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Abstract. We study observational semantics for networks of chemical
reactions as used in systems biology. Reaction networks without kinetic
information, as we consider, can be identified with Petri nets. We present
a new observational semantics for reaction networks that we call the
attractor equivalence. The main idea of the attractor equivalence is to
observe reachable attractors and reachability of an attractor divergence
in all possible contexts. The attractor equivalence can support powerful
simplifications for reaction networks as we illustrate at the example of the
Tet-On system. Alternative semantics based on bisimulations or traces,
in contrast, do not support all needed simplifications.

1 Introduction

A reaction network is pair that consists of a system of chemical reactions and a
initial chemical solution, to which the reactions are to be applied. The kinetics
of a chemical reaction defines its speed, in function of the chemical solution
to which it is applied. Reaction networks can be considered as programs of
a programming language, whose operational semantics describes the evolution
of the initial chemical solution over time. A prominent programming language
for chemical reaction networks is BioCham [4], but there are also programming
language for more powerful biochemical reaction networks such as Kappa [5] and
React(C) [22].

Reaction networks have three kinds of operational semantics (see e.g. [9,32]).
The stochastic semantics of a reaction network is a continuous time Markov chain
which for any chemical solution S and any time point t defines the probability of
reaching S at t. Stochastic simulation algorithms generate the traces of a reaction
network according to its stochastic semantics. The deterministic semantics of a
reaction network is a system of ordinary differential equations, that tries to
approximate the average concentration of the chemical solutions at any time
point. It is the input of deterministic simulation algorithms. The third qualitative
semantics is independent of any kinetics. It is given by a binary relation, which
states how a chemical solution can be reduced in a nondeterministic manner to
another chemical solution by applying a reaction, and thus which solutions can
be reached from the initial solution.



In the following, we will stick to the qualitative semantics of reaction net-
works, i.e., we will ignore all kinetic informations. This is a simplification, which
broadens the scope of our approach (since the kinetics are often unknown) but at
the cost of lower precision. As a consequence, reaction networks can be identified
with Petri nets. The same simplification was adapted in much previous work on
static analysis of reaction networks (see e.g. [45,36,42]), either since the kinetics
doesn’t matter for the question under consideration, or also, since the precise
kinetics are unknown.

The observational semantics of a program is usually defined on top of op-
erational semantics, with the objective to formalize its input-output behaviour
[31,37,39]. This is done by defining a notion of program equivalence, so that
equivalent programs can be exchanged by each other in any admissible context
without affecting the observable behavior. The observations of the output pro-
duced by equivalent reaction networks must thus be the same in all admissible
contexts (which generalize on inputs). However, there exists no notion of ob-
servational semantics for reaction networks so far. The missing ingredients are
appropriate notions of observations and admissible contexts. In particular, one
cannot rely on observing termination, as in all previous work on observational
semantics of functional programming languages, since biological systems may
change without end during an oscillation or in an equilibrium.

In this paper we propose an observational equivalence for reaction networks,
that we call the attractor equivalence. The main idea is to observe reachable at-
tractors, i.e., strongly connected components of chemical solutions so that each
of them can be reached from each other. Note that whenever an attractor is
reached, then the reduction must continue to loop infinitely within the attractor
or terminate if the attractor is a singleton. Our semantics may also observe the
reachability of an attractor divergence, i.e., of a chemical solution from which no
attractor can be reached. A biological example of an attractor divergence is a tu-
mor that is growing in an irreversible manner without termination. Furthermore,
the observation of a chemical solution may not be able to see all informations
about all molecules. What can be observed is fixed by a parameter that we call
the observation function. In a biological example, one may be able to observe
only fluorescent proteins under a microscope, or be unable to distinguish two
different kinds of fluorescent proteins. A context of a reaction network is itself
a reaction network. Rather than admitting all contexts, we fix as a parameter
a subset of “admissible” contexts, by restricting the set of molecules that these
contexts may affect. This corresponds for instance to biological experiments, in
which only particular molecules in the environment of a cell can be added or
consumed by a microfluidic device [46], but not any other molecule, in particu-
lar not those which are produced of consumed exclusively inside the cell. Finally,
for a fixed observation function and a fixed set of admissible contexts, we call
reaction networks attractor equivalent, if they have the same observations in all
admissible contexts.

We also provide a set of axioms that we prove to be correct for the attractor
equivalence, and justify their relevance at the example of a biological system.



We have chosen a simplistic reaction network for the Tet-On system [20,15] with
only 10 reactions. It models the addition of Dox -molecules to the environment
of a cell (by a microfluidic device), its transport into the cell, and the expression
of the fluorescent molecule GFPa, that can be observed by a microscope. We
show that we can use our axioms to reduce the Tet-On network into an attractor
equivalent network with only 2 reactions:

Dox → Dox +GFPa and GFPa → ∅

The only molecule that the context is admitted to affect is Dox . In any con-
text nDox where n ≥ 1, this reaction network system reaches a single attractor
{nDox +mGFPa | m ≥ 0}. Note that this wouldn’t be true without the degra-
dation reaction. The number m of GFPa molecules can be observed in order
to measure the degree of fluorescence, which may vary from 0 to infinity in the
attractor. In the empty context, the above reaction network terminates imme-
diately with the empty solution, so the singleton attractor {0Dox + 0GFPa} is
reached, of which the absence of GFPa is observed.

Even though very simple, the application to the Tet-On system already illus-
trates the appropriateness of the attractor equivalence, in that it is sufficiently
powerful to support the needed simplifications. This is in contrast to alternative
notions of program equivalences for Petri net which are either based on bisimula-
tions or traces [25,30,18]. It turns out that 2 of our 5 axiom used for simplification
are incorrect for these alternative equivalences. The problem is that these axioms
change the internal cascades from the input to the output, which spoils bisim-
ulation and alters traces. Conversely, neither the bisimilation equivalence nor
the trace equivalence are included in the attractor equivalence, since attractor
divergent networks may be equivalent there to non attractor divergent networks.
Therefore, these alternative equivalences are indeed inappropriate.

Outline. We recall reaction networks with the qualitative semantics in Section 2
and define the attractor equivalence in Sections 3 and 4. In Section 5, we present
a set of axioms of the attractor equivalence. In Section 6 we use them to sim-
plify the detailed Tet-On system from [20]. Alternative equivalence notions for
reaction networks are presented in Section 7 and more related work is discussed
in Section 8. We then conclude with some future work in Section 9.

2 Reaction networks

We introduce of reaction networks without kinetic functions and define their
qualitative operational semantics.

Let N0 be the set of natural numbers including 0. We fix a set Spec of molec-
ular species that will be ranged over by A,B,C.

