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ABSTRACT

The objective in this work is to develop downscalingmethodologies to obtain a long time record of inundation

extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation

Extent fromMulti-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information

can be provided by visible and infrared observations from theModerateResolution Imaging Spectroradiometer

(MODIS). The study concentrates on the Inner Niger Delta whereMODIS-derived inundation extent has been

estimated at a 500-m resolution. The space–time variability is first analyzed using a principal component analysis

(PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in

missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on

the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-mMODIS

data. The downscaled fields show the expected space–time behaviors from MODIS. A 20-yr dataset of the

inundation extent at 500m is derived from this analysis for the InnerNigerDelta. Themethods are very general

and may be applied to many basins and to other variables than inundation, provided enough a priori high-

spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the

framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument

simulator as well as to select the calibration validation sites (with high space–time inundation variability). In

addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in

order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.

1. Introduction

The Global Inundation Extent from Multi-Satellites

(GIEMS) provides multiyear monthly variations of the

global surface water extent at about 25 km 3 25 km

resolution from 1993 to 2007. It is derived from multiple

satellite observations (Prigent et al. 2012; see section 2b).

Its spatial resolution is compatible with climate model

outputs and with global land surface model grids but is

clearly not adequate for local applications that require

the characterization of small individual water bodies.

There is today a strong demand for high-resolution inun-

dation extent datasets for a large variety of applications
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such as water management, regional hydrological model-

ing, or for the analysis of mosquito-related diseases. If the

inundation extent is combined with altimetry measure-

ments to obtain water volumes (Frappart et al. 2008,

2011, 2012), a better-resolved inundation extent also im-

proves the accuracy of the estimates.

The Surface Water Ocean Topography (SWOT) mis-

sion (swot.jpl.nasa.gov), planned for launch in 2019, is

designed for the measurements of surface water area and

storage change with a high spatial resolution (Alsdorf

et al. 2007; Rodriguez 2012). It will provide a mask of

water bodies larger than 250m 3 250m and rivers with

width greater than 500m, with an average revisit time

around 11 days for low latitudes (shorter for higher lati-

tudes). SWOT’s main instrument is a Ka-band inter-

ferometer (KaRIN) with 50–70-m postings to derive

high-resolution surface water maps as well as water

height for rivers, lakes, inundated areas, and wetlands.

Before the launch of this mission and in the framework

of its preparation, long-term datasets of high-spatial-

resolution surface water extent are in demand.

Would it be possible to develop downscaling meth-

odology to derive high-resolution surface water extent

from the existing GIEMS low-resolution dataset? Since

GIEMS has a global coverage, the ideal situation would

be to develop a downscaling technique general enough

to work in all environments. However, each hydrological

basin has its own characteristics, such as its topography or

space–time variability. The downscaling algorithm needs

to take into account these specificities and the availability

of the a priori high-spatial-resolution information for

a particular basin.

Two main approaches have been used so far for the

downscaling of inundation extent. The first approach

used digital elevation model (DEM) information to

distribute the inundation extent at a finer scale following

topographic information.Galantowicz (2002) andLi et al.

(2013) use such an approach to downscale inundation over

the Mississippi basin, and Brakenridge et al. (2012) and

Wang et al. (2002) focus on the coastal areas. The second

general approach utilizes statistical or image-processing

methods. In Fluet-Chouinard and Lehner (2011), a

downscaling algorithm derives first an inundation prob-

ability map by using a decision tree classifier trained on

regional remote sensing wetland maps. Then, a seeded

region growing segmentation process is used to redis-

tribute the inundated area at the finer resolution. Re-

cently, in Aires et al. (2013), a downscaling method is

developed for the Amazon basin. It is based on an image

processing technique that uses high-spatial-resolution

information from a synthetic aperture radar (SAR) for

low and high states of the inundation. The a priori high-

resolution information is only available for these two

extreme states of the inundation, as the SAR observa-

tions do not provide a higher temporal sampling. Visible

and/or infrared satellite measurements cannot help in

these regions with dense vegetation and persistent cloud

coverage. In other regions, vegetation density and cloud

cover are less of a problem and other types of satellite

observations with better temporal sampling can be ex-

ploited as a priori high-resolution information for the

downscaling. For example, the Moderate Resolution

Imaging Spectroradiometer (MODIS) provides surface

reflectances sensitive to the inundation with a spatial

resolution of ;250-m resolution in semiarid regions

under cloud-free conditions.

In this study, we will investigate the downscaling of the

GIEMS inundation extent [spatial resolution of about

25km 3 25km from visible (VIS), infrared (IR), and

microwave (MW) observations] to a spatial resolution of

about 500m, with the assistance of MODIS observations

(;250-m resolution) in a semiarid region. The objective

is to develop a methodology that can benefit from the

availability of enough temporal sampling at high spatial

resolution. In Cr�etaux et al. (2011), MODIS observations

are used to retrieve inundation extent over the Inner

Niger Delta, located in central Mali in the Sahelian zone.

The study provides an exceptional time and space sam-

pling of the inundation extent in this region over 12yr

from 2000 to 2012, with an 8-day sampling at about 500-m

resolution. This makes it possible to develop the method

more easily and to test its sensitivity to the amount of

available a priori high-spatial-resolution information. It

could be then applied over other regions where less high-

resolution information is accessible. Nevertheless, note

that over the Inner Niger Delta, the existence of GIEMS

since 1993willmake it possible to extend the high-resolution

time series backward as far as 1993.

In section 2, the databases (GIEMS andMODIS water

surface extents) are presented over the Inner Niger

Delta, and these two estimates are compared. Section 3

uses a principal component analysis (PCA) to charac-

terize the space–time variability of the inundation extent

over the Inner Niger Delta at high resolution. It also

considers the time interpolation and the filling of missing

values in the inundation fields. Section 4 proposes two

downscaling techniques, both based on the previous PCA

analyses. The first one is derived from a linear regression,

and the second one from a linear algebra solution. Con-

clusions and perspectives are drawn in section 5.

2. Databases over the Inner Niger Delta

The Inner Niger Delta is located in central Mali in

a semiarid region south of the Sahara Desert. It con-

sists of channels, swamps, and lakes. Water extent varies

172 JOURNAL OF HYDROMETEOROLOGY VOLUME 15

http://swot.jpl.nasa.gov


seasonally from about 4000 to 20 000 km2 with large

interannual changes. The hydrology of this region has

been extensively studied (e.g., Pedinotti et al. 2012).

a. GIEMS

The first component of our analysis is a global,

monthly, multiyear dataset of surface water dynamics

quantifying the variations of the surface water extent at

about 25 km 3 25km resolution from multiple satellite

observations. The complete methodology is described

in detail in Prigent et al. (2001, 2007) and Papa et al.

(2010) and is summarized here. The algorithm uses com-

plementary satellite observations covering a large wave-

length range. Combining different observations helps

separate the effects of the different surface characteris-

tics contributing to themeasured signals (i.e., vegetation,

surface roughness, and soil texture). The following ob-

servations are available at a global scale:

d visible and near-infrared reflectances and the derived

normalized difference vegetation index (NDVI) from

the Advanced Very High Resolution Radiometer

(AVHRR);
d passive microwave emissivities from 19 to 85GHz,

estimated from the Special Sensor Microwave Imager

(SSM/I) observations by removing the contributions

of the atmosphere (water vapor, clouds, and rain) and

the modulation by the surface temperature (Prigent

et al. 2006); and
d active microwave observations (backscattering) at

5.25GHz from the European Remote Sensing (ERS)

Satellite scatterometer.

