose that it is a diffusion defined on

(Ω,G,P) by

Pt = P0 +

∫ t

0
µ2(Ps)ds+

∫ t

0
σ2(Ps)dWs , t ≥ 0 .

If we denote by Xα the controlled process defined by Xα =

(

Lα

P

)

then it satisfies the

SDE

Xα
t = X0 +

∫ t

0
µ(Xα

s , αs)ds+

∫ t

0
σ(Xα

s , αs)dWs

with µ =

(

µ1

µ2

)

and σ =

(

σ1

σ2

)

. Suppose also that the cost of changing the regime from

i to j is given by a constant c(i, j). The expected pay-off for a given strategy α is then

given by

J(0,X0, α) = E

[

∫ T

0
−PtdL

α
t −

∑

τk≤T

c(ζk−1, ζk)
]

= E

[

∫ T

0
f(Xα

t , αt)dt−
∑

τk≤T

c(ζk−1, ζk)
]

where f is defined by f(p, ℓ, i) = −p× µ1(ℓ, i) for all (p, ℓ, i) ∈ R× R× {0, 1, 2}.
Since the reservoir capacity is not infinite, the strategy α has to satisfy the constraint

0 ≤ Lα
t ≤ ℓmax for all t ∈ [0, T ]. This corresponds to the general constraint Xα

t ∈ D where

D = R × [0, ℓmax]. The goal of the energy producer is to maximize J(0,X0, α) over the

strategies α satisfying the constraint on the water level Lα.

3 Unconstrained penalized switching problem

3.1 An unconstrained penalized approximating problem

We now introduce an approximation of our initial constrained problem. This approximation

consists in a penalization of the coefficients f and g out of the domain D where the controlled

underlying diffusion is constrained to stay.

Consider, for n ≥ 1, the functions fn : Rd × I → R and gn : Rd × I → R defined by

fn(x, i) = f(x, i)− nΘn(x) , (3.1)

gn(x, i) = g(x, i) − nΘn(x) , (3.2)
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for all (x, i) ∈ R
d × I, where the function Θn : Rd → [0, 1] is given by

Θn(x) = n
(

d
(

x,D
)

∧ 1

n

)

= nd(x,D) ∧ 1 , (3.3)

with d(x,D) = infx′∈D |x− x′| for all x ∈ R
d.

Given an initial condition (t, x) and a switching control α = (τk, ζk)k≥0 ∈ At, we

consider the total penalized profit starting from (t, x, i) ∈ [0, T ] × R
d × I at horizon T ,

defined by:

Jn(t, x, α) = E

[

gn
(

Xt,x,α
T , αT

)

+

∫ T

t
fn
(

Xt,x,α
s , αs

)

ds−
∑

k≥1

c
(

Xt,x,α
τk

, ζk−1, ζk
)

1τk≤T

]

.

We can then define the penalized unconstrained value function vn : [0, T ]×R
d×I → R by

vn(t, x, i) = sup
α∈At,i

Jn(t, x, α) , (3.4)

for all n ≥ 1 and all (t, x, i) ∈ [0, T ] × R
d × I, where At,i is the set of strategies α =

(τk, ζk)k≥0 ∈ At such that ζ0 = i.

3.2 Convergence of the penalized unconstrained problems

We now state the main result of this section.

Theorem 3.1. Under (H1) and (H2), the sequence (vn)n≥1 is nonincreasing and con-

verges on [0, T ]×D × I to the function v:

vn(t, x, i) ↓ v(t, x, i) as n ↑ +∞, (3.5)

for all (t, x, i) ∈ [0, T ] × D × I. Moreover, for any (t, x, i) ∈ [0, T ] × D × I, there exists a

strategy α∗ ∈ AD
t,x,i such that

v(t, x, i) = J(t, x, α∗) .

Proof. Fix (t, x, i) ∈ [0, T ] ×D × I. Since fn+1 ≤ fn and gn+1 ≤ gn we get

Jn+1(t, x, α) ≤ Jn(t, x, α) ,

for all n ≥ 1 and α ∈ At. From this last inequality we deduce that

vn+1(t, x, i) ≤ vn(t, x, i) , n ≥ 1 .

We now prove that (vn)n converges to v. We first notice that

Jn(t, x, α) = J(t, x, α) ,

for any n ≥ 1, any initial condition (t, x, i) ∈ [0, T ] × D × I and any switching strategy

α ∈ AD
t,x,i. Therefore, we get vn ≥ v for all n ≥ 1. Denote by v̄ the pointwise limit of (vn)n:

v̄(t, x, i) = lim
n→∞

vn(t, x, i) , (t, x, i) ∈ [0, T ] ×D × I .
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Then we have v̄(t, x, i) ≥ v(t, x, i). If v̄(t, x, i) = −∞ we obviously get v̄(t, x, i) = v(t, x, i).

We now suppose that v̄(t, x, i) > −∞ and prove that v̄(t, x, i) ≤ v(t, x, i). We proceed

in 3 steps.

Step 1. Convergence of a sequence of almost optimal strategies for the unconstrained

problems.

Substep 1.1. Bounded sequence of almost optimal strategies.

For n ≥ 1, let αn = (τnk , ζ
n
k )k≥0 ∈ At,i a switching strategy such that

Jn(t, x, α
n) ≥ vn(t, x, i) −

1

n
.

We can suppose without loss of generality that

τnk ∈ [0, T ] ∪ {T + 1} P− a.s. (3.6)

for all n ≥ 1 and all k ≥ 0. Indeed, fix n ≥ 1 and consider the strategy α̂n = (τ̂nk , ζ̂
n
k )k≥0 ∈

At,i defined by

τ̂nk = τnk 1τn
k
≤T + (T + 1)1τn

k
>T ,

ζ̂nk = ζnk 1τn
k
≤T + i1τn

k
>T .

Then we have Jn(t, x, α
n) = Jn(t, x, α̂

n) and we can replace αn by α̂n which satisfies (3.6).

Substep 1.2. Tightness and convergence of (W,αn)n.

We now prove that the sequence of C([0, T ],Rd) ×
(

R+ × I
)N

-valued random variables

(W,αn)n≥1 is tight. Fix a sequence (δℓ)ℓ of positive numbers such that

δℓ −−−→
ℓ→∞

0 and 2ℓδℓ ln
(2T

δℓ

)

−−−→
ℓ→∞

0 . (3.7)

We define for η > 0 and C > 0 the subset KC
η of C([0, T ],Rd) by

KC
η =

⋂

ℓ≥1

KC
η,ℓ

where

KC
η,ℓ =

{

h ∈ C([0, T ],Rd) : h(0) = 0 and mcδℓ(h) ≤ C
2ℓδℓ ln

(

2T
δℓ

)

η

}

and mc denotes the modulus of continuity defined by

mcδ(h) = sup
s, t ∈ [0, T ]

|s − t| ≤ δ

∣

∣h(s)− h(t)
∣

∣

for any h ∈ C([0, T ],Rd) and any δ > 0. Using Arzéla-Ascoli theorem, we get from (3.7)

that KC
η is a compact subset of C([0, T ],Rd). We now define the subsetKC

η of C([0, T ],Rd)×
(

R+ × I
)N

by

KC
η = KC

η ×
(

[0, T + 1]× I
)N
.
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From Tychonov theorem and since KC
η is compact, we get that KC

η is a compact subset of

C([0, T ],Rd)×
(

R+ × I
)N

endowed with the norm ‖ · ‖ defined by

∥

∥

(

h, (tk, zk)k≥0

)
∥

∥ = sup
t∈[0,T ]

|h(t)| +
∑

k≥0

(|tk|+ |zk|) ∧ 1

2k

for all h ∈ C([0, T ],Rd) and (tk, zk)k≥0 ∈ (R+ × I)N. We then have from (3.6)

P

(

(W,αn) ∈ KC
η

)

= P

(

W ∈ KC
η

)

for all η > 0, C > 0 and n ≥ 1. Using Markov inequality we get

P

(

W ∈ KC
η

)

= 1− P

(

W /∈ KC
η

)

≥ 1−
∑

ℓ≥1

P

(

W /∈ KC
η,ℓ

)

≥ 1−
∑

ℓ≥1

E

[

mcδℓ(W )
]

C
2ℓδℓ ln

(

2T
δℓ

)

η

. (3.8)

From Theorem 1 in [9], there exists a constant C∗ such that

E

[

mcδ(W )
]

≤ C∗δ ln
(2T

δ

)

. (3.9)

for all δ > 0. Therefore, we get from (3.8) and (3.9)

P

(

(W,αn) ∈ KC∗

η

)

≥ 1− η ,

for all η ∈ (0, 1), and the sequence (W,αn)n is tight.