A (chemical) solution s ∈ Sol : Spec → N0 is a multiset of molecules. Give
natural numbers n1, . . . , ni, we denote by n1A1 + . . . + nkAk the solution that
contains ni molecules of species Ai for all 1 ≤ i ≤ n and 0 molecules of all other



species. We will write s\A for the solution obtained from solution s by removing
all molecules of species A, i.e., s\A(A) = 0 and s\A(B) = s(B) otherwise.

A (chemical) reaction r ∈ Sol × Sol is a pair of two solutions. We write
s1 −→ s2 for the reaction (s1, s2), and say that s1 is the solution of reactants and
s2 the solution of products. We denote by prr(A) = s2(A)− s1(A) the number
of molecules A produced by r. If this number is negative, than the molecules are
consumed. In order to emphasize the enzymatic part of a reaction, we will write
s1

s3−→ s2 as a shorthand for the reaction s1 + s3 −→ s2 + s3. It will sometimes be
conveniant to have a syntax for reversible reactions. To this end, we will write
s1

s3←→ s2 instead of the set with the two reactions s1
s3−→ s2 and s2

s3−→ s1.

Definition 1. A reaction network is a pair 〈s0, R〉 consisting of a solution s0
that we call the initial solution, and a finite set of reactions R.

Example 1. We consider the simplified Tet-Onsimple reaction network. In this
case, the set of molecular species is Spec = {Dox ,GFPa}, and the network
contains the following two reactions:

Dox −→ Dox +GFPa and GFPa −→ ∅ (1)

The first reaction produces active green fluorescence protein GFPa if the en-
zyme doxycycline (Dox ) is present outside of the cell. It can also be written as
∅ Dox−−−→ GFPa. In reality, this reaction is performed by a cascade of reactions
which transport Dox into the cell in order to trigger the expression of GFPa by
transcription and translation. The second reaction degrades GFPa by consum-
ing one GFPa molecule at each application. Degradation is a necessary reaction
for making the system working, since otherwise, it would produce unlimited
amounts of GFPa without reaching an equilibrium and thus eventually explode
the cell.

The qualitative operational semantics of reactions is defined by a binary
relation on solutions, that states how a single reaction can be applied in a non-
deterministic manner. Given a set of reactions R, we define the reduction relation
A

R
as the least binary relation that satisfies the following inference rule:

s1 −→ s2 ∈ R s ∈ Sol
s1 + s A

R
s2 + s

Sometimes we freely write s1 A

N
s2 instead of s1 A

R
s2 if N = 〈s,R〉 for some s.

The set of solutions accessible from an initial solution s by a set of reactions
R is AccR(s) = {s′ | s A

R

∗ s′}. We also sometimes write AccN = AccR(s)

if N = 〈s,R〉. For the simple reaction network Tet-On for instance, we have
AccTet-On(Dox ) = {Dox +mGFPa | m ∈ N0}.

Definition 2 (Attractor). Let R be a set of reactions. We call a set of solution
S ⊆ Sol an attractor for R if AccR(s) = S for all s ∈ S. We denote by A(R)
the set of attractors for R.



For instance, if its initial solution contains only a molecule of Dox , the
Tet-Onsimple network have the attractor {Dox + mGFPa | m ∈ N0} since
Dox + (m − 1)GFPa A Dox + mGFPa and conversely. The same set, how-
ever, is not an attractor of {Dox −→ Dox + GFPa}, since there, one can never
come back from Dox +mGFPa to Dox + (m− 1)GFPa.

3 Context-less attractor equivalence

We define a notion of context-less attractor equivalence for reaction networks,
that we will lift to a context-sensitive version in the next section.

We first define an observation function that states what can be observed from
an output chemical solution. For instance, we may want to express the fact that
some proteins cannot be distinguished or that some other molecules cannot be
seen at all.

Definition 3. An observation function Ω is a homomorphism from the monoid
(Sol,+, ∅) to some other monoid.

Example 2. For the simplified Tet-Onsimple system, we might want to observe
with a microscope the number of fluorescing molecules GFPa. In this case, we
map chemical solutions to natural numbers, i.e., to the monoid (N0,+, 0).

ΩTet-On(mGFPa + s) = m where GFPa 6∈ s

Alternatively, we may also want to observe the presence or absence of GFPa.
This can be done by using the Boolean monoid ({0, 1},max, 0) as follows.

Ω′Tet-On(mGFPa + s) = max(m, 1) where GFPa 6∈ s

Or else, we might want to count both GFPa and Dox molecules, since the latter
can also be controlled experimentally (by the microfluedic device). In this case,
we can use (Sol,+, ∅) as source and target monoid as follows:

Ω′′Tet-On(mGFPa + nDox + s) = mGFPa + nDox where GFPa,Dox 6∈ s

We next define our observation predicates which will be based on the acces-
sibility of attractors. We fix an observation function Ω and let O ⊆ Ω(Sol) be a
set of observations.

Definition 4. We say that a network 〈s0, R〉 may converge to O if it may reach
an attractor with observables O:

〈s0, R〉 ↓O iff ∃S ∈ A(R) s.t. S ⊆ AccR(s0) and Ω(S) = O

An attractor divergence is a solution that may not converge to any set of observa-
tions. We say that a network may diverge if it can reach an attractor divergence.

〈s0, R〉 ↑ iff ∃s ∈ AccR(s0) s.t. ¬∃O. 〈s,R〉 ↓O



Fig. 1: Accessibility graphs of example reaction networks. The ovals denote
attractors, and ↑ indicates a divergence. The networks N1, N2, N3, and N4

must converge to either {B} or {C} for the observation function from Example
3 which identifies C ′ with C and ignores the multiplicities of C’s. Networks N5

and N ′5 are attractor divergences. Network N6 may either diverge or converge to
{B}. Network N7 may converge to an infinity of observation sets {nB} where
n ∈ N0.

An attractor divergence is a solution that will change infinitely without loop-
ing. The typical example is an infinite growth of a chemical solution, which can-
not be reversed by some degradation. For instance, the network 〈∅, {∅ −→ A}〉 is
an attractor divergence, since A cannot be degraded, so that one can never come
back to previous solutions but always continue, i.e., no attractor is ever reached.

Example 3. We next illustrate the observation predicates at the series of reaction
networks, whose accessiblity graphs are given in Fig. 1. For these, we use the set
of species Spec = {A,B,C,C ′, D} and the observation function Ω that counts
the number of molecules for all species, except for C and C ′. For the latter,
it identifies C with C ′ and observes only the existence of either of the two.
More formally, this can be defined by Ω(n1A + n2B + n3C + n4C

′ + n5D) =
n1A+ n2B +mC + n5D where m = max(n3 + n4, 1).