Observations are averaged over each month and

mapped to an equal-area grid of 0.258 3 0.258 resolution

at the equator (about 25-km interval; each pixel equals

773 km2). An unsupervised classification of the three

sources of satellite data is performed, and the pixels with

satellite signatures likely related to inundation are kept.

For each inundated pixel, the monthly fractional coverage

by open water is obtained using the passive microwave

signal and a linear mixture model with end members

calibrated with scatterometer observations for the effects

of vegetation cover (Prigent et al. 2001).As themicrowave

measurements are also sensitive to snow, snow and ice

masks are used to avoid confusion with snow-covered

pixels (Armstrong and Brodzik 2005). The ERS scat-

terometer encountered serious technical problems after

2000 and the processing had to be adapted. Among var-

ious options investigated, using a mean monthly clima-

tology of ERS and NDVI–AVHRR observations in the

methodology gives consistent results (Papa et al. 2010).

Fifteen years of global monthly water surfaces extent

from 1993 to 2007 are already available (180 months).

This dataset is unique not only in its content (surface

extent of open water), but also in terms of its domain

(global), high temporal sampling (monthly), and multi-

year coverage (15 yr).

b. MODIS inundation estimates

Estimation of surface water extent using visible or in-

frared measurements provides relatively high spatial reso-

lution but shows limitations to detect surfacewater beneath

clouds or dense vegetation. Yet, the potential of MODIS

to monitor flood temporal changes has been demonstrated

over specific regions such as theMekong River (Sakamoto

et al. 2007) or arid regions such as the Inner Niger Delta

(Cr�etaux et al. 2011), the Aral Sea (Cr�etaux et al. 2009), or

the Andean Altiplano (del Rio et al. 2012).

A method for wetland mapping and flood event

monitoring was developed using surface reflectance

measurements from the MODIS Terra instrument in

order to detect open water and the spread of aquatic

vegetation on a weekly basis with an about 250-m spatial

resolution (Berge-Nguyen et al. 2008). The methodol-

ogy uses a combination of surface reflectance measured

by different spectral bands, from Band 1 (B1, 620–

670 nm) to Band 7 (B7, 2107–2155 nm). The surface re-

flectance product (MOD09GHK, now encapsulated in

MOD09GA), defined as the reflectance that would be

measured at the land surface if there was no atmosphere,

is used. Shallow depths and high concentrations of sus-

pended sediment such as those observed along the Inner

Niger Delta increase considerably the amount of solar

energy reflected by a water body (Bukata 1992). Li et al.

(2003) showed that the strong water absorption at

wavelengths greater than 1mm in MODIS B5, B6, and

B7 does not allow illumination of the sediments in the

water or at the shallow bottom of a water column. A

simple combination of threshold technique was per-

formed on MODIS B5 and NDVI [NDVI 5 (B2 2 B1)/

(B21B1)] to delineate the shallow, sediment-laden, open

water of the delta flood plain and to also distinguish

aquatic vegetation from dry-land vegetation. It is assumed

that very low surface reflectance in B5 characterizes open

water, without any consideration on NDVI index. When

surface reflectance in B5 increases to medium value over

a certain threshold value, depending on the NDVI index,

there is partial cover of dry land by water, aquatic vege-

tation, or vegetation on dry land. Small NDVI and high

surface reflectance in B5 is a clear signature for dry land

(except for over sun-glint-contaminated water surfaces).

This methodology has been validated with in situ mea-

surements in Australian floodplains (J.-F. Cr�etaux et al.

2008, unpublishedmanuscript).Over the InnerNigerDelta,

the method was carefully evaluated using independent

datasets such as radar altimetry water level variations
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over the Niger and inundated floodplains and in situ

measurements (Berge-Nguyen et al. 2008). Since these

MODIS data are used for the calibration of the down-

scaling methods using the GIEMS data (25km3 25km),

it has been decided here to degrade the MODIS resolu-

tion to 500m (i.e., four MODIS pixels). The area of

these 500-m MODIS pixels is 0.2283 km2.

The dataset used in this study is composed of an 8-day

classification of the Niger Delta region (38 to 78W, 138 to

168N) into four classes: 1) open water, 2) water on dry

land, 3) aquatic vegetation, and 4) vegetation on dry

land. This dataset is available from February 2000 to

September 2011. Figure 1 represents the time evolution

of the number of pixels in each one of these classes over

the considered spatial domain.

In this study, the goal is to downscale the GIEMS

inundation estimates to the spatial resolution of the

MODIS data (i.e., about 500m). AMODIS pixel is set to

an inundation value equal to one if the MODIS class is

equal to the first or second class. Other pixels are set to an

inundation value equal to zero. Figure 2 represents a cli-

matology of the probability of each pixel been inundated.

c. Space–time collocation of the two datasets

To develop the downscaling methodology, it is neces-

sary to project on the same grid the two inundation

datasets from GIEMS and MODIS. First, missing pixels

are filled using a simple spatial interpolation scheme.

Then, the MODIS 8-day files are converted to monthly

means. Themonthly-mean value considers only the 8-day

files that intersect with the month. Each week has

a weight proportional to the number of days included in

the month. For each pixel, the monthly MODIS class is

chosen to be the most frequent class.

Let [HR(i); i 5 1, . . . , P] be the inundation extent at

theMODIS high resolution (HR) for a particular month

(the time index is suppressed here for clarity of the pre-

sentation), andP5 649 838 is the number of HR pixels in

a MODIS image of the delta. The low-resolution (LR)

inundation is noted [LR( j); j5 1, . . . ,Q], whereQ is the

number of LR boxes in GIEMS. The binary upscaling

matrix S has dimension Q 3 P and is defined such that

1) each line j represents a low-resolution box (1# j#Q),

and 2) for each line j, the columns of the high-resolution

pixels included in the low-resolution box j are set to

a value of 1. Using this upscaling matrix, it is possible to

link the two spatial resolutions:

LR5 area3S3HR , (1)

where area 5 0.2283 km2 is the surface of a HR pixel.

Using Eq. (1), the 500-m pixels of MODIS estimates

are then upscaled to the 0.258 3 0.258 GIEMS boxes.1

Figure 3 represents the GIEMS andMODIS climatology

for June–January and at the 0.258 3 0.258 equal-area

grid of the LR. GIEMS seem to have higher values

thanMODIS, but the seasonality appears similar. Low-

inundation boxes are not retrieved by GIEMS, but this

limitation of the dataset has already been documented

(Prigent et al. 2007).

The two global inundation extent time series are

compared in Fig. 4. The seasonality is relatively close:

correlation is 0.63 for the raw times series, but it in-

creases to 0.86 when a 1-month lag is introduced, with

the GIEMS inundation season starting 1 month earlier.