We deduce from Prokhorov theorem that, up to a subsequence,

P ◦ (W,αn)−1 −−−→
n→∞

L.

with L a probability measure on
(

C([0, T ],Rd)× (R × I)N, ‖ · ‖
)

.

Step 2. Change of probability space.

Since
(

C([0, T ],Rd)×(R×I)N, ‖·‖
)

is separable, we get from the Skorokhod representation

theorem that there exists a probability space (Ω̃, G̃, P̃) on which are defined Brownian

motions W̃ n, n ≥ 1, and W̃ , and random variables α̃n = (τ̃nk , ζ̃
n
k )k≥0, n ≥ 1, and α̃ =

(τ̃k, ζ̃k)k≥0 such that

P̃ ◦ (W̃ n, α̃n)−1 = P ◦ (W,αn)−1 (3.10)

for all n ≥ 1 and
∥

∥

∥

(

W̃ n, α̃n
)

−
(

W̃ , α̃
)

∥

∥

∥

P̃−a.s.−−−−→
n→∞

0 . (3.11)

In particular we get

L = P̃ ◦ (W̃ , α̃)−1 .
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Substep 2.1 Measurability properties for α̃n and α̃.

We now prove that each τ̃k is an F̃-stopping time and ζk is F̃τ̃k -measurable where F̃ = (F̃t)t≥0

is the complete right-continuous filtration generated by W̃ .

For n ≥ 1, denote by F̃
n = (F̃n

t )t≥0 the complete right-continuous filtration generated

by W̃ n. Using Proposition A.5, we get from (3.10) that τ̃nk is an F̃
n-stopping time and that

ζ̃nk is F̃n
τ̃n
k
-measurable for all n ≥ 1 and k ≥ 0. Then using Proposition A.6, we get from

(3.11) that τ̃k is an F̃-stopping time and that ζ̃k is F̃τ̃k -measurable for all k ≥ 0.

Substep 2.2. Equality of the penalized gains and convergence of the associated controlled

diffusions.

From the previous substep, we can define the diffusions X̃t,x,α̃n
and X̃t,x,α̃ on (Ω̃, G̃, P̃) by

X̃t,x,α̃n

s = x+

∫ s

t
b(X̃t,x,α̃n

r , α̃n
r )dr +

∫ s

t
σ(X̃t,x,α̃n

r , α̃n
r )dW̃

n
r , s ≥ t,

and

X̃t,x,α̃
s = x+

∫ s

t
b(X̃t,x,α̃

r , α̃r)dr +

∫ s

t
σ(X̃t,x,α̃

r , α̃r)dW̃r , s ≥ t,

and the associated gains Jn(t, x, α̃
n) and J(t, x, α̃) by

J̃n(t, x, α̃
n) = E

P̃

[

gn
(

X̃t,x,α̃n

T , α̃n
T

)

+

∫ T

t
fn
(

X̃t,x,α̃n

s , α̃n
s

)

ds −
∑

k≥1

c
(

X̃t,x,α̃n

τ̃n
k

, ζ̃nk−1, ζ̃
n
k

)

1τ̃n
k
<T

]

and

J̃(t, x, α̃) = E
P̃

[

g
(

X̃t,x,α̃
T , α̃T

)

+

∫ T

t
f
(

X̃t,x,α̃
s , α̃s

)

ds−
∑

k≥1

c
(

X̃t,x,α̃
τ̃k

, ζ̃k−1, ζ̃k
)

1τ̃k<T

]

.

Since (W,αn) and (W̃ n, α̃n) have the same law, we deduce from (H1) and (H2) that

Jn(t, x, α
n) = J̃n(t, x, α̃

n) ≥ vn(t, x, i) −
1

n
, n ≥ 1 . (3.12)

We now prove that, up to a subsequence,

lim sup
n→∞

J̃n(t, x, α̃
n) ≤ J̃(t, x, α̃). (3.13)

We first notice that lim supn→∞ J̃n(t, x, α̃
n) ≤ lim supn→∞ J̃(t, x, α̃n). From Proposition

A.7 and (3.11) we have

E
P̃

[

sup
s∈[t,T ]

∣

∣X̃t,x,α̃
s − X̃t,x,α̃n

s

∣

∣

2
]

−−−→
n→∞

0 . (3.14)

We therefore get, up to a subsequence,

sup
s∈[t,T ]

∣

∣

∣
X̃t,x,α̃n

s − X̃t,x,α̃
s

∣

∣

∣

P̃−a.s.−−−−→
n→∞

0 . (3.15)
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This implies with (H2) (i) and (3.11)

g
(

X̃t,x,α̃n

T , α̃n
T

)

+

∫ T

t
f
(

X̃t,x,α̃n

s , α̃n
s

)

ds
P̃−a.s.−−−−→
n→∞

g
(

X̃t,x,α̃
T , α̃T

)

+

∫ T

t
f
(

X̃t,x,α̃
s , α̃s

)

ds .

Moreover, since v̄(t, x, i) > −∞ we have from (H2) (ii)

sup
n≥1

#
{

k ≥ 1 : τ̃nk ≤ T
}

< +∞ , P̃− a.s.

This last estimate, (3.6), (3.11) and (3.15) imply

lim inf
n→∞

∑

k≥1

c
(

X̃t,x,α̃n

τ̃k
, ζ̃nk−1, ζ̃

n
k

)

1τ̃n
k
≤T ≥

∑

k≥1

c
(

X̃ ,t,x,α̃
τ̃k

, ζ̃k−1, ζ̃k
)

1τ̃k≤T , P̃− a.s.

We finaly conclude by using Fatou’s Lemma.

Substep 2.3 The process X̃t,x,α̃ satisfies the constraint X̃t,x,α̃
s ∈ D for all s ∈ [t, T ].

For ε > 0, we define the set Dε by

Dε =
{

x′ ∈ R
d : d(x′,D) < ε

}

.

Suppose that there exists some ε > 0 such that

E
P̃

[

∫ T

t
1Dc

ε
(X̃t,x,α̃

s )ds
]

> 0 .

From (3.15) and the dominated convergence theorem we can find η > 0 and nη ≥ 1 such

that, up to a subsequence,

E
P̃

[

∫ T

t
1Dc

ε
(X̃t,x,α̃n

s )ds
]

≥ η

for all n ≥ nη. From the definition of fn and gn and the previous inequality, there exists a

constant C such that

J̃(t, x, α̃n) ≤ CE
P̃

[

sup
s∈[t,T ]

∣

∣X̃t,x,α̃n

s

∣

∣

]

− nη

for any n ≥ 1
ε ∨ nη. Sending n to infinity we get from (3.12) and (2.2) applied on (Ω̃, G̃, P̃)

v̄(t, x, i) = lim
n→∞

J̃n(t, x, α̃
n) = −∞

which contradicts v̄(t, x, i) > −∞. We therefore obtain

E
P̃

[

∫ T

t
1Dc

ε
(X̃t,x,α̃

s )ds
]

= 0

for all ε > 0 and E
P̃

[

∫ T
t 1

{X̃t,x,α̃
s /∈D}

ds
]

= 0. Since X̃t,x,α̃ is continuous, we get

P̃

(

X̃t,x,α̃ ∈ D , ∀s ∈ [t, T ]
)

= 1 .
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Step 3. Back to (Ω,G,P) and conclusion.

We construct α∗ ∈ At,i such that (W,α∗) has the same law as (W̃ , α̃). Using Proposition

A.4 we can find Borel functions ψk and φk, k ≥ 1 such that

τ̃k = ψk

(

(W̃s)s∈[0,T ]

)

and ζ̃k = φk
(

(W̃s)s∈[0,T+1]

)

P̃− a.s.

for all k ≥ 0. Define the strategy α∗ = (τ∗k , ζ
∗
k)k≥0 by

τ∗k = ψk

(

(Ws)s∈[0,T ]

)

and ζ∗k = φk
(

(Ws)s∈[0,T+1]

)

for all k ≥ 0. Obviously (W,α∗) has the same law as (W̃ , α̃). Moreover, from Proposition

A.5, each τ∗k is an F-stopping time and each ζ∗k is Fτ∗
k
-measurable. We deduce that α∗ ∈

At,i. Using Substep 2.3 we also get α∗ ∈ AD
t,x,i. From (3.12) and (3.13) we get, up to a

subsequence,

J̃(t, x, α̃) ≥ lim sup
n→∞

J̃n(t, x, α̃
n) = lim sup

n→∞
Jn(t, x, α

n) ≥ v̄(t, x, i) .

Since (W,α∗) and (W̃ , α̃) have the same law and α∗ ∈ AD
t,x,i we get

v(t, x, i) ≥ J(t, x, α∗) = J̃(t, x, α̃) ≥ v̄(t, x, i) .