Network N1 = 〈A, {A −→ B,A −→ C}〉 may reach two attractors, {B} and
{C}. Hence N1 ↓{B} and N1 ↓{C}. This network may not diverge, i.e., ¬N1 ↑,
so it must converge to either {B} or {C}.

Network N2 = 〈A, {A −→ B,A −→ C,C ←→ C ′}〉 has two attractors {B} and
{C,C ′}. Since the observation function identifies C ′ with C, N2 may converge to



the same sets of observables than N1, i.e., N2 ↓{B} and N2 ↓{C}. Furthermore,
it may not diverge, so it must converge to either {B} or {C}, equally to N1.

Network N3 = 〈A, {A −→ B,A −→ C,C ←→ 2C}〉 has the singleton attractor
{B} and the infinite attractor {nC | n > 0}. Since the observation function tests
only the presence of C’s, once again, p4 must converge to either {B} or {C},
equally to N1 and N2.

Network N4 = 〈A, {A −→ A,A −→ B,A −→ C}〉 has an infinite reduction
but may not reach an attractor divergence, and thus may not diverge. Such
an infinite reduction is sometimes called a “weak divergence”. It is raised by
unfairness, if only the same reaction A −→ A is applied, and never any of the
other two applicable reactions. Otherwise, N4 can reach the attractors {B} or
{C} and no other attractors. Therefore it must converge to {B} or {C}, equally
to N1, N2, and N3.

Networks N5 = 〈∅, {∅ −→ A}〉 et N ′5 = 〈∅, {∅ −→ B}〉 are both attractor
divergences, so that they may not converge.

Network N6 = 〈A, {A −→ B,A −→ C,C −→ 2C}〉 may converge to {B} if
we apply first the reaction A −→ B, but may also diverge if we begin by the
reduction with applying A −→ C. This is an example where may divergence and
may convergence are not exclusive.

Network N7 = 〈A, {∅ A−→ B,A −→ ∅}〉 has an infinite sequence of reductions
AA (A+B) A (A+2B) . . .A (A+nB) . . . , but may never diverge. This weak
divergence is again raised by never applying the reaction A −→ ∅ in an unfair
manner. Nevertheless, N7 may not diverge, since it may at any time point still
converge to either of the {nB} where n ∈ N0, i.e., N7 ↓{nB} for all n.

The fact that our observation predicates ignore weak divergences is natu-
ral for stochastic semantics as in applications to biological systems, since the
probability of weak divergences will always be zero. In other contexts, weak di-
vergences can be ignored for fair reduction strategies (see e.g. [29]). It should be
noticed, however, that there is no canonical notion of fair reduction for reaction
networks, so this argument doesn’t apply here.

Definition 5. Given an observation Ω, we say that two reaction networks N1

and N2 are context-less attractor equivalent, denoted by N1 ∼Ω N2, if for all
O ⊆ Ω(Sol): N1 ↓O iff N2 ↓O and N1 ↑ iff N2 ↑.

Example 4. With one molecule of Dox in the initial solution, the simplified
Tet-Onsimple network 〈Dox , {∅ Dox−−−→ GFPa,GFPa −→ ∅}〉 is context-less equiva-
lent to 〈Dox , {∅ −→ GFPa,GFPa −→ ∅}〉 with respect to ΩTet-On, since they both
of them must converge to N0. This means that they may converge to N0, they
may not converge to any other set of observations, and they do not diverge.

Example 5. We reconsider the reaction networks from Fig. 1. The networks N1,
N2, N3, and N4 are context-less equivalent with respect to the observation func-
tion chosen in Example 3 since all of them must converge to {B} or {C}, but may
not be context-less equivalent for other observation functions. Note that number
of times in which the same observations can be reached does not matter.



Network N5 and N ′5 are context-less attractor equivalent even though they
use different species. More generally, all attractor divergent solutions are context-
less attractor equivalent.

Network N6 is not context-less attractor equivalent to the others, since it
may diverge and converge.

Network N7 is the only one that may converge to infinitely many observation
sets, so it is not context-less attractor equivalent to any other.

Let us emphasize the fact that the observation predicates ↓O and ↑ are suffi-
cient to reason about other convergence and divergence predicates. For instance,
a network must converge iff it cannot diverge. A network must converge to O
iff it may neither diverge nor converge to any other set of observations. And a
network must diverge iff it may not converge to any O (such as attractor di-
vergences). So adding these three alternative observation predicates would not
change our notion of context-less attractor equivalence.

4 Attractor equivalence

We next make our attractor equivalence context dependent. The chosen class of
admissible contexts should capture what kind of inputs an experimental platform
can make on an biological system.

A context is a reaction network. The application of a context C = 〈s,R〉 to a
network N = 〈s′, R′〉 is defined by the union of their solutions and reactions:

C[N ] = 〈s′ + s,R′ ∪R〉

However, for a given biological experiment, not all contexts are admissible. In-
deed, a context may not have access to some biological species because of com-
partmentalization. Furthermore, some simplifications of a reaction networks may
only be correct only if restricting the set of admissible contexts. There are many
different manners to restrict the set of contexts to a subclass of admissible con-
texts. Here, we adopt the simplest method, which is to fix a set I ⊆ Spec of
input species that can be touched by the context.

Definition 6. A context 〈s,R〉 is admissible for I if all species A with A ∈ s
or A ∈ R belong to in I.

Definition 7 (Attractor equivalence).We call two reaction networks N1 and
N2 attractor equivalent and write N1 ≡Ω,I N2 iff for any context C admissible
for I satisfies the context-less attractor equivalence C[N1] ∼Ω C[N2].

Example 6. In the Tet-On system, the only input species that can be added by
the microfluedic device is Dox , so we define ITet-On = {Dox}. The simplified
Tet-On network N1 = 〈Dox , {∅ Dox−−−→ GFPa,GFPa −→ ∅}〉 is context-less at-
tractor equivalent to N2 = 〈Dox , {∅ −→ GFPa,GFPa −→ ∅}〉 but not attractor
equivalent, since C = 〈∅, {Dox −→ ∅}〉 is admissible, but C[N1] must converge to
{0}, while C[N2] must converge to N0.