This can be explained by possible cloud contamination

in the MODIS data that prevents the observations of

the beginning of the wet season with MODIS or by the

high sensitivity of the passive microwave observations

used in GIEMS to very saturated soil. The amplitude of

the GIEMS is also larger compared to MODIS esti-

mate. It should be pointed out here that because of this

time lag, the downscaling model will be difficult to

calibrate. Another important discrepancy is the in-

terannual variability that is quite different for the two

estimates. The comparison, evaluation, and validation

of both GIEMS and MODIS estimates need to be

further studied. The tools developed in this study can

facilitate this task.

In Fig. 5, the correlation between the two inundation

datasets is represented for each 0.258 3 0.258GIEMS box.

The correlation in the boxes with no variability in the

FIG. 1. Time series of the four classes (open water, water on dry

land, aquatic vegetation, and vegetation on dry land) in the original

MODIS dataset from 2000 to 2012.

1 In this paper, in order to simplify the presentation, the low-

resolution GIEMS points will be called ‘‘boxes’’ and the high-

resolution points from MODIS will be named ‘‘pixels.’’
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FIG. 2. Monthly–seasonal variability of MODIS inundation at a spatial resolution of about 500m for the area 138–168N and 38–78W. The variable is the probability for a pixel to be

inundated, estimated over the period 2000–07.
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FIG. 3. June–December variation of the inundation extent (km2) over the Inner Niger Delta (138–168N and 38–

78W) for (left) GIEMS and (right) MODIS estimates. The spatial resolution of theMODIS inundation estimates has

been degraded to the GIEMS resolution (0.258 3 0.258 equal-area grid).
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GIEMS dataset cannot be estimated and is not repre-

sented. Themain information for downscaling theGIEMS

estimates to the MODIS resolution will be extracted from

the pixels with maximum correlation. The correlations are

high in pixels where the seasonality of inundation is high.

This can be explained by the fact that GIEMS does not

capture very limited inundation extent, contrarily to

MODIS, as it is derived from observations with low spatial

resolution. The spatial patterns are similar on both times

series, and the correlations between the low and high

resolution can be exploited to link the two spatial scales,

making downscaling possible.

3. Principal component analysis of the MODIS

inundation

The goal of this section is to perform a PCA of the

inundation variability in the MODIS dataset of section

2b. This is intended to facilitate the downscaling pro-

cess of the next section by reducing the dimensionality

of the inundation space–time variability. However, it

will be shown that this is an interesting general meth-

odology for the analysis of the surface hydrology. We

will also briefly comment on other potential applica-

tions of the PCA.

FIG. 3. (Continued)
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a. PCA methodology

PCA is a very general statistical methodology that

intends to describe the variability of multivariate ob-

servations using a new base defined by a limited set of

patterns. PCA has been widely used in geophysics to

isolate important spatial patterns, that is, the so-called

empirical orthogonal functions (EOFs) (Aires et al.

2000; Jolliffe 2002). PCA can also be used on spectral

(Aires et al. 2004) or temporal data (Aires et al. 2002).

Let HR be the high-resolution inundation extent from

MODIS in binary values (0 for no inundation and 1 for

inundation). A spatial map of inundation will be noted

as HR(t), for month 1 # t # T (T 5 140 months). The

inundation time series for pixel i will be noted as

HRi, for pixels i 5 1, . . . , P (P 5 649 838 pixels in this

application).

A PCA is used here to decompose the HR space–time

variability into a limited number of simple components

(Jolliffe 2002). This PCA decomposition can either be

done on the time or on the space dimension. However,

once the PCA is done in one of these dimensions, it is

possible to switch to the other (Legler 1984). Since the

spatial dimension P is much larger than the time di-

mension T, it is highly recommended to perform the

PCA in the time space: the covariance matrix that needs

to be decomposed in the PCAwill have dimensionT3T

instead of P 3 P.

Before using the PCA on HR data, a preprocessing

must be done. The monthly mean m(t) 5 mean[HR(t)]

for 1# t# Tmust be estimated globally over the spatial

dimension of the whole Inner Niger Delta. The pre-

processing is limited here to this centering: HR(t)5

[HR(t)2m(t)]. In this study, no normalization is used in

the preprocessing step in order to not artificially em-

phasize months with no or very limited inundation vari-

ability. The goal is here to study the inundation variability

so it is reasonable to focus on months with significant

inundation extent. Furthermore, the GIEMS estimates

give no inundation extent information for these low-

inundation months, so it would be illusory to work on

these months.

The PCA decomposition in time allows for the esti-

mation of two matrices: C, the P 3 T matrix of the

components (or scores), andF, theT3Tmatrix with the

T-dimensional temporal base function (fk; k5 1, . . . ,T).

Matrix F describes the axis of a new space of dimension;

T andC are the coordinates of the data in this new space.

The temporal decomposition can be written

HR
i
(t)5C(i, : ) � F, " 1# t #T

5C(i, 1) � F(1, t)1 . . . 1C(i,T) � F(T, t)

’ C(i, 1) � F(1, t)1 . . . 1C(i,K) � F(K, t)

for 1 # K # T , (2)

where the colon (:) in thematrix location indicates that all

the lines (or columns) are being considered. In the third

line of Eq. (2), instead of using the full T PCA compo-

nents, only the firstK components are used (K# T). This

allows us to compress the data, and each time series can

be described using these first K temporal base functions.

Of course, this can introduce relatively small compression

errors. The space decomposition can be written

HR(t)5F
0(t, : ) � C0, " 1 # t # T

5F
0(t, 1) � C0(1, : )1 . . . 1F

0(t,T) � C0(T, : )

’ F
0(t, 1) � C0(1, : )1 . . . 1F

0(t,K) � C0(K, : )

(3)

FIG. 4. Time series of the total inundation extent over the Inner

Niger Delta for downscaledGIEMS (gray line) andMODIS (black

line) estimates.

FIG. 5. Map of the correlation between the GIEMS and the

MODIS inundation estimates at the GIEMS spatial resolution.
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where the prime is the transpose sign. In this decom-

position, the terms F0(t, k) for 1 # k # K # T play the

role of the components, and the spatial patterns C0(t, k)

play the role of theP-dimensional spatial base functions.

A spatial inundationmap at time t can be decomposed in

the new basis of these spatial patterns.

In Fig. 6, the blue arrows andoperators indicate thePCA

analysis. The PCA provides the spatial EOF and the in-

verse PCA operator PCA21 allows it to transform the

PCA components into a high-resolution estimateD. The

other parts of this scheme will be commented on below.

b. PCA results

Figure 7 represents the temporal base functions (fk;

k 5 1, . . . , 4) in the left column. The monthly-mean

inundation evolutionm(t) used to center the data before

the PCA (section 3a) is represented in the top of the

right column. In the following graphs of the right column

[below m(t)], the first base function f1 is added with

components 2, 3, and 4 in order to measure their role in

the PCA representation: f1 6 0.2 � fi, for i 5 2, 3, and 4.

The first component is a low-frequency global time

evolution that includes the seasonal and interannual

variability at the global scale. Even if the monthly-mean

average m(t) has been suppressed from the data before

their use in the PCA, there are still seasonal and in-

terannual anomalies among the different locations, and

this component is used to describe this type of vari-

ability. The second base function has an annual cycle

and is used to modulate the starting date of the in-

undation season. The inundation season starts earlier

when this second component is added (in black) and is

delayed when it is suppressed (dashed line). The third

component has a similar behavior for the end of the

inundation season. Adding or suppressing this compo-

nent can delay or advance the end of the season. Both

components 2 and 3 are used to represent the skewness

in the inundation season. The fourth component has an

annual and biannual frequency. It can be seen that this

component has a peak in the start and the end of the

inundation season, so this component can be used to

increase or decrease the inundation duration. It is used

to modulate the inundation cycle duration and kurtosis.