2

In general, proving a regularity result on the value function of a constrained optimization

problem is very technical (see e.g. [15] or [12]). In our case, Theorem 3.1 gives a semi-

regularity for v.

Corollary 3.1. The function v(., i) is upper semicontinuous on [0, T )×D for all i ∈ I.

Proof. Fix i ∈ I. Under (H1) and (H2) the value function vn(., i) associated to the

penalized optimal switching problem is continuous on [0, T ) × R
d (see e.g. [17] or [1]).

From Theorem 3.1, the function v(., i) is upper semicontinuous on [0, T )×D as an infimum

of continuous functions. 2

4 Dynamic programming and variational inequalities

4.1 The Dynamic programming principle

In this section we state the dynamic programming principle. We first need the following

lemmata

Lemma 4.1. Under (H2), the functions fn and gn are Lipschitz continuous: for any n ≥ 1

there exists a constant Cn such that

|gn(x, i)− gn(x
′, i)| + |fn(x, i) − fn(x

′, i)| ≤ Cn|x− x′|,

for all x, x′ ∈ R
d, i ∈ I.

12



Proof. Fix n ≥ 1 and i ∈ I. From the definition of fn we have

|fn(x, i)− fn(x
′, i)| ≤ n

∣

∣Θn(x)−Θn(x
′)
∣

∣+
∣

∣f(x, i)− f(x′, i)
∣

∣ ,

for all x, x′ ∈ R
d and i ∈ I. Since f and d(.,D) are Lipschitz continuous, we get from the

definition of Θn the existence of a constant Cn such that

|fn(x, i) − fn(x
′, i)| ≤ Cn|x− x′| ,

for all x, x′ ∈ R
d. The proof is the same for gn. 2

Lemma 4.2. Under (H1) and (H2), there exists a constant C such that

vn(t, x, i) ≤ C
(

1 + |x|
)

(4.1)

for all n ≥ 1 and all (t, x, i) ∈ [0, T ]×D × I.

Proof. Fix n ≥ 1 and (t, x, i) ∈ [0, T ]×D × I. Using the definition of fn and gn we have

Jn(t, x, α) ≤ J1(t, x, α) (4.2)

for any α ∈ At,i. From (2.2) and (H2) there exists a constant C such that

J1(t, x, α) ≤ C
(

1 + |x|
)

for any α ∈ At,i. From (4.2) and the definition of vn(t, x, i), we get (4.1). 2

We are now able to state the dynamic programming principle.

Theorem 4.1. Under (H1) and (H2), the value function v satisfies the following dynamic

programming equality:

v(t, x, i) = sup
α=(τk ,ζk)k∈A

D
t,x,i

E

[

∫ ν

t
f(Xt,x,α

s , αs)ds −
∑

t≤τk≤ν

c(Xt,x,α
τk

, ζk−1, ζk)

+v
(

ν,Xt,x,α
ν , αν

)]

. (4.3)

for any (t, x, i) ∈ [0, T ]×D × I, and any stopping time ν valued in [t, T ].

Proof. We first notice that the l.h.s. of (4.3) is well defined. Indeed, for a given stopping

time ν valued in [t, T ] and a strategy α ∈ AD
t,x,i, we get from the regularity of v given

by Corollary 3.1 that the random quantity v
(

ν,Xt,x,α
ν , αν

)

is measurable. Moreover, from

Lemma 4.2, (2.2) and the inequality v ≤ vn, we get that its expectation is well defined.

Fix (t, x, i) ∈ [0, T ] × D × I. If AD
t,x,i = ∅ then the two hand sides of (4.3) are equal to

−∞ so the equality holds.

Suppose now that AD
t,x,i 6= ∅ and let α = (τk, ζk)k ∈ AD

t,x,i and ν a stopping time valued

in [t, T ]. From Lipschitz properties of fn and gn given by Lemma 4.1, we have by Lemma

4.4 in [1]

vn(t, x, i) ≥ E

[

∫ ν

t
fn
(

Xt,x,α
s , αs

)

ds−
∑

t≤τk≤ν

c
(

Xt,x,α
τk

, ζk−1, ζk
)

+ vn
(

ν,Xt,x,α
ν , αν

)

]

,
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for all n ≥ 1. Since α ∈ AD
t,x,i we have from the definition of fn,

fn(X
t,x,α
s , αs) = f(Xt,x,α

s , αs)

for dP ⊗ ds-almost all (s, ω) ∈ [t, T ] × Ω. From Theorem 3.1, Lemma 4.2, (2.2) and the

monotone convergence theorem, we get by sending n to infinity

v(t, x, i) ≥ E

[

∫ ν

t
f
(

Xt,x,α
s , αs

)

ds−
∑

t≤τk≤ν

c
(

Xt,x,α
τk

, ζk−1, ζk
)

+ v
(

ν,Xt,x,α
ν , αν

)

]

.

We now prove the reverse inequality. From the definitions of the performance criterion and

the value functions, the law of iterated conditional expectations and Markov property of

our model, we get the successive relations

J(t, x, α) =

E

[

∫ ν

t
f(s,Xt,x,α

s , αs)ds−
∑

t≤τk≤ν

c(Xt,x,α
τk

, ζk−1, ζk)

+E

[

g(Xt,x,α
T ) +

∫ T

ν
f(Xt,x,α

s , αs)ds −
∑

ν<τk≤T

c(Xt,x,α
τk

, ζk−1, ζk)
∣

∣

∣
Fν

]]

=

E

[

∫ ν

t
f
(

Xt,x,α
s , αs

)

ds −
∑

t≤τk≤ν

c
(

Xt,x,α
τk

, ζk−1, ζk
)

+ J
(

ν,Xt,x,α
ν , α

)

]

≤

E

[

∫ ν

t
f
(

Xt,x,α
s , αs

)

ds−
∑

t≤τk≤ν

c
(

Xt,x,α
τk

, ζk−1, ζk
)

+ v
(

ν,Xt,x,α
ν , αν

)

]

.

Since ν and α are arbitrary, we obtain the required inequality. 2

4.2 Viscosity properties

We prove in this section that the function v is a solution to a system of variational inequal-

ities. More precisely we consider the following PDE

min
[

− ∂v

∂t
− Lv − f, v −Hv

]

= 0 on [0, T ) ×D × I, (4.4)

min
[

v − g, v −Hv
]

= 0 on {T} × D × I. (4.5)

where L is the second order local operator defined by

Lv(t, x, i) =
(

µ⊺Dv +
1

2
tr[σσ⊺D2v)]

)

(t, x, i)

and H is the nonlocal operator defined by

Hv(t, x, i) = max
j ∈ I

j 6= i

[

v(t, x, j) − c(x, i, j)
]

for all (t, x, i) ∈ [0, T ]×D×I. As usual, the value functions need not be smooth, and even

not known to be continuous a priori. So, we shall work with the notion of (discontinuous)
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viscosity solutions (see [6]). Generally, for PDEs arising in optimal control problems in-

volving state constraints, we need the notion of constrained viscosity solution introduced

by [15] for first order equations to take into account the boundary conditions induced by

the state constraints.

For a locally bounded function u on [0, T ] × D × I, we define its lower semicontinuous

(lsc for short) envelope u∗, and upper semicontinuous (usc for short) envelope u∗ by

u∗(t, x, i) = lim inf
(t′, x′) → (t, x),

(t′, x′) ∈ [0, T ) × D

u(t′, x′, i), u∗(t, x, i) = lim sup
(t′, x′) → (t, x),

(t′, x′) ∈ [0, T ) × D

u(t′, x′, i).

for all (t, x, i) ∈ [0, T ]×D × I.

Remark 4.1. From Corollary 3.1 and the definition of the usc envelope we have v = v∗

on [0, T )×D × I. However, this equality may not to be true on {T} × D × I.

We now give the definition of a constrained viscosity solutions to (4.4) and (4.5).

Definition 4.1 (Constrained viscosity solutions to (4.4)-(4.5)).

(i) A function u, lsc (resp. usc) on [0, T ) ×D × I, is called a viscosity supersolution on

[0, T )× Int(D)× I (resp. subsolution on [0, T )×D × I) to (4.4)-(4.5) if we have

min
[

− ∂ϕ

∂t
(t, x, i) − Lϕ(t, x, i) − f(x, i) , u(t, x, i) −Hu(t, x, i)

]

≥ (resp. ≤) 0

for any (t, x, i) ∈ [0, T ) × Int(D) × I (resp. (t, x, i) ∈ [0, T ) × D × I), and any

ϕ ∈ C1,2([0, T ] × R
d,R) such that

ϕ(t, x)− u(t, x, i) = max
[0,T ]×D

(ϕ− u(., i))
(

resp. min
[0,T ]×D

(ϕ − u(., i))
)

and

min
[

u(T, x, i) − g(x, i) , u(T, x, i)−Hu(T, x, i)
]

≥ ( resp. ≤) 0

for any x ∈ Int(D) (resp. x ∈ D).