A /∈ s Ω(A) = Ω(s) A /∈ I
(reversible)

〈s0, R ∪ {s←→ A}〉 ≡RevΩ,I 〈s0[s/A], R[s/A]〉

s0(A) ≥ n A /∈ s1 ∀r ∈ R.prr(A) ≥ 0 A /∈ I
(enzyme)

〈s0, R ∪ {s1
nA−−→ s2}〉 ≡EnzΩ,I 〈s0, R ∪ {s1 −→ s2}〉

∀s1 −→ s2 ∈ R. A /∈ s1 Ω(A) = 0 A /∈ I
(useless)

〈s0 + nA,R〉 ≡UseΩ,I 〈s0, R〉

A /∈ s0 + s+ s′ A /∈ R Ω(A) = 0 A /∈ I
(cascade1)

〈s0, R ∪ {∅
s−→ A,A −→ ∅, ∅ A−→ s′}〉 ≡Cas1Ω,I 〈s0, R ∪ {∅

s−→ s′}〉

A /∈ s0 + s+ s′ A /∈ R Ω(A) = 0 A /∈ I
(cascade2)

〈s0, R ∪ {∅
s−→ A,A −→ ∅, A −→ s′}〉 ≡Cas2Ω,I 〈s0, R ∪ {∅

s−→ s′}〉

Fig. 2: Axioms of the attractor equivalence.

Example 7. We reconsider the examples in Fig. 1 with all species as input species
I1 = {A,B,C,C ′, D}. Networks N1 and N2 are then not attractor equivalent,
since in the admissible context C = 〈∅, {C ′ −→ D}〉, N2 may converge to {D}
in contrast to N1. The context can thus make the difference between C and C ′
visible, which is otherwise nonobservable. For the input species I2 = {A,B,D},
the networks N1 and N2 are indeed attractor equivalent.

The networks N1 and N4 are attractor equivalent for any set of input species,
since the context cannot distinguish either how may times the same set of ob-
servations is produced by an attractor.

Contexts can be used to cure or distinguish attractor divergences. For in-
stance, with A ∈ I, and C = 〈∅, {A −→ ∅}〉, the network C[N5] can converge to
{nA | n ∈ N0}. And so it is not equivalent to N ′5 = 〈∅, {∅ −→ B}〉, since C[N ′5]
must diverge.

Example 8. If the set of input species contains “intermediate” species of a reac-
tion cascade, then context may be used to make them visible. For instance, the
networks 〈A, {A −→ B}〉 and 〈A, {A −→ C,C −→ B}〉 are not equivalent if C is an
input species. They can then be distiguished by the context 〈∅, {C −→ D}〉)

5 Axioms of attractor equivalence

We present 5 axioms of attractor equivalence that we will use in the next section
to simplification of the Tet-On reaction networks from [20].

The axioms for the attractor equivalence ≡Ω,I are given in Fig. 2. There we
use the symbol 0 for the zero of the observations monoid to which Ω is mapping.



Axiom (reversible) removes a reversible reaction between a molecule A
and a solution s, and substitutes A with s (denoted [s/A]) everywhere in the
network. In order to do that, A and s must have the same observations, A
should not occur in s, and A should not be modifiable by the context, that is:
Ω(A) = Ω(s), A 6∈ s, and A 6∈ I. For instance, this axiom can be used to simplify
an enzymatic reaction network as below in Michaelis-Menten style:

〈∅, {(E + S)←→ C,C −→ (E + P )}〉

Here, an enzyme E must bind to substrate S forming a complex C, in order
to produce product P from S while freeing E. The assumptions for applying
(reversible) are that an admissible context cannot modify the complex C and
that the complex produces the same observations than E+S. The above network
can then be simplified to the equivalent network:

〈∅, {S E−→ P}〉

Axiom (enzyme) removes an enzyme from a reaction, if it must always be present
in sufficient amounts to activate the reaction, that is, if there is enough enzyme
in the initial solution and if the enzyme cannot be degraded. Axiom (useless)
removes from the initial solution all molecules of a non observable species that
are never consumed by any reaction. The axioms (cascade1) and (cascade2)
reduce an enzymatic cascade that, from a solution s, produces a solution s′

mediated by a degradable molecule A. A molecule A can only be used in three
reactions: a production reaction, with enzymes s (∅ s−→ A), a degradation reaction
(A −→ ∅), and a reaction (∅ A−→ s′ or A −→ s′) that produces some s′ provided
that a molecule A is present in the solution. Moreover, A is not observable, and
not modifiable by the context. Then we can replace the three previous reactions
by the direct production of s′ from s, that is ∅ s−→ s′.

The following theorem states that all these axioms are sound with respect to
the attractor equivalence.

Theorem 1 (Soundness). For any X ∈ {Rev,Enz, Use, Cas1, Cas2},

≡XΩ,I ⊆ ≡Ω,I

Proof. We only show here the rather basic proof for axiom (useless) and the
more complicated case of (cascade1). The proof of the other three axioms is
similar and can be found in Appendix A. Remember that a set S is an attractor
for N iff it is closed under reduction and strongly connected, and that a network
may diverge iff an attractor divergence is reachable.

Let N ≡UseΩ,I N
′ and C be an admissible context with respect to I. Let N =

〈s0, R∪{s1
nA−−→ s2}〉 and N ′ = 〈s0, R∪{s1 −→ s2}〉. Since A cannot belong to the

reactants of any reaction in R and C, for any solution s any reaction r applicable
in s+ nA is also applicable in s. Hence, for any solution s and s′:

(s+ nA) A

C[N ]

∗ (s′ + nA) iff s A

C[N ′]

∗ s′



Moreover, the number of A in the solutions of both networks cannot decrease. So
in particular, any reachable solution in C[N ] contains at least nA. Let S be an
attractor reachable from C[N ], it must be of the form S = {(s′+nA) | s′ ∈ Sol}.
Then the set S′ = {s′ | (s′ + nA) ∈ S} is an attractor reachable from C[N ′].
Reversely, for any attractor S′ reachable from C[N ′], the set S = {(s′ + nA) |
s′ ∈ S′} is an attractor reachable from C[N ].

The assumption of the axiom Ω(A) = 0 implies Ω(S) = Ω(S′). Hence for
any O, C[N ] may converge to O iff C[N ′] may converge to O.

Moreover, if a solution s+nAmust diverge and is reachable from C[N ], then s
must diverge and is reachable from C[N ′], and reversely. So C[N ] may diverge iff
C[N ′] may diverge, and so N and N ′ are attractor equivalent, that is N ≡Ω,I N ′.