The higher-order components even with a localized

anomaly in time (not shown in this figure) have a higher

time frequency and are more difficult to interpret in the

time dimension. These temporal components need to be

interpreted using their associated spatial patterns.

Similarly to Fig. 7 for the temporal base functions fk,

Fig. 8 represents the corresponding spatial components

FIG. 6. Scheme representing the link between the (left) high- and (right) low-resolution areas. The PCA operators (section 3c) are

represented in blue. The first downscaling method using a linear regression (section 3a) is represented in green and the linear algebra

downscaling (section 3b) is represented in red.

FEBRUARY 2014 A IRE S ET AL . 179



C(:, k) in the right (left and middle columns will be com-

mented on in section 3d). As explained earlier, the first

components are global in nature, and the higher-order

components become more localized in space. An inter-

esting remark comes from the fact that these spatial pat-

terns are relatively smooth. Thismeans that a simple spatial

interpolation could be used to obtain high-resolution fields

at an even greater spatial resolution, for example, 500m

(compatible with the SWOT spatial resolution) instead of

the 500m used in this study (section 2b).

c. Number of PCA components

It is not possible to use theT5 140 PCAcomponents in

the downscaling scheme. The low-resolution estimates

from GIEMS provide Q 5 201 pieces of information,

so in principle, it should be possible to constrain the T

components using them. However, there are not 201

pieces of independent information in GIEMS estimates:

GIEMS has no information on the low seasonal vari-

ability boxes, so some of the Q boxes have no variability

at all (see section 2c). Furthermore, low-resolution boxes

are correlated to each other. Moreover, some HR com-

ponents are very localized. If two of them hold inside

a same low-resolution box, it is impossible to constrain

both of them using only one low-resolution estimate from

GIEMS. Using these local principal components would

make this problem ill posed, and numerical instabilities

will affect the downscaling.

Therefore, the question of the number of necessary

components to represent satisfactorily the inundation

variability appears. In Fig. 9, a sample of 4 yr (2000–03)

of the time series of the MODIS inundation extent in

the Niger Delta (similar to Fig. 4), together with the

compression/reconstruction of the time series using the

PCA with an increasing number of components (k5 1,

2, 3, 5, 10, and 20). Using only one component (in blue)

provides already a good seasonal cycle phase, but this is

FIG. 7. (top to bottom) (left) The first four temporal PCA base functions of the MODIS inundation. (top to

bottom) (right) The global monthly-mean inundationm(t) defined in section 3 for selected years and used to center

theMODIS data; and the sum and difference (6) of base function 1 and base functions 2, 3, and 4, respectively, being

used to better understand their impact on the inundation time series. Gray is for the base function 1, and black solid

and dashed lines are for base function 16 the other base functions, respectively.
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clearly not satisfactory. When the number of compo-

nents increases, the times series increases its seasonal

cycle amplitude and becomes closer to the MODIS

estimate, with both high and low states better repre-

sented. Twenty components appear to be satisfactory

in terms of total inundation extent. At this stage, many

more components would be required to obtain a rather

limited improvement.

Similar to the previous figure for the PCA compres-

sion errors in time, it is possible to represent the PCA

compression–reconstruction of a spatial map to illus-

trate its spatial error patterns. Figure 10 represents first

a sample original MODIS inundation map (ORIG).

Below, the left column represents the PCA compression/

reconstruction when an increasing number of compo-

nents (k 5 2, 8, 14, and 20) are used. The PCA repre-

sentation becomes more precise when the number of

components increases. The right column represents the

difference between the reconstructed and the original

inundation. Gray pixels are for pixels well classified, and

black and white pixels are for classification errors. The

percentage of well-classified pixels is indicated on the

right. Again, 20 components appear to be satisfactory

with 99.1% of well-classified pixels.

By increasing the number of PCA components, it can

be seen in Fig. 11 that both the ability to identify the

inundation measured by the sensitivity (the percentage

of positive inundations that are correctly identified), and

the ability to identify the noninundation cases (the

proportion of noninundation cases that are well classi-

fied, or specificity) are increasing regularly when in-

creasing the number of components. The sensitivity

increases from 60% with one component, to 90% with

20 components, and reaches 100% with a little more

than 30 components.

Similarly, by increasing the number of components,

the PCA representation needs about 30 components to

reach the 100% level. However, with only one compo-

nent, the specificity is higher than 98%. This shows that

the PCA representation privileges the no inundation

state, which is because the goal of the PCA is to repre-

sent as well as possible the variability of the dataset that,

FIG. 8. (top to bottom) The first five spatial EOFs of theMODIS inundation estimates, when (left) 12, (middle) 36, and (right) 140 months

are used in the PCA.
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in this case, includes much more inundated than water-

free pixels. This could be corrected if necessary (e.g., by

decreasing the thresholds to define the inundation state

or by equating the number of inundated and water-free

pixels in the database used to perform the PCA), but it

will be seen in the following that this regular PCA rep-

resentation is satisfactory for the downscaling purpose.

As discussed above, with the number of components

of about 20, it is possible to represent quite precisely the

high-resolution inundation extent of MODIS estimates.

However, this does not mean that 20 components is the

ideal number of components to be used in the down-

scaling process; it is only an upper limit.

d. Number of necessary monthly MODIS data

In the Inner Niger Delta, a long time series of 140

monthly-mean MODIS data are available from 2000 to

2012 and the robustness of the PCA results to the

number of available months can be tested. This analysis

can also help decide if locations with much smaller time

series can be downscaled or not. For the SWOTmission,

it can help decide how many HR samples are needed to

set up a downscaling of the LR observations.

The percentage of variance explained by the first PCA

components (not shown) has been represented when the

PCA is performed using 12, 36, and 140 monthly

MODIS data. Of course, when fewer months are used

for the PCA, fewer components need to be used to

represent the variability. Specifically, with fewer months

in the dataset, there is less interannual variability, so

there is no need for components describing this in-

terannual variability. However, at about 15–20 compo-

nents, the curves of the explained variances start to

become more linear. This elbow is often an important

feature in these curves, and it separates large and global

features from the noise or more local features.

The spatial EOFs are represented in Fig. 8, again,

when using 12, 36, and 140 months in the dataset. The

spatial patterns for the first global EOF are rather stable,

but the intensity and contrast of patterns becomes

higher when more months are used. However, what will

be used in the following for the downscaling are actually

the spatial patterns, rather than their intensity. These

results are encouraging for regions on Earth where short

time series are available; even 1 yr (12 samples) of data

seems to be exploitable.

e. Time interpolation

The PCA representation of the high-resolution inun-

dation will be used for space interpolation (e.g., down-

scaling), but it can also be used for time interpolation

(Aires et al. 2004). Let HRt1 and HRt2 be two consecutive

monthly estimates from MODIS (section 2b). Using the

PCA decomposition of Eq. (3),

HRt
k

’ HR1F
0(tk, 1) � C

0(1, : )

1 . . . 1F
0(t

k
,K) � C0(K, : ) ; (4)

it can be noted that HRt1 is entirely determined by the

vector of components F0(t1, :) and that HRt2 is de-

termined by F0(t2, :). It is then possible to perform a lin-

ear interpolation for each component k for time t with

t1 # t # t2:

F
0(t, k)5F

0(t1,k)1
t2 t1
t2 2 t1

3 [F0(t2, k)2F
0(t1,k)] . (5)

These components can then be used to reconstruct

HRt. With the help of the PCA representation, the

complex binary interpolation in a space of dimension

P5 649 838 (i.e., number of pixels in the high-resolution

dataset) has been transformed to a simple linear inter-

polation of K 5 10 PCA components.