(ii) A locally bounded function u on [0, T ]×D×I is called a constrained viscosity solution

to (4.4)-(4.5) if its lsc envelope u∗ is a viscosity supersolution to (4.4)-(4.5) on [0, T ]×
Int(D)×I and its usc envelope u∗ is a viscosity subsolution on [0, T ]×D×I to (4.4)-

(4.5).

We can now state the viscosity property of v.

Theorem 4.2. Suppose that the function v is locally bounded. Under (H1) and (H2), v

is a constrained viscosity solution to (4.4)-(4.5).

Proof of the supersolution property on [0, T ) × Int(D)× I. First, for any (t, x, i) ∈
[0, T ) × D × I, we see, as a consequence of (4.3) applied to ν = t, and by choosing any

admissible control α ∈ AD
t,x,i with immediate switch j at t, that

v(t, x, i) ≥ Hv(t, x, i) . (4.6)
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Now, let (t̄, x̄, i) ∈ [0, T )× Int(D)× I and ϕ ∈ C1,2([0, T ] ×R
d,R) s.t.

ϕ(t̄, x̄)− v∗(t̄, x̄, i) = max
[0,T ]×D

(ϕ− v∗(., i)). (4.7)

Since v ≥ Hv on [0, T ) × Int(D) × I, we get from the definition of the operator H and

(H2) (i)

v∗(t̄, x̄, j) ≥ v∗(t̄, x̄, j) − c(x̄, i, j) ,

for all j ∈ I. Therefore we obtain

v∗(t̄, x̄, i) ≥ Hv∗(t̄, x̄, i) .

So it remains to show that

−∂ϕ
∂t

(t̄, x̄, i) − Lϕ(t̄, x̄, i) − f(x̄, i) ≥ 0 . (4.8)

From the definition of v∗ there exists a sequence (tm, xm)m valued in [0, T )× Int(D) s.t.

(tm, xm, v(tm, xm, i)) −−−−→
m→∞

(t̄, x̄, v∗(t̄, x̄, i)) .

By continuity of ϕ, γm := v(tm, xm, i)−ϕ(tm, xm)− v∗(t̄, x̄, i)+ϕ(t̄, x̄) converges to 0 as m

goes to infinity. Since (t̄, x̄) ∈ [0, T ) × Int(D), there exists η > 0 s.t. for m large enough,

tm < T and

((tm − η

2
) ∧ 0, tm +

η

2
)×B(xm,

η

2
) ⊂ ((t− η) ∧ 0, t+ η)×B(x, η) ⊂ [0, T ) × Int(D) .

Let us consider an admissible control αm in AD
tm,xm,i with no switch until the first exit time

τm before T of the associated process (s,Xm
s ) := (s,Xtm,xm,αm

s ) from (tm − η
2 , tm + η

2 ) ×
B(xm,

η
2 ):

τm := inf
{

s ≥ tm : (s − tm) ∨ |Xm
s − xm| ≥ η

2

}

.

Consider also a strictly positive sequence (hm)m s.t. hm and γm/hm converge to 0 as

m goes to infinity. By using the dynamic programming principle (4.3) for v(tm, xm, i) and

ν = τ̂m := inf{s ≥ tm : (s− tm) ∨ |Xm
s − xm| ≥ η

4} ∧ (tm + hm), we get

v(tm, xm, i) = γm + v∗(t̄, x̄, i)− ϕ(t̄, x̄, i) + ϕ(tm, xm, i)

≥ E

[

∫ τ̂m

tm

f(Xm
s , i)ds + v

(

τ̂m,X
m
τ̂m , i

)

]

.

Using (4.7), we obtain

v(tm, xm, i) ≥ E

[

∫ τ̂m

tm

f(Xm
s , i)ds + ϕ

(

τ̂m,X
m
τ̂m

)

]

.

Applying Itô’s formula to ϕ(s,Xm
s ) between tm and τ̂m and since σ(Xm

s , i)Dϕ(s,X
m
s ) is

bounded for s ∈ [tm, τ̂m], we obtain

γm
hm

+ E

[ 1

hm

∫ τ̂m

tm

(

− ∂ϕ

∂t
− Lϕ− f

)

(s,Xm
s , i)ds

]

≥ 0 , (4.9)
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for all m ≥ 1. From the continuity of the process Xm, we have

P

(

∃m, ∀m′ ≥ m : τ̂m′ = tm′ + hm′

)

= 1 .

Hence, by the mean-value theorem, the random variable inside the expectation in (4.9)

converges a.s. to (−∂ϕ
∂t

− Lϕ − f)(t̄, x̄, i) as m goes to infinity. We conclude by the

dominated convergence theorem and get (4.8). 2

Proof of the subsolution property on [0, T ) × D × I. We first recall that v∗ = v on

[0, T ) ×D × I from Remark 4.1. Let (t̄, x̄, i) ∈ [0, T ) ×D × I and ϕ ∈ C1,2([0, T ] × R
d,R)

s.t.

ϕ(t̄, x̄)− v(t̄, x̄, i) = min
[0,T ]×D

(ϕ− v(., i)). (4.10)

If v(t̄, x̄, i) ≤ Hv(t̄, x̄, i) then the subsolution property trivially holds. Consider now the

case v(t̄, x̄, i) > Hv(t̄, x̄, i) and argue by contradiction by assuming on the contrary that

η := −∂ϕ
∂t

(t̄, x̄)−Lϕ(t̄, x̄, i)− f(x̄, i) > 0 .

By continuity of ϕ and its derivatives, there exists some δ > 0 such that t̄+ δ < T and

(

− ∂ϕ

∂t
− Lϕ− f

)

(t, x, i) ≥ η

2
, (4.11)

for all (t, x) ∈ V :=
(

(t̄−δ, t̄+δ)∩ [0, T )
)

×B(x̄, δ). By the dynamic programming principle

(4.3), given m ≥ 1, there exists α̂m = (τ̂mn , ζ̂
m
n )n ∈ AD

t̄,x̄,i s.t. for any stopping time τ valued

in [t̄, T ], we have

v(t̄, x̄, i) ≤ E

[

∫ τ

t̄
f(X̂m

s , i)−
∑

t̄≤τ̂mn ≤τ

c(X̂m
τ̂mn
, ζ̂mn , ζ̂

m
n ) + v(τ, X̂m

τ , i)
]

+
1

m

where X̂m := X t̄,x̄,α̂m
. By choosing τ = τ̄m := τ̂m1 ∧ νm where

νm := inf{s ≥ t̄ : (s, X̂m
s ) /∈ V}

is the first exit time of (s, X̂m
s ) from V, we then get

v(t̄, x̄, i) ≤ E

[
∫ τ̄m

t̄
f(X̂m

s , i)ds

]

+ E

[

v(τ̄m, X̂m
τ̄m , i)1νm<τ̂m1

]

+E

[

[v(τ̄m, X̂m
τ̄m , ζ̂

m
1 )− c(X̂m

τ̄m , i, ζ̂
m
1 )]1νm≥τ̂m1

]

+
1

m

≤ E

[
∫ τ̄m

t̄
f(X̂m

s , i)ds

]

+ E

[

v(τ̄m, X̂m
τ̄m , i)1νm<τ̂m1

]

+E

[

Hv(τ̄m, X̂m
τ̄m , i)1νm≥τ̂m1

]

+
1

m
. (4.12)

Now, since v ≥ Hv on [0, T ]×D × I and α̂m ∈ AD
t̄,x̄,i, we obtain from (4.10)

ϕ(t̄, x̄, i) ≤ E

[
∫ τ̄m

t̄
f(X̂m

s , i)ds + ϕ(τ̄m, X̂m
τ̄m)

]

+
1

m
.
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Applying Itô’s formula to ϕ(s, X̂m
s ) between tm and τ̄m we get:

0 ≤ E

[
∫ τ̄m

tm

(
∂ϕ

∂t
+ Lϕ+ f)(s, X̂m

s , i)

]

+
1

m
≤ − η

2
E
[

τ̄m − t̄
]

+
1

m
.

This implies

lim
m→+∞

E[τ̄m] = t̄ . (4.13)

From the definition of νm and (4.13) we have, up to a subsequence,

P
(

νm ≥ τ̂m1
)

−−−−→
m→∞

1 . (4.14)

On the other hand, we get from (4.12)

v(t̄, x̄, i) ≤ E

[
∫ τ̄m

t̄
f(X̂m

s , i)ds

]

+ P
(

νm < τ̂m1
)

sup
(t′,x′)∈Adh(V)

v(t′, x′, i)

+ P
(

νm ≥ τ̂m1
)

sup
(t′,x′)∈Adh(V)

Hv(t′, x′, i) + 1

m
.