We next consider axiom (cascade1). We chose an instance N ≡Cas1Ω,I N ′ of

this axiom with some networks N = 〈s0, R ∪ {∅
s−→ A,A −→ ∅, ∅ A−→ s′}〉 and

N ′ = 〈s0, R ∪ {∅
s−→ s′}〉, and an context C that is admissible for I and thus

does not contain A molecules. For any solution s1 and s2 that do not contain A
molecules, we will show that:

s1 A

C[N ]

∗ s2 iff s1 A

C[N ′]

∗ s2

For the implication from left to right, we will first do the following transforma-
tions on the sequence of reduction steps justifying s1 A

C[N ]

∗ s2. Since A /∈ s1,

A /∈ R and A /∈ I, we can show that any step with ∅ A−→ s′ must be preceded
by a step with ∅ s−→ A but not necessarily immediately. The first transformation
will move them directly after the step with ∅ s−→ A. The resulting reduction se-
quence is still a valid for C[N ], since A cannot be used in other reactions. We
will also move all steps with A −→ ∅ after the previous A −→ s′. So the transition
sequence can be decomposed into the following parts: first a part without A,
then the production of A by s, some productions of s′ with A as an enzyme,
and possibly degradations of A, then again a part without A, etc. We can then
imitate the transition into C[p′], by replacing the parts with A by ∅ s−→ s′. For
the implication from the right to the left, it is sufficient to start with a reduction
sequence for s1 A

C[N ′]

∗ s2, and to replace any step ∅ s−→ s′ by three subsequent

steps with ∅ s−→ A, ∅ A−→ s′, and A −→ ∅). We will next prove the following for all
sets of observations O that:

C[N ] ↓O iff C[N ′] ↓O .

Let S be an attractor reachable from C[N ] and s1 ∈ S. Then s′1 = s1\A is
also in S, since it can be obtained by applying reaction A −→ ∅ repeatedly. Let
S′ = AccC[N ′](s

′
1). We note that S′ is closed under reduction and reachable from

C[N ′]. In order to show that S′ is strongly connected, we chose s′2 ∈ S′ and show
how to reach s′1 from s′2. Since s′2 ∈ S, we have s′1 A

C[N ′]

∗ s′2. Hence s′1 A

C[N ]

∗ s′2

by the above claim (and since A /∈ s′1, and A /∈ s′2), so that s′2 and s′1 belong to



attractor S for the reactions of C[N ], so that we can conclude s′2 A

C[N ]

∗ s′1 and

s′2 A

C[N ′]

∗ s′1. Hence, S′ is an attractor reachable from C[N ′]. Since Ω(A) = ∅,

we directly have Ω(S) = Ω(S′). So if C[N ] ↓Ω(S) then C[N ′] ↓Ω(S′) and thus
C[N ′] ↓Ω(S).

Conversely, let S′ be a reachable attractor for C[N ′], and s′1 ∈ S′. Then
s′1 is also reachable in C[N ]. Let S = AccC[N ](s

′
1). It is closed under reduction

and reachable. Let s2 ∈ S, i.e., s′1 A

C[N ]

∗ s2. Then we can apply A −→ ∅ and do

s2 A

C[N ]

∗ s′2 with s′2 = s2\A. So s′1 A

C[N ]

∗ s′2 implies s′1 A

C[N ′]

∗ s′2, so s′2 ∈ S′, and

we can do s′2 A

C[N ′]

∗ s′1 and s′2 A

C[N ]

∗ s′1. So we can also do s2 A

C[N ]

∗ s′1, so S is

strongly connected and is an attractor. So if C[N ′] ↓Ω(S′) then C[N ] ↓Ω(S) and
since Ω(S) = Ω(S′), we have C[N ] ↓Ω(S′). It remains to show that:

C[N ] ↑ iff C[N ′] ↑

If there an attractor divergence s1 reachable from C[N ], then s1\A must also
diverge in C[N ], and it is reachable and must diverge in C[N ′] too. Conversely, if
s′1 is an attractor divergence reachable from C[N ′], then it is directly reachable
in C[N ], and must diverge too. In summary, C[N ] and C[N ′] are context-less
attractor equivalent for all admissible contexts C, so that N ≡Ω,I N ′. ut

6 Simplification of detailed Tet-On network

We now show how to use the axioms of the attractor equivalence for simplying
the network of a concrete biological system. We have chosen the Tet-On system
[20,14,15] that is illustrated in Fig. 3. While still being rather simple compared
to other networks in biological applications, it can already be used to illustrate
the power of the attractor equivalence.

The Tet-On system describes how the producton of activated green fluores-
cent proteins (GFPa) in a cell can be stimulated by the presence of doxycycline
(Dox ) outside the cell. The detailed reaction network from [20] is:

Tet-Ondetailed = 〈5PTRE3G + 45000rtTA, R(0)〉

where R(0) is the set of reactions (2-10) from Fig. 4. The initial solution contains
5 copies of the gene PTRE3G and 45000 molecules rtTA (i.e. a concentration of
about 1.1µg/mL).

The enviroment of the cell is controlled by a micro-fluedic device, that is
able to add Dox to the system. Dox can then move into the cell and become
Dox i by reaction (2), where it can either be degraded by reaction (3), or bind
to the artificial transcription factor rtTA by reaction (4). The complex rtTADox
can then either dissociate (4), or activate the transcription of the gene PTRE3G ,
producing mRNA (5). mRNA can either be degraded (6) or be translated into
GFP (7). Finally, GFP needs to be actived into GFPa in order to become



Fig. 3: Illustration of the detailed Tet-On network.

∅ Dox−−→ Dox i (2)
Dox i −→ ∅ (3)
(rtTA+Dox i)←→ rtTADox (4)

∅ PTRE3G+rtTADox−−−−−−−−−−−→ mRNA (5)

mRNA −→ ∅ (6)

∅ mRNA−−−−→ GFP (7)
GFP −→ GFPa (8)
GFP −→ ∅ (9)
GFPa −→ ∅ (10)

Fig. 4: Reactions of network Tet-Ondetailed.

fluorescent and thus observable by a microscope (8). Both GFP and GFPa can
also be degraded (9, 10).

We want to simplify the complex network Tet-Ondetailed to the simplified
network Tet-Onsimple in (1), while consider the observation function ΩTet-On
defined by ΩTet-On(mGFPa + s) = m where s is an arbitrary solution with
GFPa 6∈ s and m ∈ N0, and with the set of input species ITet-On = {Dox}.