Figure 12 represents the results of such a time inter-

polation. The two consecutive monthly inundation es-

timates are for t1 equal to October 2000 (top map) and t2
for November 2000 (bottom map). Five intermediate

times are represented between them. The behavior of

time interpolation scheme appears very satisfactory.

The total inundated area expressed in square kilometers

is represented in each map, and this surface decreases

regularly too from t1 to t2.

f. Spatial interpolation for missing values

Similar to the temporal interpolation scheme de-

scribed in the previous section, it is also possible to use

FIG. 9. Impact of the number of PCA components in the re-

construction of the total inundation extent times series.
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the PCA representation to interpolate spatially the in-

undation extent fields. This can be useful, for example,

when the presence of clouds introduces missing values in

an inundation field, with MODIS particularly sensitive

to the presence of clouds. For the SWOT mission,

missing values can be the result of high precipitation or

the interferometric layover.

The approach is rather simple. Let us first consider

a regular high-resolution inundation fieldHR (Fig. 13a). It

is supposed that the observed field HR0 includes missing

values in an ensemble of pixels (seeFig. 13b,which includes

a large square of missing values). These missing pixels are

first set to amean valueHR00 in order to be compatiblewith

the PCA representation. Then, PCA components are

computed by projecting HR00 into the spatial base func-

tions. These PCA components are used to reconstruct the

spatial field dHR (Fig. 13c). This simple interpolation

scheme provides quite reasonable inundation estimates in

themissing values square: HR (Fig. 13a) and dHR (Fig. 13c)

are quite similar. The total inundation area is also indicated

for the three maps, and the inundation of dHR (14463km2)

is much closer to that of HR (14364km2) than that of the

missing value field HR0 (13 256km2).

This spatial interpolation procedure should be highly

effective too when a high-resolution inundation map is

perturbed by retrieval noise. This PCA projection and

FIG. 10. (top left) A sample (August 2000) of high-resolution inundation fromMODIS estimates for the area 138–

168N and 38–78W in terms of the percentage of well-classified pixels. The graphs below represent the PCA com-

pression–reconstruction inundation when an increasing number of PCA components are used (2, 8, 14, and 20).

(right, top to bottom) The reconstruction using 2, 8, 14, and 20 components minus the original inundation: black

pixels are inundated pixels not retrieved by the PCA representation, white pixels are not inundated but represented

as such by the PCA, and gray pixels are well represented.
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reconstruction process should be an ideal ‘‘denoising’’

technique for inundation fields.

Technically, the fact that a large area of the in-

undation field is set to an averaged value that might be

quite wrong does perturb the PCA representation. The

resulting components can have a different magnitude,

but the relative importance of the components appears

to be correct. To solve this scaling issue, it is just nec-

essary to transform dHR into binary values.

4. Downscaling

The two downscaling methodologies presented in this

section are both based on the PCA representation of the

MODIS HR inundation extent. The first approach uses

a linear regression to link the high to the low resolution.

The second approach is based on the resolution of

a linear system using simple linear algebra.

a. Downscaling using a linear regression

1) METHODOLOGY

The goal of this section is to obtain a statistical model

that uses the GIEMS inundation data as inputs and

predicts the PCA components that represent the high-

resolution inundation from MODIS.

Let LR be the low-resolution inundation estimates

from GIEMS. There are Q 5 201 GIEMS boxes in the

Niger domain under study, so LR 2 R
201. However,

correlations exist among these 201 box values, and the

number of degrees of freedom is much more limited

than the number of covariates. It is rather common to

preprocess the data before using them as input of a sta-

tistical model, again with a PCA. The goal is to reduce

the number of input variables in the downscaling process

to regularize the process. Tests have been conducted

(not shown), and 10 components provide satisfactory

results. This is about the same number to be used in the

output of the downscaling model coding the high

resolution.2 We note LR 2 R
10 in this PCA representa-

tion of the GIEMS data.

FIG. 11. Evolution of the quality criteria of the classification (see text for definitions) when increasing the number of

components in the PCA representation of the high-resolution inundation.

2 If too many components are used as inputs of the statistical

downscaling model, and if these high-order components do not

bring any information for the downscaling, then they are just dis-

regarded by the linear regression.
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The inundation extent fromMODIS is represented in

the space of the first 20 PCA components (section 3).We

note Y 2 R
10 in these components.

In this paper, a simple statistical model is first

experimented to link LR and Y, the linear regression:

Y5A3LR1B. It is necessary to note here that only

95 points (February 2000 to December 2007; see section

2c) are available to calibrate this linear regression. This

is a limiting factor. The stability of the results to the

number of samples will be studied in a future study.

This downscaling methodology is illustrated in green

in the scheme of Fig. 6. The linear regression tool links

theGIEMS low-resolution data to the PCA components

(in blue). The PCA components are then translated into

the downscaled high-resolution fields using the reverse

PCA.

2) RESULTS

In Fig. 14, five examples of MODIS inundation data

(left) and corresponding downscaled GIEMS data

(right) are presented. The overall comparison appears to

be satisfactory. The spatial structures of the downscaled

inundation are very similar to the structures of the

original MODIS estimates: this is not a surprise, as the

use of the PCA component Y ensures that the down-

scaled values are in the same space. Some discrepancies

can be noticed when looking carefully. The main dif-

ference concerns low-inundation extent months where

the GIEMS estimates are close to zero. In these cases,

the downscaling is always similar, with a constant low-

inundation map. The same behavior will be observed in

the temporal results.

Figure 15 is similar to Fig. 4: the GIEMS (dashed) and

MODIS (black) total inundation extent estimates are

represented together with the inundation estimate

from the downscaled data (gray). The seasonality of the

downscaling is correct. The phase of the downscaled

inundation is closer to MODIS than to GIEMS. An-

other behavior could be obtained with a different

choice of the downscaling configuration. The minimal

value of the inundation extent is constant with a non-

zero value. It is not surprising to have difficulties in

retrieving the low-inundation values knowing that the

GIEMS estimate is of limited quality for the lower

values. Technically, the problem is that, among the

months where GIEMS is equal to zero, there are

MODIS months that are not equal to zero. The linear

regression is constrained to make a compromise and

will associate a nonzero value for all of these months. It

appears that this approach transforms the dynamical

behavior of GIEMS too closely to the MODIS esti-

mates. This is related to the low number of data sam-

ples in order to calibrate the linear regression model. In

FIG. 12. (top to bottom) Temporal interpolation into five in-

termediate time steps in October–November 2000 of MODIS in-

undation estimates for the area 138–168N and 38–78W. The total

inundation area is indicated in square kilometers on each map.
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the following section, an another, less data-demanding

downscaling technique is introduced.

b. Downscaling using matrix inversion

1) METHODOLOGY

In this section, we present a new downscaling meth-

odology based on the resolution of a linear system. The

technique uses again the PCA of the space–time vari-

ability of the high-resolution inundation.