From Lemma 4.2, (4.13) and (4.14) we get by sending m to ∞

v(t̄, x̄, i) ≤ sup
(t′,x′)∈Adh(V)

Hv(t′, x′, i) .

Since v = v∗, we get by sending m to infinity and δ to zero

v(t̄, x̄, i) ≤ (Hv)∗(t̄, x̄, i) ≤ Hv(t̄, x̄, i) ,

which is the required contradiction. 2

Proof of the viscosity supersolution property on {T} × Int(D)×I. Fix some (x̄, i)

∈ Int(D)× I, and consider a sequence (tm, xm)m≥1 valued in [0, T ) × Int(D), such that
(

tm, xm, v(tm, xm, i)
)

−−−−→
m→∞

(T, x̄, v∗(T, x̄, i)
)

.

Let δ > 0 s.t. B(x̄, δ) ∈ Int(D). We first can suppose w.l.o.g. that

B(xm,
δ

2
) ⊂ B(x̄, δ) (4.15)

for all m ≥ 1. By taking a strategy αm = (τmk , ζ
m
k )k ∈ AD

tm,xm,i with no switch before νm
:= inf{s ≥ tm, X

m
s /∈ B(xm,

δ
2)} ∧ T with Xm := Xtm,xm,αm

, we have from (4.3) applied

to τm := inf{s ≥ tm, X
m
s /∈ B(xm,

δ
4 )} ∧ T and αm

v(tm, xm, i) ≥ E

[

∫ τm

tm

f(Xm
s , i)ds

]

+ E
[

v(τm,Xm
τm , i)

]

Since v(T, .) = g we obtain from (4.15)

v(tm, xm, i) ≥ E

[

∫ τm

tm

f(Xm
s , i)ds

]

+ E

[

v(τm,Xm
τm , i)1τm<T

]

+ E

[

g(Xm
τm , i)1τm=T

]

≥ E

[

∫ τm

tm

f(Xm
s , i)ds

]

+ P
(

τm < T
)

inf
t < T

x ∈ Adh(B(x̄, δ))

v(t, x, i)

+P
(

τm = T
)

inf
x∈Adh(B(x̄,δ))

g(x) . (4.16)
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Since E[sups∈[tm,T ] |Xm
s − xm|] converges to zero (see e.g. Corollary 12, Section 5, Chapter

2 in [13]), we have, up to a subsequence,

sup
s∈[tm,T ]

|Xm
s − xm| P−a.s.−−−−→

m→∞
0 .

From the convergence of (xm)m to x ∈ Int(D), we deduce that

P
(

τm = T
)

−−−−→
m→∞

1 .

Sending m to infinity and δ to 0 in (4.16) we get

v∗(T, x̄, i) ≥ g(x̄, i) . (4.17)

On the other hand, we know from (4.6) that v ≥ Hv on [0, T ) × Int(D), and thus

v(tm, xm, i) ≥ Hv(tm, xm, i) ≥ Hv∗(tm, xm, i),

for all m ≥ 1. Recalling that Hv∗ is lsc, we obtain by sending m to infinity

v∗(T, x̄, i) ≥ Hv∗(T, x̄, i).

Together with (4.17), this proves the required viscosity supersolution property of (4.5). 2

Proof of the viscosity subsolution property on {T}×D×I. We argue by contradiction

by assuming that there exists (x̄, i) ∈ D × I such that

min
[

v∗(T, x̄, i)− g(x̄, i) ,Hv∗(T, x̄, i)
]

:= 2ε > 0. (4.18)

One can find a sequence of smooth functions (ϕn)n≥0 on [0, T ]×R
d such that ϕn converges

pointwisely to v∗(., i) on [0, T ] × D × I as n → ∞. Moreover, by (4.18) and the upper

semicontinuity of v∗, we may assume that the inequality

min
[

ϕn − g(., i) , ϕn −max
j∈I

{v∗(., j) + c(., i, j)}
]

≥ ε, (4.19)

holds on some bounded neighborhood Bn of (T, x̄) in [0, T ] × D, for n large enough. Let

(tm, xm)m≥1 be a sequence in [0, T )×D such that

(

tm, xm, v(tm, xm, i)
)

−−−−→
m→∞

(T, x̄, v∗(T, x̄, i)
)

.

Then there exists δn > 0 such that Bn
m := [tm, T ]×B(xm, δ

n) ⊂ Bn for m large enough, so

that (4.19) holds on Bn
m. Since v is locally bounded, there exists some η > 0 such that |v∗|

≤ η on Bn. We can then assume that ϕn ≥ −2η on Bn. Let us define the smooth function

ϕ̃n
m by

ϕ̃n
m(t, x) := ϕn(t, x) +

(

4η
|x − xm|2

|δn|2 +
√
T − t

)

for (t, x) ∈ [0, T )× Int(D) and observe that

(v∗ − ϕ̃n
m)(t, x, i) ≤ −η, (4.20)
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for (t, x) ∈ [tm, T ] × ∂B(xm, δ
n). Since

∂
√
T − t

∂t
−→ −∞ as t → T , we have for m large

enough

−∂ϕ̃
n
m

∂t
− Lϕ̃n

m(., i) ≥ 0 on Bn
m. (4.21)

Let αm = (τmj , ζ
m
j )j be a 1

m−optimal control for v(tm, xm, i) with corresponding state

process Xm = Xtm,xm,αm
, and denote by θmn = inf

{

s ≥ tm : (s,Xm
s ) /∈ Bn

m

}

∧ τm1 ∧ T .
From (4.3) we have

v(tm, xm, i) −
1

m
≤ E

[

∫ θmn

tm

f(Xm
s , i)ds

]

+ E

[

1θmn <τm1 ∧T v(θ
m
n ,X

m
θmn
, i)
]

(4.22)

+ E

[

1θmn =T<τm1
g(Xm

θmn
, i)
]

+E

[

1τm1 =θmn ≤T

(

v
(

τm1 ,X
m
τm1
, ζm1

)

+ c(Xm
τm1
, i, ζm1 )

)]

.

Now, by applying Itô’s Lemma to ϕ̃m
n (s,Xm

s ) between tm and θmn we get from (4.19), (4.20)

and (4.21)

ϕ̃n
m(tm, xm) ≥ E

[

1θmn <τm1
ϕ̃n
m(θmn ,X

m
θmn

)
]

+ E

[

1τm1 ≤θmn ϕ̃
n
m

(

τm1 ,X
m
τm1

)

]

≥ E

[

1θmn <τm1 ∧T

(

v∗(θmn ,X
m
θmn
, i) + η

)]

+ E

[

1θmn =T<τm1

(

g(Xm
θmn
, i) + ε

)]

+ E

[

1τm1 =θmn ≤T

(

v∗
(

τm1 ,X
m
τm1
, ζm1

)

+ c(Xk
τm1
, i, ζm1 ) + ε

)]

.

Together with (4.22), this implies

ϕ̃n
m(tm, xm) ≥ v(tm, xm, i)− E

[

∫ θmn

tm

f(Xm
s , i)ds

]

− 1

m
+ ε ∧ η.

Sendingm, and then n to infinity, we get the required contradiction: v∗(T, x̄, i)≥ v∗(T, x̄, i)+

ε ∧ η. 2

5 Uniqueness result

This section deals with the uniqueness issue for the SVI (4.4)-(4.5). Unfortunately, we

cannot provide a comparison result as the counterexample presented below shows. We

then give a weaker characterization of v as a maximal solution.

5.1 A counterexample for comparison

In general, the uniqueness of a viscosity solution to some PDE is given by a comparison

theorem. Such a result says that for u an usc supersolution and and w a lsc subsolution,

we have u ≥ w. Applying this result to u = v∗ the lsc envelope of v and w = v∗ the usc

envelope of v we get that v∗ = v∗ and v is continuous. We provide here an example of a

switching problem under state constraints where the value function v is discontinuous.
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Fix d = 2 and consider the case where D is the smooth domain R×R+. Take I = {1, 2}
and define the diffusion coefficients µ and σ by

µ(x, 1) =

(

0

−1

)

, µ(x, 2) =

(

0

0

)

and

σ(x, 1) = σ(x, 2) =

(

0 0

0 0

)

for all x ∈ R
2. Define the gain coefficients g and f by

g(x, 1) = g(x, 2) = 0 and f(x, 1) = f(x, 2) = 1 ,

for all x ∈ R
2, and the cost coefficients c(., 1, 2) and c(., 2, 1) by

c(x, 1, 2) = c(x, 2, 1) = c > 0 ,

for all x ∈ R
2. Then we can directly compute the value function and, due to the state

constraints, we have

v(t, x, 1) =

{

T − t if x2 ≥ T − t ,

T − t− c if x2 < T − t ,

for all x =

(

x1
x2

)

∈ D and all t ∈ [0, T ]. In particular the function v(., 1) is discontinuous

at each point (t, (x1, T − t)) for all t ∈ [0, T ] and all x1 ∈ R. Hence the function v is

discontinuous even on the interior Int(D) of the constraint domain.