By using the axioms from Fig. 2, we will show that the networks Tet-Ondetailed
and Tet-Onsimple are attractor equivalent. We start with the complex network
Tet-Ondetailed and simplify it by applying the axioms. Let us first consider the
reversible reaction (4). Since ΩTet-On(rtTA + Dox i) = ΩTet-On(rtTADox ) = 0
and rtTADox 6∈ ITet-On, we can substitute rtTA + Dox i for rtTADox by ap-
plying axiom (reversible). This shows that Tet-Ondetailed is equivalent to the
network:

Tet-On(1) = 〈5PTRE3G + 45000rtTA, R(1)〉

where R(1) is obtained from the Tet-Ondetailed reaction set R(0) by removing
reaction (4) and by replacing reaction (5) by:

∅ PTRE3G+rtTA+Dox i−−−−−−−−−−−−−→ mRNA (5′)



This reaction is then the only one that use rtTA. Since it is as an enzyme, and
since rtTA is present in sufficient amount in the initial solution, we can apply
the axiom (enzyme), and rtTA can be removed from that reaction. Similarly,
we can remove PTRE3G . So the reaction becomes:

∅ Dox i−−−→ mRNA (5′′)

Then PTRE3G and rtTA become useless, and since they are unobservable, they
can be removed from the initial solution using the axiom (useless). Network
Tet-On(1) is thus equivalent to network: Tet-On(2) = 〈∅, R(2)〉 where R(2) con-
tains the reactions (2),(3), (5′′), and the reactions from (6-10). Now, mRNA is
unobservable, degradable, only producible by an enzymatic reaction (5′′), and
is only used as an enzyme to produce GFP (7). Thus, we can remove it using
axiom (cascade1). We can then apply the axiom (cascade2) to remove GFP ,
since it is also in an enzymatic cascade. So Tet-On(2) is equivalent to the network
Tet-On(3) = 〈∅, R(3)〉 where R(3) is the set of reactions (2), (3), (8′) and (10)
and:

∅ Dox i−−−→ GFPa (8′)

Finally, we can again apply (cascade1) to removeDox i which makes Tet-On(3)

equivalent to Tet-Onsimple. Since we only applied the axioms from Fig. 2 for our
simplifications, Theorem 1 proves that indeed:

Tet-Ondetailed ≡ΩTet-On,ITet-On Tet-Onsimple

7 Bisimulation and trace equivalences

We now discuss alternative equivalences for reaction networks. These are based
on bisimulations or traces of programs in some programming language, and can
be transferred to reaction networks without particular difficulties, simply by
considering reaction networks as programs.

We start with program equivalences based on bisimulations of programs, as
developed for comparing concurrent programs in various calculi or programming
languages [25,30,38].

In the case of reaction networks, we assume an observation function Ω and
a set of input species I. A reduction s A s′ of a reaction network is silent if
Ω(s) = Ω(s′). A silent action of a reaction network is a composition of finitely
many silent reductions. An observable action is a composition of a silent action,
a nonsilent reduction, and another silent action.

A (weak) bisimulation is a relation R on programs such that any two bisimi-
lar programs have the same observation with Ω and can do the same observable
actions while remaining in R. Two programs are bisimilarity equivalent if they
are related by some bisimulation relation in any admissible context. The axioms
(reversible), (enzyme) and (useless) are sound for the bisimilation equiv-
alence. This doesn’t hold for (cascade1) and (cascade2) though, as we will
argue below. Hence, simplifications with these two axioms cannot be justified



Fig. 5: N1 and N2 are attractor equivalent (using axiom (cascade1)), but nor
bisimilarity equivalent@neither trace equivalent.

by the bisimilation equivalence, in contrast to the attractor equivalence as we
showed in Theorem 1.

The argument is similar for both axioms. Consider for instance N1 ≡Cas1Ω,I N2

of (cascade1) with the networks following networks N1 and N2 whose reacha-
bility graphs are illustrated in Fig. 5:

N1 = 〈C, {C −→ ∅, ∅ C−→ B,B −→ ∅, ∅ B−→ D}〉

N2 = 〈C, {C −→ ∅, ∅ C−→ D}〉

We choose the observation function Ω(s+nC+nD) = nC+mD where C,D 6∈ s
and for simplicity I = ∅ so that only the empty context is admissible. The
networks N1 and N2 are then attractor equivalent, since they both must converge
to any {mD} in all admissible contexts (since B and C can always be degraded
but not D).

We next show that N1 and N2 are not bisimilarity equivalent. The problem
is that one can reach from N1 the nonobservable solution B, on which we can
do an observable action to create observation D. In N2, however, we need to
reach C for the creation of observation D. The problem is now that B and C
cannot be in any bisimilarity relation since Ω(B) 6= Ω(C), so B cannot be in
any bisimilarity relation to any solution of N2.

Conversely, bisimilarity equivalence is not sufficient either to prove attractor
equivalence. The problem is that the bisimilarity equivalence cannot distinguish
some attractor divergences from some attractor convergences, when nonobserv-
able molecules are concerned. For instance, consider the two networks in Fig. 6:

N3 = 〈∅, {∅ −→ B}〉
N4 = 〈∅, {∅ −→ B,B −→ ∅}〉

Since B is nonobservable, N3 and N4 are in the bisimilarity equivalence. But N3

is an attractor divergence, while N4 may reach the attractor {nB | n ∈ N0}.



Fig. 6: N3 and N4 are (weak)-bisimilar, but not attractor equivalent.

Fig. 7: N5 and N6 are trace equivalent, but not attractor equivalent.

Trace equivalences [18] offer an alternative to bisimilarity equivalences. A
trace is a sequence (finite or not) of solutions si, s.t. there is a reduction from
si to si+1 for any i. A trace observation is a sequence of observations Ω(si), s.t.
there is an observable action from si to si+1. Two networks are trace equivalent
if, in any admissible context, they have the same set of trace observations.

Once again the trace equivalence may detect differences in the intermediate
behviour between input and output. In particular the axioms (cascade1) and
(cascade2) will not preserve the trace equivalence. Note also that bisimilar-
ity equivalence implies trace equivalence. Therefore, the axioms (reversible),
(enzyme) and (useless) are also sound for the trace equivalence. Furthermore,
the networks N3 and N4 from Fig. 6, which are not attractor equivalent, are also
trace equivalent.

Beside of the problem that the trace equivalence can observe intermediate
behaviors between input and output, an other problem is that it cannot detect
termination or attractor convergences. But one would need to detect termination
in order to distinguish the following two networks, whose reachability graph is
illustrated in Fig. 7:

N5 = 〈A, {A −→ C,A −→ (C +B), (C +B) −→ D}〉
and N6 = 〈A, {A −→ (C +B), (C +B) −→ D}〉

Networks N5 and N6 have the same trace observations since B is not observable,
but they are not attractor equivalent, since N5 may converge to C or D, while
N6 may only converge to D.

One could hope to solve this problem with alternative trace equivalences that
are based on termination, as considered by [13,21] for instance. But since most
biological system reach a cyclic attractor rather than to terminate, a terminated-
trace equivalence would pose other important problems. For instance, we could



slightly modify the above two networks by adding an extra loop between two
fresh observable molecules, E ←→ F . Then the two networks would still have the
same terminated-traces (none), and also the same infinite traces, but would fail
to be attractor equivalent.