Following Eq. (3), the PCA compression of a high-

resolution map HR(t) is given by

HR(t)5F
0(t, 1:K) � C0(1:K, t)1m(t) . (6)

It is important, at this stage, to keep in the equations

the monthly mean m(t) in the preprocessing step of the

PCA (section 3a). This equation can be multiplied by

the change-resolution matrix area 3 S, introduced in

section 2c:

area3S3HR(t)5 area3S3F
0(t, 1:K) � C0(1:K, t)

1 area3S3m(t) . (7)

The first term corresponds to the upscaling of the high-

resolution inundation toward the low resolution. This

means that it can be equated to the low-resolution LR(t)

from GIEMS. Based on the low-resolution LR from

GIEMS, it is possible to define a linear system:

Y5AX1B , (8)

whereY5LR(t) from theGIEMS estimate;A5 area3

S � F0(t, 1: K) (this matrix is constant in time and can

therefore be used for any time step, once estimated);

X 5 C0(1: K, t) (the PCA components representing the

high resolution); and B 5 area 3 S 3 m(t) (again, a

constant matrix). This linear system relates theQ5 201

observations of the low resolution inY toX, and theK5

10 unknowns represent the high-resolution PCA com-

ponents C0(1: K, t). Matrix A has dimensionQ3 K (not

square) and can be inverted using a pseudoinverse. In

our application, the number of LR boxes isQ5 201 and

the number of components was set to K 5 10. The in-

version of matrix A is an overdetermined problem. The

PCA components can then be estimated using

~C
0(1:K, t)5A

21
� S3HR(t)2A

21
� S3m(t) . (9)

This means that once theK3Qmatrix A21 is obtained,

any low-resolution inundation LR(t) from GIEMS es-

timates can be converted into components ~C
0(1:K, t),

which allows, using Eq. (3) (third line), to obtain its HR

downscaling:

D(t)5F
0(t, 1:K) � ~C0(1:K, t)1m(t) . (10)

This matrix inversion downscaling procedure is rep-

resented in red in the scheme of Fig. 6. The operatorA21

is defined as the inverse of the PCA components to

GIEMS low-resolution estimates (PCA21
3 S). This is

a purely linear algebraic solution to the downscaling

problem. It is a deconvolution of the low resolution

FIG. 13. Spatial interpolation of MODIS high-resolution in-

undation estimates for October 2000: (a) original inundation es-

timate, (b) inundation with missing values, and (c) interpolated

inundation using PCA. The total inundation area is indicated in

square kilometers on each map.
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toward the high-resolution patterns characterized by the

PCA analysis of the MODIS dataset.

In this technique, the PCA patterns from the high

resolution are applied to the low-resolution inundation

data fromGIEMS. It is important to facilitate this inter-

resolution comparison. If the high-resolution patterns

are equated to inundation values much larger or much

lower than what was used to build them, the PCA rep-

resentation becomes nonoptimal and the inversion

problem is ill posed [matrix A in Eq. (9) becomes ill

conditioned]. Therefore, before applying Eq. (9), the

GIEMS estimates are first normalized toward MODIS

values. A ‘‘basin normalization’’ is chosen (seeAires et al.

2013): the minimum and maximum GIEMS inundation

areas at the basin scale are equated to the minimum and

maximum MODIS areas. In Fig. 16, these normalized

GIEMS estimates are shown in black.

2) RESULTS

Figure 16 represents the time evolution of the scaled

GIEMS and downscaled total inundation areas. The

minimum and maximum values of the scaled GIEMS

(0 and about 20 000 km2) have been set up to the mini-

mum and maximum values of MODIS estimates. In-

terannual variability of the downscaled values is close to

the GIEMS one. Some discrepancies still exist for the

very high inundation months. The incoherencies be-

tween the low (from GIEMS) and high resolution (from

MODIS) are higher for these months, so it affects the

inversion of Eq. (8). However, note that the matrix in-

version to solve this linear system could become more

stable if a more sophisticated retrieval scheme was used.

For a Bayesian inversion, taking into account in the re-

trieval a first guess of the solution and its uncertainties

(Tarantola 1987) would be an interesting extension of

this downscaling scheme.

Figure 17 represents two examples of downscaling for

two different months: the GIEMS low-resolution esti-

mates on the left, the high-resolution downscaling in

the center, and the upscaling of the downscaling on the

right. If the downscaling was perfect and if the GIEMS

data were perfectly coherent with the PCA representa-

tion of the high-resolution inundation, then the left and

right columns would be identical. This is not the case.

However, this might not be a problem: the downscaling

has introduced inundation values where GIEMS had

none. For instance, around 268 latitude and 13.58 lon-

gitude, the downscaling estimates inundation based on

inundation patterns of the PCA. As commented earlier,

GIEMS retrieval has difficulties with low-inundation

values, but the downscaling has the potential to correct

this problem.

To provide a quality measure for the downscaled

data, we have upscaled the MODIS high-resolution

inundation maps to obtain LRMODIS. These estimates

become the reference state. We then estimate the

FIG. 14. (left) MODIS inundation and (right) associated down-

scaled inundation from GIEMS estimates for (top to bottom)

February, June, August, October, and December 2002. The total

inundation area is indicated in each map.
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spatial correlation with the original GIEMS estimate

LRGIEMS (left column in Fig. 17) and with the upscaling

of the downscaled GIEMS estimate LRDownGIEMS (right

column in Fig. 17). We obtained: Cor(LRMODIS,

LRGIEMS)5 0.86 andCor(LRModis,LRDownGIEMS)5 0:92.

This means that the downscaling process has actually

‘‘improved’’ GIEMS estimates toward the MODIS

reference.

c. Analysis of the downscaled dataset

In this section, the algebraic downscaling method

developed in the previous section is used to produce

a new, long-term, high-resolution (500m) inundation

dataset. Although the downscaling method has been

calibrated using MODIS data, in the operational mode,

it uses as inputs only theGIEMS observations. Figure 16

shows well that the downscaling has extended the

MODIS period (February 2000 to September 2011) back

in time to cover the full GIEMS period (1993–2007).

Since the downscaling is only driven, in the operational

mode, by GIEMS inputs, its dynamical behavior re-

produces well the GIEMS time series and less so the

MODIS ones. Its correlations are 0.96 with GIEMS and

only 0.69 with MODIS.

Figure 18 represents, for the downscaled dataset, the

probability for the pixels to be inundated for each

month. This figure can be compared to Fig. 2, which was

representing the same quantity from the MODIS da-

taset. The spatial structure and seasonality are very

close. As a consequence, it can be said that the down-

scaling technique is able to reproduce the GIEMS dy-

namic and the MODIS spatial structures by obtaining

the right compromise between the space and time

variabilities.