5.2 Maximality of the value function as a solution to the SVI

The previous example shows that we cannot obtain a comparison theorem for SVI (4.4)-(4.5)

to characterize the value function v. We provide in this subsection a weaker characterization

of v. To this end, we introduce, for n ≥ 1, the SVI with penalized coefficients defined on

the whole space [0, T ] × R
d × I:

min
[

− ∂v

∂t
− Lv − fn, v −Hv

]

= 0 on [0, T )× R
d × I, (5.23)

min
[

v − gn, v −Hv
]

= 0 on {T} × R
d × I. (5.24)

Under assumption (H1) and (H2), we can use Lemma 4.1 to apply Proposition 5.1 in [1]

and we get from Proposition 4.12 in [1] the following comparison result for this PDE.

Theorem 5.3. Suppose that (H1) and (H2) hold. Let u and w be respectively a subsolution

and a supersolution to (5.23)-(5.24). Suppose that there exists two constants Cu > 0 and

Cw > 0 and an integer γ ≥ 1 such that

u(t, x, i) ≤ Cu

(

1 + |x|γ
)

w(t, x, i) ≥ −Cw

(

1 + |x|γ
)

for all (t, x, i) ∈ [0, T ] × R
d × I. Then we have u ≤ w on [0, T ]× R

d × I.
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We now introduce the following additional assumption on the function v.

(H3) There exists a constant C > 0 and an integer η ≥ 1 such that

v(t, x, i) ≥ −C
(

1 + |x|η
)

(5.25)

for all (t, x, i) ∈ [0, T ]×D × I.
We give in the next subsection, some examples where (H3) is satisfied. We can state our

maximality result as follows.

Theorem 5.4. Under (H1), (H2) and (H3) the function v is the maximal constrained

viscosity solution to (4.4)-(4.5) satisfying (5.25): for any function w : [0, T ] × D × I → R

such that

• w is a constrained viscosity solution to (4.4)-(4.5),

• there exists a constant C and an integer η ≥ 1 such that

w(t, x, i) ≥ −C
(

1 + |x|η
)

(5.26)

for all (t, x, i) ∈ [0, T ]×D × I,

we have v ≥ w on [0, T ]×D × I.

Proof. Let w : [0, T ] × D × I → R be a constrained viscosity solution to (4.4)-(4.5)

satisfying (5.26). We proceed in four steps to prove that w ≤ v.

Step 1. Extension of the definition of w to [0, T ] × R
d × I.

For n ≥ 1, we define the function w̃n on [0, T ]× R
d × I by

w̃n(t, x, i) =

{

w(t, x, i) for (t, x, i) ∈ [0, T ] ×D × I ,
−Cne

−ρnt
(

1 + |x|2η
)

for (t, x, i) ∈ [0, T ] × (Rd \ D)× I . (5.27)

where ρn and Cn are two positive constants. From (H1), (H2), Lemma 4.1 and (5.26), we

can find ρn and Cn (large enough) such that

−∂w̃n

∂t
− Lw̃n − fn ≤ 0 on [0, T )× (Rd \ D)× I , (5.28)

w̃n − gn ≤ 0 on {T} × R
d × I , (5.29)

and

w̃n(t, x, i) ≥ −Cne
−ρnt

(

1 + |x|2η
)

for (t, x, i) ∈ [0, T )× R
d × I . (5.30)

Step 2. Viscosity property of w̃n.

For Cn and ρn such that (5.28),(5.29) and (5.30) hold, we obtain that w̃n is a viscosity

subsolution to (5.23)-(5.24). Indeed, let ϕ ∈ C1,2([0, T ]×R
d,R) and (t, x, i) ∈ [0, T ]×R

d×I
such that

(w̃∗
n − ϕ)(t, x, i) = max

[0,T ]×Rd×I
(w̃∗

n − ϕ) . (5.31)
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We first notice from (5.30) that the upper semicontinuous envelope w̃∗
n of w̃n is given by

w̃∗
n(t, x, i) =

{

w∗(t, x, i) for (t, x, i) ∈ [0, T ] ×D × I ,
−Cne

−ρnt
(

1 + |x|2
)

for (t, x, i) ∈ [0, T ] × (Rd \ D)× I . (5.32)

We now prove that w̃n is a subsolution to (5.23)-(5.24). Using (5.29), (5.32) and the

viscosity subsolution property of w, we get

w̃∗
n ≤ gn on {T} × R

d × I .

For the viscosity property on [0, T ) × R
d × I, we distinguish two cases.

• Case 1: (t, x, i) ∈ [0, T ) ×D × I. From (5.31) and (5.32), we have

(w̃∗
n − ϕ)(t, x, i) = max

[0,T ]×D×I
(w̃∗

n − ϕ) .

Since w is a constrained viscosity solution to (4.4)-(4.5) and f = fn on D we get

min
[

− ∂ϕ

∂t
(t, x, i) − Lϕ(t, x, i) − fn(t, x, i), ϕ(t, x, i) −Hw̃∗

n(t, x, i)
]

≤ 0 .

• Case 2: (t, x, i) ∈ [0, T ) × (Rd \ D)× I. From (5.28), (5.32) we also get

min
[

− ∂ϕ

∂t
(t, x, i) − Lϕ(t, x, i) − fn(t, x, i), ϕ(t, x, i) −Hw̃∗

n(t, x, i)
]

≤ 0 .

Therefore, w̃n is a viscosity subsolution to (5.23)-(5.24).

Step 3. Growth condition on vn.

We prove that for each n ≥ 1 there exists a constant Cn > 0 such that

vn(t, x, i) ≥ −Cn

(

1 + |x|2η
)

, (t, x, i) ∈ [0, T ]× R
d × I .

Fix (t, x, i) ∈ [0, T ]×R
d × I, and denote by 0α = (0τk,

0ζk)k the trivial strategy of At,i i.e.
0τ0 = t, 0ζ0 = i and 0τk > T for k ≥ 1. Then we have

vn(t, x, i) ≥ Jn(t, x,
0α)

From the definition of Jn, (2.2) and Lemma 4.1 there exists a constant C̃n > 0 such that

vn(t, x, i) ≥ −C̃n

(

1 + |x|
)

.

Since η ≥ 1, this implies

vn(t, x, i) ≥ −Cn

(

1 + |x|2η
)

.

for some constant Cn.

Step 4. Comparison on [0, T ] × R
d × I. From Proposition 4.2 in [1], we know that vn

is a viscosity solution to (5.23)-(5.24). Using the results of Steps 2 and 3, we can apply

Theorem 5.3 to w̃n and vn with γ = 2η, and we get

w̃n(t, x, i) ≤ w̃∗
n(t, x, i) ≤ vn(t, x, i) ,

for all (t, x, i) ∈ [0, T ] × R
d × I. Sending n to infinity and using Theorem 3.1 and (5.27),

we get w ≤ v on [0, T ] ×D × I. 2
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Remark 5.2. We notice that the counterexample given in the previous section also satisfies

Assumption (H3). In particular this gives an example where the classical uniqueness does

not hold and where our maximality result is valid.

5.3 Some examples for assumption (H3)

We end this Section by explicit examples where (H3) is satisfied. The first one concerns

the case of a regime that stops the controlled diffusion.

Proposition 5.1. Suppose that for any x ∈ ∂D there exists ix ∈ I such that µ(x, ix) = 0

and σ(x, ix) = 0, then assumption (H3) is satisfied.

Proof. Fix an initial condition (t, x, i) ∈ [0, T ] × D × I. Let Xt,x be the diffusion defined

by

Xt,x
s = x+

∫ s

t
µ(Xt,x

r , i)dr +

∫ s

t
σ(Xt,x

r , i)dWr , s ≥ t .

Consider the strategy α : (τk, ζk)k defined by (τ0, ζ0) = (t, i),

τ1 = inf
{

s ≥ 0 : Xs ∈ ∂D
}

ζ1 = iXτ1

and τk > T and ζk = ζ1 for k ≥ 2. We then have µ(Xt,x,α
s , αs)=0 and σ(Xt,x,α

s , αs) = 0 for

s ∈ [τ1, T ]. Therefore, we get α ∈ AD
t,x,i and

v(t, x, i) ≥ J(t, x, α) .