One could also hope to cure the notion of trace equivalence, so that it becomes
included in the attractor equivalence, by restriction to some kind of fair traces.
Unfortunately, it is difficult to find a good notion of fairness for Petri nets as
shown in [19], were 24 different notions were proposed. Furthermore, the usual
notions don’t really match with what we need in systems biology or with other
kinds of stochastic systems. For instance:

– if we take a fairness notion that no reaction can be ignored infinitely [19,34],
then in the network 〈A, {A −→ 2A,A −→ ∅}〉, the trace AA 2AA AA 2AA

. . . is fair. But this trace is a weak divergence, so it may appear as unfair,
since it always reach the empty solution at any time point but never does.

– if we take as fairness notion that no infinitely reachable solution is infinitely
ignored [19,34], then the network 〈A, {∅ A−→ I, A −→ B}〉 has the fair the trace
A A (A + I) A (A + 2I) A (A + 3I) A . . . , while the second reaction is
never used (even though it is always applicable).

– if we try to combine the two previous fairness notions, i.e., we can nei-
ther ignore any reactions nor any reachable solution, then in the network
〈A, {A −→ 2A,A −→ B, }〉, that must converge, the following divergent trace
is fair AA 2AA (A+B) A (2A+B) A (A+2B) A (2A+2B) A . . . (we
use infinitely the 2 reactions, and the increase of B implies that there is no
infinitely reachable solution)

8 Related work

Program equivalences for sequential or concurrent programming languages are
usually focused on the reachability of termination [39], which is too restrictive
for reaction networks.

The notion of attractors also exists in logical regulatory networks [28,27].
These networks are quite similar to ours, but the number of each molecule is
bounded, and so there are a finite number of reachable solutions, and their at-
tractors are then finite. In [28] a simplification method for logical regulatory
networks is proposed that preserves attractors, but new attractors may be cre-
ated, so the reachability of the attractors may be changed. In [27], these methods
are adapted so that they also preserve the reachability of attractors.

Other simplification methods have been proposed for biological systems.
Plotkin [32] proposed a calculus of chemical systems, where networks are sets
of reactions, without initial solution. He described then several contextual op-
erational semantics, and some associated equivalences. In [12], the authors used
subgraph epimorphisms in order to link different models. In [10], the authors
used bisimulations for BioPEPA models.



Since our reaction networks can actually be seen as Petri nets, it is also inter-
esting to look after equivalences and simplifications of Petri Nets [33]. Berthelot
[3,2] has for instance proposed several simplification rules, that have been gen-
eralized for time Petri Nets [40] or for coloured Petri Nets [16]). But these rules
are made to preserve usual Petri Nets properties (safety, boundedness, liveness,
etc), and not the final behaviour. Other simplification methods [47,44,24] also
only focus on preserving liveness and boundedness. Murata et al. also introduce
new simplifications [26,23], but restricted to marked graphs, a subclass of Petri
Nets. Simplifications also exist for free-choice nets, another subclass of Petri Nets
[6,8]. Heiner et al. [17] also proposed analysis of biological systems represented
by Petri Nets, but they are more focus on the transient behavior of the system.

Simplification methods also exist for models of biological systems, whose
operational semantics accounts for time. For instance, in [7] they reduce systems
of ordinary differential equations by merging some molecules, and Batmanov et
al.[1] take advantage of symmetries to reduce a model while preserving stochastic
properties. Other methods use difference between the speed of the reactions
[35,41,11], or local equilibrium [43].

9 Conclusion

We presented the attractor equivalence for reaction networks without kinetic
functions, and argued that it yields an appropriate semantics for reaction net-
works in systems biology. In particular we have shown that it supports powerful
axioms that make it suitable for model simplification of concrete biological sys-
tems.

In future work, we plan to elaborate a more complete set of axioms, and
to develop simplification algorithm that can be applied more systematically to
biological systems. It would also be nice to have a support for the simplication
of reaction networks in the SBML format. On the scientific side, one of the
problems is to add kinetics to our observational semantics. Further problems are
how to develop with attractor equivalences for language of biochemical reactions
such as Kappa and React(C).
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A Soundness proof

Theorem 1 (Soundness). For any X ∈ {Rev,Enz, Use, Cas1, Cas2},

≡XΩ,I ⊆ ≡Ω,I

Proof. First, remember that a set S is an attractor for N iff ∀s ∈ S.AccN (s) = S,
ie iff S is closed under reduction and strongly connected. Let also recall that a
network N may diverge iff an attractor divergence is reachable.
Let N ≡XΩ,I N ′, and C a context consistent with I. We will show that C[N ] ∼Ω
C[N ′].

For the axiom reversible (ie N ≡RevΩ,I N
′).

First, we remark that for any reaction r = s1 −→ s2 ∈ C[N ], we can actually do
s1[s/A] A

C[N ′]

∗ s2[s/A]. Indeed, if r ∈ R, we can directly use r[s/A] ∈ R[s/A].

If r = A −→ s or r = s −→ A, then s1[s/A] = s2[s/A]. And if r ∈ C, then
A /∈ I implies r = r[s/A]. Then, by immediate recurrence, s1 A

C[N ]

∗ s2 implies

s1[s/A] A

C[N ′]

∗ s2[s/A].

Reciprocally, for any reaction r′ = s′1 −→ s′2 ∈ C[N ′], we can do s′1 A

C[N ]

∗ s′2 .

Indeed, if r′ ∈ C, we can use it directly, and if r′ ∈ R[s/A], then there is a
r = s1 −→ s2 ∈ C[N ] s.t. r′ = r[s/A], and we can do s′1 A

C[N ]

∗ s1 A

C[N ]
s2 A

C[N ]

∗ s′2).

Once again, by recurrence, s′1 A

C[N ′]

∗ s′2 implies s′1 A

C[N ]

∗ s′2, for any s′1, s′2.

Moreover, since A /∈ N ′ and A /∈ C, we know by recurrence that for any s1
reachable in C[N ′], A /∈ s1.
Let S be a reachable attractor for C[N ], with a solution s1 ∈ S, and S′ =
AccC[N ′](s1[s/A]). We will prove that S′ is a reachable attractor for C[N ]. It
is closed by definition, and s1 reachable in C[p] implies s1[s/A] reachable in
C[N ′]. Take any s2 ∈ S′, ie we can do s1[s/A] A

C[N ′]

∗ s2. Then we can also so

s1 A

C[N ]

∗ s1[s/A] A

C[N ]

∗ s2, so s2 ∈ S (and s1[s/A] ∈ S too), and since S is

strongly connected, we can also do s2 A

C[N ]

∗ s1[s/A]. Since A /∈ s2, this implies

s2 A

C[N ′]

∗ s1[s/A]. So S′ is also strongly connected, so it is an attractor.