5. Conclusions and perspectives

In this paper, an analysis of the space–time variability

of the high-resolution inundation extent over the Inner

Niger Delta was first conducted using a principal com-

ponent analysis. This variability can be characterized

using a limited number of temporal behaviors related to

the season, such as duration or start and end dates of the

inundation season. This PCA representation was shown

to be an efficient tool to analyze and manipulate the

inundation datasets. For example, time interpolation of

the whole Inner Niger Delta was shown to be possible,

allowing the increase of the temporal resolution of the

satellite dataset at a very low computational cost. Spatial

interpolation can also be performed using the PCA to

compensate for missing values or to reduce retrieval

noises in the satellite estimates.

Two innovative downscaling methodologies have

been proposed to increase the spatial resolution of the

GIEMS inundation estimates (about 25 km) toward the

spatial resolution of about 500m. Both methods are

derived from the PCA representation of the space–time

variability of the high-resolution inundation extent. The

first technique is based on a linear regression and can be

used if enough samples are available in both datasets

and if the low- and high-resolution estimates are rela-

tively coherent. The second downscaling technique is

based on a simple linear algebra approach that solves

a linear system. In this approach, the PCA patterns from

MODIS need to be relatively coherent with the low-

resolution estimates from GIEMS; otherwise, the PCA

is nonoptimal and the inversion of the linear system can

become ill posed. As a consequence, an inundation area

normalization of the GIEMS estimates toward MODIS

is required before the downscaling. This algebraic

FIG. 15. GIEMS, MODIS, and first downscaled inundation extent

time series over the Inner Niger Delta for 2000–08.

FIG. 16. GIEMS, MODIS, and second downscaled inundation

extent time series over the Inner Niger Delta for 1993–2008.
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FIG. 17. Two samples of downscaling: (a),(d) original GIEMS low-resolution estimates, (b),(e) downscaling using the second method, and (c),(f) upscaling of the downscaled estimate for

(a)–(c) October 2007 and (d)–(f) December 2007. The colored pixels represent the inundated area (km2) in the pixel.
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FIG. 18. As in Fig. 2, but for the downscaled inundation dataset at a spatial resolution of 500m over the period 1993–2007.
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downscaling is very general. The results of both down-

scaling techniques appear to be satisfactory: the spatial

and temporal features of the new downscaled in-

undation data are coherent withMODIS estimates. The

choice of one technique or the other should be based on

the final use of the downscaled products and on the

number of high-resolution samples. This work allowed

us to build a new inundation dataset from 1993 to the

present, at a 500-m spatial resolution, over the Inner

Niger Delta. The PCA components could easily be in-

terpolated spatially to obtain a better spatial resolution,

closer to the SWOT resolution.

Additional work will analyze the sensitivity of the

downscaling approach to the number of samples, its

generalization capacity, and its ability to predict the

extreme cases. Other models can be used to replace the

linear regression in the first downscaling method. For

example, a neural network could be tested: its non-

linearity could be beneficial, but the limited number of

samples is a real difficulty for the use of this technique in

this particular application with theMODIS data. For the

assimilation of the wetland information from satellite

measurements in land surface models, bridges could be

built between the satellite inundation datasets and the

model outputs. For instance, the PCA could be per-

formed on model outputs and the satellite observations

would constrain these PCA components in an assimila-

tion scheme. Another technical perspective would be to

compare these two downscaling techniques with the

approaches developed in Aires et al. (2013). Topo-

graphic information could also be introduced in the

downscaling scheme.

This paper describes a path forward to integrate var-

ious remote sensing datasets to more fully describe

(temporally and spatially) changes in surface hydrology.

Surface inundation extent and their predictability vary

strongly with the seasons inmany areas. This ‘‘rhythm’’ is

being and has been captured by 1) low-spatial-resolution

sensors with global coverage at monthly time scales (i.e.,

GIEMS), 2) high spatial and temporal resolution but

with cloud contamination (MODIS), and also 3) in

more ‘‘snapshot’’ form by high-resolution sensors (SAR).

There is good reason to develop bridging techniques that

can exploit the higher spatial resolution back in time with

the help of the temporal evolution of the lower resolu-

tion. The derived high-spatial-resolution dataset will be

used in the framework of the SWOT mission to develop

and test the instrument simulator as well as to select the

calibration–validation sites. In addition, once SWOT

observations will be available, it will be possible to use

them to calibrate the downscaling techniques (instead of

theMODIS high-resolution dataset). This will allow us to

downscale the GIEMS inundation estimates, and these

new, SWOT-compatible inundations will be extended

back in time until 1993.3The acquisition of data from the

SWOT mission can be switched from a high- to a low-

resolution mode. If low- and high-resolution SWOT

measurements are available in a spatial domain, it is

possible to calibrate a downscaling scheme that might be

used to obtain high-resolution inundation from the low-

resolution acquisitions. The downscaling scheme can

also be used to exploit the synergy among various in-

struments. For example, MODIS observations might be

downscaled toward the SWOT resolution, and the fu-

sion of both retrievals should strengthen the robustness

of the inundation estimates. This should also facilitate the

evaluation of the inundation estimates from the various

instruments (GIEMS, SWOT, MODIS, SAR, etc.). Fi-

nally, the spatial interpolation tools that we have de-

veloped in this paper should help mitigate SWOT

retrieval problems due to high precipitations or in-

terferometric layover problems.

Acknowledgments. We thank the CNES (Centre Na-

tional d’�Etudes Spatiales) and, in particular, Selma

Cherchali for funding this project named ‘‘Pr�eparation �a

lamission SWOT:D�esagr�egation des surface inond�ees.’’

We would also like to thank the three anonymous re-

viewers who have helped clarify the presentation of the

paper.

REFERENCES

Aires, F., A. Ch�edin, and J.-P. Nadal, 2000: Independent compo-

nent analysis of multivariate time series: Application to the

tropical SST variability. J. Geophys. Res., 105, 17 437–17 455,

doi:10.1029/2000JD900152.

——, W. Rossow, N. Scott, and A. Ch�edin, 2002: Remote sensing

from the infrared atmospheric sounding interferometer in-

strument: 1. Compression, denoising, first-guess retrieval in-

version algorithms. J. Geophys. Res., 107, 4619, doi:10.1029/

2001JD000955.

——, C. Prigent, and W. Rossow, 2004: Temporal interpolation of

global surface skin temperature diurnal cycle over land under

clear and cloudy conditions. J. Geophys. Res., 109, D04313,

doi:10.1029/2003JD003527.

——, F. Papa, and C. Prigent, 2013: A long-term, high-resolution

wetland dataset over the Amazon basin, downscaled from

a multiwavelength retrieval using SAR data. J. Hydrometeor.,

14, 594–607, doi:10.1175/JHM-D-12-093.1.

Alsdorf, D., E. Rodriguez, and D. Lettenmaier, 2007: Measuring

surface water from space. Rev. Geophys., 45, RG2002,

doi:10.1029/2006RG000197.

3Although GIEMS is currently available through the end of

2010, this database will be extended with the more recent satellite

observations, whichmeans that a time intersection with SWOTwill

be available.

FEBRUARY 2014 A IRE S ET AL . 191



Armstrong, R. L., and M. J. Brodzik, 2005: Northern Hemisphere

EASE-grid weekly snow cover and sea ice extent, version 3.

National Snow and Ice Data Center, Boulder, CO, digital

media. [Available online at www.nsidc.org.]