From (2.2) and (H2) there exists a constant C > 0 such that

v(t, x, i) ≥ −C(1 + |x|) .

By combining this inequality with Lemma 4.2, we get (H3). 2

We now consider the case where for any initial condition, we can find a regime that

keeps the diffusion in D.

Proposition 5.2. Suppose that for each (t, x) ∈ [0, T ] × D, there exists it,x ∈ I such that

the process Xt,x defined by

Xt,x
s = x+

∫ s

t
µ(Xt,x

r , it,x)dr +

∫ s

t
σ(Xt,x

r , it,x)dWr , s ≥ t ,

satisifies

P
(

Xt,x
s ∈ D, ∀s ∈ [t, T ]

)

= 1 . (5.33)

Then assumption (H3) is satisfied.
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Proof. Fix (t, x, i) ∈ [0, T ] × D × I. Consider the strategy α = (τk, ζk)k defined by

(τ0, ζ0) = (t, i), (τ1, ζ1) = (t, it,x) and τk > T for k ≥ 2. From (5.33) we get α ∈ AD
t,x,i. We

then have

v(t, x, i) ≥ J(t, x, α) .

From (2.2) and (H2) there exists a constant C > 0 such that

v(t, x, i) ≥ −C(1 + |x|) .

By combining this inequality with Lemma 4.2, we get (H3). 2

We end this subsection by using a viability result in the case of a convex constraint.

For x ∈ ∂D, we define the second order normal cone to D at x by

ND(x) =
{

(p,A) ∈ R
d × S

d : p⊺(y − x) +
1

2
(y − x)⊺A(y − x) ≤ o(|y − x|2)

as y → x and y ∈ K
}

,

where S
d is the set of d× d symmetric matrices.

Proposition 5.3. Suppose that D is convex and there exists i∗ ∈ I such that

p⊺µ(x, i∗) +
1

2
tr[σ(x, i∗)σ(x, i∗)⊺A)] ≤ 0

for all x ∈ ∂D and all (p,A) ∈ N 2
D(x). Then assumption (H3) is satisfied.

Proof. From Proposition 8 and Remark 9 in [10] we get that for any initial condition

(t, x, i) ∈ [0, T ]×D × I, the control α = (τk, ζk)k define by

(τ0, ζ0) = (t, i)

(τ1, ζ1) = (t, i∗)

and τk > T for k ≥ 2, satisfies α ∈ AD
t,x,i. We then have

v(t, x, i) ≥ J(t, x, α) .

From (2.2) and (H2) there exists a constant C > 0 such that

v(t, x, i) ≥ −C(1 + |x|) .

By combining this inequality with Lemma 4.2, we get (H3). 2

A Additional results on convergence and measurability

We first present two results about stopping times and measurability.
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Proposition A.4. Let (Ω,G,P) be a complete probability space endowed with a Brownian

motion B. Let H = (H)t≥0 be the complete right-continuous filtration generated by B, τ

an H-stopping time and ζ an Hτ -measurable random variable. Suppose that there exists a

constant M such that P(τ ≤ M) = 1. Then there exist two Borel function ψ and φ such

that

τ = ψ
(

(Bs)s∈[0,M ]

)

and ζ = φ
(

(Bs)s∈[0,M+1]

)

P− a.s.

Proof. Since τ ≤M P-a.s. we can write

τ =

∫ M

0
1τ>sds = lim

n→∞

M

n

n−1
∑

k=0

1τ> k
n
M , P− a.s. (A.34)

Since τ is a H-stopping time and H is the complete right-continuous extension of the natural

filtration of B, we can write from Remark 32, Chapter 2 in [7]

ψk
n

(

(Bs)s∈[0,M ]

)

≤ 1τ> k
n
M ≤ ψ̄k

n

(

(Bs)s∈[0,M ]

)

(A.35)

and

P

(

ψk
n

(

(Bs)s∈[0,M ]

)

6= ψ̄k
n

(

(Bs)s∈[0,M ]

)

)

= 0 (A.36)

where ψk
n
and ψ̄k

n are two Borel functions for any n ≥ 1 and any k ∈ {0, . . . , n− 1}. Define

the Borel functions ψ̄n and ψ
n
by

ψ̄n =
M

n

n−1
∑

k=0

ψ̄k
n and ψ

n
=

M

n

n−1
∑

k=0

ψk
n

We then get from (A.34), (A.35) and (A.36)

lim sup
n→∞

ψ
n

(

(Bs)s∈[0,M ]

)

≤ τ ≤ lim sup
n→∞

ψ̄n

(

(Bs)s∈[0,M ]

)

, P− a.s.

and

P

(

lim sup
n→∞

ψ
n

(

(Bs)s∈[0,M ]

)

6= lim sup
n→∞

ψ̄k
n

(

(Bs)s∈[0,M ]

)

)

= 0

Taking ψ = lim supn→∞ ψ̄n we get τ = ψ
(

(Bs)s∈[0,M ]

)

P-a.s.

We now turn to ζ. Since ζ is Hτ -measurable, ζ1τ≤t is Ht-measurable for all t ≥ 0.

Using τ ≤ M P-a.s. we get ζ is HM -measurable. Using Remark 32, Chapter 2 in [7] as

previously done, we get a Borel function φ such that

ζ = φ
(

(Bs)s∈[0,M+1]

)

P− a.s.

2

Proposition A.5. Let (Ωi,Gi,Pi), i = 1, 2, be two compete probability spaces. Suppose

that each (Ωi,Gi,Pi) is endowed with a Brownian motion W i and denote by F
i = (F i

t )t the

filtration satisfying usual conditions generated by W i.

Fix (τ i, ζ i) a couple of random variables defined on (Ωi,Gi,Pi) for i = 1, 2 and suppose

that
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• τ1 is an F
1-stopping time,

• ζ1 is F1
τ1-measurable

• (W 2, τ2, ζ2) has the same law as (W 1, τ1, ζ1).

Then τ2 is an F
2-stopping time and ζ2 is F2

τ2-measurable.

Proof. Since τ1 is an F
1-stopping time and F

1 is the complete right-continuous filtration

of (W 1
s )s≥0, we can write from Remark 32, Chapter 2 in [7] for any r ≥ 0 and any ε > 0,

ψ
(

(W 1
s )s∈[0,r+ε]

)

≤ 1τ1≤r ≤ ψ̄
(

(W 1
s )s∈[0,r+ε]

)

and

P
1
(

ψ
(

(W 1
s )s∈[0,r+ε]

)

6= ψ̄
(

(W 1
s )s∈[0,r+ε]

))

= 0

where ψ and ψ̄ are two Borel functions. Since (W 1, τ1) and (W 2, τ2) have the same law we

get

P
2
(

ψ
(

(W 2
s )s∈[0,r+ε]

)

≤ 1τ2≤r ≤ ψ̄
(

(W 2
s )s∈[0,r+ε]

)

)

= 1

and

P
2
(

ψ
(

(W 2
s )s∈[0,r+ε]

)

6= ψ̄
(

(W 2
s )s∈[0,r+ε]

)

)

= 0 .

Since F2 is complete this implies that 1τ2≤r is F2
r+ε-measurable. Using the right-continuity

of F2, we deduce that 1τ2≤r is F2
r -measurable and τ2 is an F

2-stopping time.

By the same argument, we get that the random variable ζ21τ2≤r is F2
r -measurable for

all r ≥ 0, which is equivalent to the F2
τ2 -measurability of ζ2. 2

We now provide two results on measurability and convergence for a sequence of processes

defined on the same space but with different filtrations.

We fix in the sequel a complete probability space (Ω,G,P) on which is defined a sequence

of Brownian motions (Bn)n≥0. For n ≥ 0, we denote by F
n = (Fn

t )t≥0 the complete right-

continuous filtration generated by Bn.

Proposition A.6. For n ≥ 1, let τn be an F
n-stopping time and ζn be an Fn

τn-measurable

random variable. We suppose that

(i) Bn converges to B0:

sup
t∈[0,T ]

|Bn
t −B0

t |
P−a.s.−−−−→
n→∞

0 ,

(ii) the sequences (τn)n≥1 and (ζn)n≥1 are uniformly bounded,

(iii) there exist random variables τ0 and ζ0 such that

(τn, ζn)
P−a.s.−−−−→
n→∞

(τ0, ζ0) .
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Then, τ0 is an F
0-stopping time and ζ0 is F0

τ -measurable.

Proof. We first prove that τ0 is an F
0-stopping time. Fix t > 0 and define for p ≥ 1, the

bounded and continuous functions Φp by

Φp(x) = 1x≤t− 1
p
+ p1t− 1

p
<x≤t(t− x) , x ∈ R+

From Theorem 3.1 in [3] and (iii) we get

E
[

Φp(τ
n)|Fn

t

] P−−−→
n→∞

E
[

Φp(τ
0)|F0

t

]

.