Reciprocally, let S′ be a reachable attractor for C[N ′], s1 ∈ S′ a solution,
and S = AccC[N ](s1). S is closed and reachable. Take s2 ∈ S, ie we can do
s1 A

C[N ]

∗ s2. Then we can also so s1[s/A] A

C[N ′]

∗ s2[s/A]. But s1 ∈ S′ implies

A /∈ s1, so s1[s/A] = s1 ∈ S′, and then s2[s/A] ∈ S′. S′ is final, so we can do
s2[s/A] A

C[N ′]

∗ s1. Then we can also do s2 A

C[N ]

∗ s2[s/A] A

C[N ]

∗ s1, so S is strongly

connected and is an attractor.
Moreover, Ω(A) = Ω(s) implies Ω(S) = Ω(S′), so for any O, N may converge



to O iff N ′ may converge to O.
If a solution s1 is reachable and must diverge for C[N ], then s1 A

C[p]
∗ s1[s/A] im-

plies that s′1 = s1[s/A] must also diverge. And s′1 is reachable and must diverge
for C[N ′] too.
Reciprocally, if a solution s′1 is reachable and must diverge for C[N ′], then it is
directly reachable and must diverge for C[N ] too.
So C[N ] ∼Ω C[N ′], and N ≡Ω,I N ′.

Now consider the axiom enzyme.
We show by recurrence that for any reachable s in C[N ] or C[N ′], s(A) ≥ n : it is
true initially by the conditions of the axiom. Assume it is true until a reachable
solution s′, and that we can do s′ A

C[N ]
s. Let r be the reaction involved in this

transition. If r is a reaction of C, then A /∈ I implies s(A) = s′(A) ≥ n. If it is
a reaction of R, prr(A) ≥ 0 implies s(A) ≥ s′(A) ≥ n. And if r = s1

nA−−→ s2,
since A /∈ s1 we have prr(A) ≥ 0, and so s(A) ≥ s′(A) ≥ n. The case for C[N ′]
is identical.
So s(A) ≥ n for any reachable s. Then s1

nA−−→ s2 is usable in a solution s iff
s1 −→ s2 is also usable in s. Since the two reactions make exactly the same change,
then the networks have exactly the same reachability, and so they are congruent.

For the axiom useless.
Let N ≡UseΩ,I N

′ and C be an admissible context with respect to I. Let N =

〈s0, R ∪ {s1
nA−−→ s2}〉 and N ′ = 〈s0, R ∪ {s1 −→ s2}〉.

Since A cannot belong to the reactants of any reaction in R and C, for any
solution s any reaction r applicable in s+ nA is also applicable in s. Hence, for
any solution s and s′:

(s+ nA) A

C[N ]

∗ (s′ + nA) iff s A

C[N ′]

∗ s′

Moreover, the number of A in the solutions of both networks cannot decrease. So
in particular, any reachable solution in C[N ] contains at least nA. Let S be an
attractor reachable from C[N ], it must be of the form S = {(s′+nA) | s′ ∈ Sol}.
Then the set S′ = {s′ | (s′ + nA) ∈ S} is an attractor reachable from C[N ′].
Reversely, for any attractor S′ reachable from C[N ′], the set S = {(s′+nA) | s′ ∈
S′} is an attractor reachable from C[N ]. The assumption of the axiom Ω(A) = 0
implies Ω(S) = Ω(S′). Hence for any O, C[N ] may converge to O iff C[N ′] may
converge to O.
Moreover, if a solution s+ nA must diverge and is reachable from C[N ], then s
must diverge and is reachable from C[N ′], and reversely. So C[N ] may diverge iff
C[N ′] may diverge, and so N and N ′ are attractor equivalent, that is N ≡Ω,I N ′.

For the axioms cascade1 and cascade2.
For any s1, s2 with A /∈ s1, A /∈ s2 and s.t. s1 A

C[N ]

∗ s2, we can do s1 A

C[N ′]

∗ s2.

Indeed, we will first do the following operations on the transition s1 A

C[N ]

∗ s2.



Since A /∈ s1, A /∈ R and A /∈ I, we know that any occurrence of ∅ A−→ s′

(cascade1) or A −→ s′ (cascade2) should be preceded by the reaction ∅ s−→ A.
Then we will put them directly after the ∅ s−→ A. This is still a valid transition
for C[p], since A cannot be use in other useful reactions. We will also put the oc-
currences of A −→ ∅ after the previous A −→ s′. So, for the axiom cascade1, the
transition will be decomposable into the following parts : first a part without A,
then creation of A by s, some creations of s′ with A as an enzyme, and possibly
degradation of A, then again a part without A, etc. For the axiom cascade2,
the transition will alternate between parts without A, and parts with ∅ s−→ A
followed by A −→ s′ or A −→ ∅. Then, we can imitate the transition into C[p′], by
replacing the parts with A by ∅ s−→ s′.
Rcpq, for any s′1, s′2, s′1 A

C[N ′]

∗ s′2 implies s′1 A

C[N ]

∗ s′2 (we can replace ∅ s−→ s′ by

∅ s−→ A, followed by ∅ A−→ s′ and A −→ ∅ (cascade1), or by A −→ s′ (cascade2)).
Let S be a reachable attractor for C[N ] and s1 ∈ S. Then s′1 = s1\A is also in S,
since S is closed and we can apply A −→ ∅. Let S′ = AccC[N ′](s

′
1). It is closed and

reachable. Let s′2 ∈ S′, ie s′1 A

C[N ′]

∗ s′2. So we can also do s′1 A

C[N ]

∗ s′2, so s′2 ∈ S,

and we can do s′2 A

C[N ]

∗ s′1. We know that A /∈ s′1, and A /∈ s′2 (since A /∈ N ′ and

A /∈ I). So we can do s′2 A

C[N ′]

∗ s′1, so S′ is strongly connected and an attractor.

Rcpq, let S′ be a reachable attractor for C[N ′], and s′1 ∈ S′. Then s′1 is also
reachable in C[N ]. Let S = AccC[N ](s

′
1). It is closed and reachable. Let s2 ∈ S,

ie s′1 A

C[N ]

∗ s2. Then we can apply A −→ ∅ and do s2 A

C[N ]

∗ s′2 with s′2 = s2\A.

So s′1 A

C[N ]

∗ s′2 implies s′1 A

C[N ′]

∗ s′2, so s′2 ∈ S′, and we can do s′2 A

C[N ′]

∗ s′1 and

s′2 A

C[N ]

∗ s′1. So we can also do s2 A

C[N ]

∗ s′1, so S is strongly connected and is an

attractor.
For the observation, since Ω(A) = ∅, we directly have Ω(S) = Ω(S′). So C[N ]
and C[N ′] may converge to the same set of observations.
If there is s1 that must diverge in N , then s1\A should also diverge in N , and
it is reachable and must diverge in N ′ too. Rcpq, if s′1 must diverge in N , then
it is directly reachable in N , and must diverge too.
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