Berge-Nguyen,M., J. Cr�etaux, and S. Calmant, 2008: Combining of

radar altimetry and MODIS for the monitoring of flood

events: Application to the Inner Niger Delta. Observing and

Forecasting the Ocean: OSTST Meeting, Nice, France, CNES/

GODAE/IDS/Carte-Blanche, SG.12-132. [Available online at

http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2008/

08332/EGU2008-A-08332.pdf.]

Brakenridge, G., J. Syvitski, I. Overeem, J. Stewart-Moore, and

A. Kettner, 2012: Global mapping of storm surges and the

assessment of coastal vulnerability. Nat. Hazards, 66, 1295–

1312, doi:10.1007/s11069-012-0317-z.

Bukata, R. P., 1992: Satellite Monitoring of Inland and Coastal

WaterQuality: Retrospection, Introspection, FutureDirections.

Taylor and Francis, 246 pp.

Cr�etaux, J.-F., R. Letolle, and S. Calmant, 2009: Investigation on

Aral Sea regressions from mirabilite deposits and remote

sensing. Aquat. Geochem., 15, 277–291, doi:10.1007/s10498-

008-9051-2.

——, and Coauthors, 2011: Flood mapping inferred from remote

sensing data. Int. Water Technol. J., 1, 48–62. [Available on-

line at http://iwtj.info/wp-content/uploads/2011/12/v1-n1-p5.

pdf.]

del Rio, R. A., J.-F. Cr�etaux, M. Berge-Nguyen, and P. Maisongrande,

2012: Does Lake Titicaca still control the Lake Poop�o system

water levels? An investigation using satellite altimetry and

MODIS data (2000–2009). Remote Sens. Lett., 3, 707–714,

doi:10.1080/01431161.2012.667884.

Fluet-Chouinard, E., and B. Lehner, 2011: Towards a high-

resolution global inundation delineation dataset. 2011 Fall

Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract

H51l-1313.

Frappart, F., F. Papa, F. Famiglietti, C. Prigent, W. Rossow, and

F. Seyler, 2008: Interannual variations of river water storage

from a multiple satellite approach: A case study for the Rio

NegroRiver basin. J. Geophys. Res., 113,D21104, doi:10.1029/

2007JD009438.

——, and Coauthors, 2011: Satellite-based estimates of ground-

water storage variations in large drainage basins with ex-

tensive floodplains. Remote Sens. Environ., 115, 1588–1594,

doi:10.1016/j.rse.2011.02.003.

——, F. Papa, J. S. da Silva, G. Ramillien, C. Prigent, F. Seyler,

and S. Calmant, 2012: Surface freshwater storage and dy-

namics in the Amazon basin during the 2005 exceptional

drought. Environ. Res. Lett., 7, 044010, doi:10.1088/1748-9326/

7/4/044010.

Galantowicz, J., 2002: High-resolution flood mapping from low-

resolution passive microwave satellite observations. Proc. 2002

IEEE Int. Geoscience and Remote Sensing Symp., Toronto,

Ontario, Canada, IEEE, 1499–1502.

Jolliffe, I., 2002: Principal Component Analysis. 2nd ed. Springer,

502 pp.

Legler, D. M., 1984: Comments on ‘‘Empirical orthogonal func-

tion-analysis of wind vectors over the tropical Pacific region.’’

Bull. Amer. Meteor. Soc., 65, 162.

Li, R.-R., Y. J. Kaufman, B.-C. Gao, and C. O. Davis, 2003: Remote

sensing of suspended sediments and shallow coastal waters.

IEEE Trans. Geosci. Remote Sens., 41, 559–566, doi:10.1109/

TGRS.2003.810227.

Li, S., D. Sun, M. Goldberg, and A. Stefanidis, 2013: Derivation of

30-m-resolution water maps from TERRA/MODIS and

SRTM. Remote Sens. Environ., 134, 417–430, doi:10.1016/

j.rse.2013.03.015.

Papa, F., C. Prigent, C. Jimenez, F. Aires, andW. B. Rossow, 2010:

Interannual variability of surface water extent at the global

scale, 1993–2004. J. Geophys. Res., 115, D12111, doi:10.1029/

2009JD012674.

Pedinotti, V., A. Boone, B. Decharme, J. Cr�etaux, N. Mognard,

G. Panthou, F. Papa, and B. A. Tanimoun, 2012: Evaluation of

the ISBA-TRIP continental hydrologic system over the Niger

basin using in situ and satellite derived datasets.Hydrol. Earth

Syst. Sci., 16, 1745–1773, doi:10.5194/hess-16-1745-2012.

Prigent, C., E. Matthews, F. Aires, and W. B. Rossow, 2001: Re-

mote sensing of global wetland dynamics with multiple satel-

lite data sets. Geophys. Res. Lett., 28, 4631–4634, doi:10.1029/

2001GL013263.

——, F. Aires, and W. Rossow, 2006: Land surface microwave

emissivities over the globe for a decade. Bull. Amer. Meteor.

Soc., 87, 1572–1584, doi:10.1175/BAMS-87-11-1573.

——, F. Papa, F. Aires, W. Rossow, and E.Matthews, 2007: Global

inundation dynamics inferred from multiple satellite observa-

tions, 1993–2000. J. Geophys. Res., 112, D12107, doi:10.1029/

2006JD007847.

——, ——, ——, C. Jimenez, W. Rossow, and E. Matthews, 2012:

Changes in land surface water dynamics since the 1990s and

relation to population pressure. Geophys. Res. Lett., 39,

L08403, doi:10.1029/2012GL051276.

Rodriguez, E., 2012: Surface Water and Ocean Topography Mis-

sion (SWOT). Science Requirements Doc., Jet Propulsion

Laboratory, California Institute of Technology, Pasadena, CA,

22 pp. [Available online at swot.jpl.nasa.gov/files/SWOT_

science_reqs_release2_v1.14.pdf.]

Sakamoto, T., N. Nguyen, A. Kotera, H. Ohno, N. Ishitsuka, and

M. Yokozawa, 2007: Detecting temporal changes in the extent

of annual flooding within the Cambodia and the Vietnamese

Mekong delta from MODIS time-series imagery. Remote

Sens. Environ., 109, 295–313, doi:10.1016/j.rse.2007.01.011.

Tarantola, A., 1987: Inverse Problem Theory: Methods for Data

Fitting and Model Parameter Estimation. Elsevier, 630 pp.

Wang, Y., J. Colby, and K. Mulcahy, 2002: An efficient method for

mapping flood extent in a coastal floodplain using Landsat

TM and DEM data. Int. J. Remote Sens., 23, 3681–3696,

doi:10.1080/01431160110114484.

192 JOURNAL OF HYDROMETEOROLOGY VOLUME 15

www.nsidc.org
http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2008/08332/EGU2008-A-08332.pdf
http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2008/08332/EGU2008-A-08332.pdf
http://iwtj.info/wp-content/uploads/2011/12/v1-n1-p5.pdf
http://iwtj.info/wp-content/uploads/2011/12/v1-n1-p5.pdf
http://at%20swot.jpl.nasa.gov/files/SWOT_science_reqs_release2_v1.14.pdf
http://at%20swot.jpl.nasa.gov/files/SWOT_science_reqs_release2_v1.14.pdf