Since τn is an F
n-stopping time we have E[Φp(τ

n)|Fn
t ] = Φp(τ

n). Indeed, we can write

Φp = limk∞Φk
p where Φk

p is defined by

Φk
p(x) = 1x≤t− 1

p
+

k
∑

j=1

j

kp
1t− j

kp
<x≤t− j−1

kp

, x ∈ R+ .

Then since τn is an F
n stopping time, the random variable Φk

p(τ
n) is Fn

t -measurable.

Sending k to infinity, we get that Φp(τ
n) is Fn

t -measurable.

Since Φp is continuous we get from (iii)

Φp(τn)
P−a.s.−−−−→
n→∞

Φp(τ
0).

Therefore Φp(τ
0) = E[Φp(τ

0)|F0
t ]. Sending p to infinity we get 1τ0≤t = E[1τ0≤t|F0

t ] and τ
0

is a F
0-stopping time since F

0 is complete.

To prove that ζ0 is F0
τ0-measurable, we proceed in the same way and consider ζnΦp(τ

n)

instead of Φp(τ
n) for n ≥ 0. 2

We now turn to stability diffusions. For n ≥ 0, we fix random functions bn : [0, T ]×Ω×R
d →

R
d and an : [0, T ] × Ω× R

d → R
d×d. We suppose that

(HA)

(i) For each n ≥ 0, bn and an are F
n-progressive⊗B(Rd)-measurable,

(ii) there exists δ > 0 such that

E

[

∫ T

0

(

|bn(t, 0)|2+δ + |an(t, 0)|2+δ
)

dt
]

< +∞ , n ≥ 0 ,

(iii) there exists a constant L such that

|bn(t, x)− bn(t, x′)|+ |an(t, x)− an(t, x′)| ≤ L|x− x′| , x, x′ ∈ R
d , n ≥ 0 .

Then, for a given deterministic initial condition X0, we can define for each n ≥ 0, the

solution Xn to the SDE

Xn
t = X0 +

∫ t

0
bn(s,Xn

s )ds+

∫ t

0
an(s,Xn

s )dB
n
s t ≥ 0 .
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Proposition A.7. Suppose that

sup
t∈[0,T ]

|Bn
t −B0

t |
P−a.s.−−−−→
n→∞

0 , (A.37)

and

E

[

∫ T

0

∣

∣an(s, x)− a0(s, x)
∣

∣

2
ds
]

+ E

[

∫ T

0
|bn(s, x)− b0(s, x)|2ds

]

−−−−−→
n→+∞

0 , (A.38)

for all x ∈ R
d. Then, under (HA), we have

E

[

sup
t∈[0,T ]

∣

∣Xn
t −X0

t

∣

∣

2
]

−−−→
n→∞

0 . (A.39)

To prove this result we cannot use classical estimates on diffusions processes since the

driving Brownian motion evolves with n. In particular the stochastic integrals
∫

andB0

are not defined. We therfore need to use approximations by step processes as done in the

construction of the Itô integral.

Proof. We proceed in two steps.

Step 1. We first consider the case where the bn and an do not depend on the variable x.

For p ≥ 1, Let Hp be an F-adapted piecewise constant process of the form

Hp
t =

Np
∑

k=0

H̃p
k1[tp

k
,tp
k+1)

(t) , t ∈ [0, T ]

where H̃p
k ∈ L2+δ(Ω,Ftp

k
,P) for 0 ≤ k ≤ Np, such that

E

[

∫ T

0
|Hp

s − as|2ds
]

≤ 1

p
. (A.40)

We then have

E

[∣

∣

∣

∫ T

0
andBn −

∫ T

0
adB0

∣

∣

∣

2]

≤ 2
(

E
[∣

∣

∣

∫ T

0
andBn −

∫ T

0
HpdB0

∣

∣

∣

2]

+
1

p

)

. (A.41)

We then define the process Hp,n by

Hp,n
t =

Np
∑

k=0

E

[

H̃p
k

∣

∣Fn
tp
k

]

1[tp
k
,tp
k+1)

(t) , t ∈ [0, T ] .

We can write the following decomposition

E

[
∣

∣

∣

∫ T

0
andBn −

∫ T

0
HpdB0

∣

∣

∣

2]

≤ 2
(

E
[
∣

∣

∣

∫ T

0
andBn −

∫ T

0
Hp,ndBn

∣

∣

∣

2]

+E
[∣

∣

∣

∫ T

0
Hp,ndBn −

∫ T

0
HpdB0

∣

∣

∣

2])

. (A.42)

From (A.37), we can apply Proposition 2 in [5] and we get

E

[

H̃p
k

∣

∣Fn
tp
k

]

P−−−−−→
n→+∞

H̃p
k , 0 ≤ k ≤ Np . (A.43)
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In particular we get from (A.37) and (A.43)

E

[
∣

∣

∣

∫ T

0
Hp,ndBn −

∫ T

0
HpdB0

∣

∣

∣

2]

−−−−−→
n→+∞

0 . (A.44)

Moreover, from Itô Isometry and (A.40) we have

E
[
∣

∣

∣

∫ T

0
andBn −

∫ T

0
Hp,ndBn

∣

∣

∣

2]

= E
[

∫ T

0

∣

∣ans −Hp,n
s

∣

∣

2
ds
]

≤ 3
(

E
[

∫ T

0

∣

∣ans − a0s
∣

∣

2
ds
]

+
1

p
(A.45)

+E
[

∫ T

0

∣

∣Hp
s −Hp,n

s

∣

∣

2
ds
])

.

Then using (A.43), we also get

E

[

∫ T

0

∣

∣Hp
s −Hp,n

s

∣

∣

2
ds
]

−−−−−→
n→+∞

0 . (A.46)

Therefore, we get from (A.38), (A.45) and (A.46)

lim sup
n→∞

E

[∣

∣

∣

∫ T

0
andBn −

∫ T

0
Hp,ndBn

∣

∣

∣

2]

≤ 1

p
.

From this last inequality, (A.41), (A.42) and (A.44) we get

lim sup
n→∞

E

[
∣

∣

∣

∫ T

0
andBn −

∫ T

0
a0dB0

∣

∣

∣

2]

≤ 4

p
, p ≥ 1 .

Therefore, we get

lim
n→∞

E

[
∣

∣

∣

∫ T

0
andBn −

∫ T

0
a0dB0

∣

∣

∣

2]

= 0 .

From Theorem 3.1 in [3], we deduce that

lim
n→∞

E

[

sup
t∈[0,T ]

∣

∣

∣

∫ t

0
andBn −

∫ t

0
a0dB0

∣

∣

∣

2]

= 0 .

From this last equality and (A.38), we get (A.39).

Step 2. We now consider the general case. For n ≥ 0, we denote by (Xn,p)p≥0 the sequence

of processes defined by

Xn,0
t = X0 , t ≥ 0 ,

and

Xn,p+1
t = X0 +

∫ t

0
bn(s,Xn,p

s )ds+

∫ t

0
an(s,Xn,p

s )dBn
s , t ≥ 0 ,

for p ≥ 0. From (HA) (ii) and since X0 is deterministic, we get by induction on p that

E

[

sup
t∈[0,T ]

|Xn,p
t |2+δ

]

< ∞
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for all n, p ≥ 1. Still using an induction we get from Step 1 that

E

[

sup
t∈[0,T ]

∣

∣Xn,p
t −X0,p

t

∣

∣

2
]

−−−→
n→∞

0 (A.47)

for all p ≥ 0. From argument on diffusion processes, we have (see e.g. the proof of Theorem

2.9 of Chapter 5 in [11])

sup
n≥0

E

[

sup
t∈[0,T ]

|Xn,p
t −Xn

t |2
]

≤ ψ(p)

where ψ(p) → 0 as p→ +∞. We then get

lim sup
n→+∞

E

[

sup
t∈[0,T ]

∣

∣Xn
t −X0

t

∣

∣

2
]

≤ 2ψ(p) + lim
n→+∞

E

[

sup
t∈[0,T ]

∣

∣Xn,p
t −X0,p

t

∣

∣

2
]

≤ 2ψ(p) .

Sending p to ∞, we get the result. 2
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de Probabilités XXXV Lecture Notes in Mathematics, 1755, 306-328.

[6] Crandall M., Ishii H. and P.L. Lions (1992) : “User’s guide to viscosity solutions of second order

partial differential equations”, Bulletin of the American Mathematical Society, 27, 1-67.

[7] Dellacherie C. and P.A. Meyer (1975) : Probabilités et Potentiel, Chapitres 1 à 4, Hermann,
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