
HAL Id: hal-00990804
https://hal.science/hal-00990804

Submitted on 14 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Latent Bandits
Odalric-Ambrym Maillard, Shie Mannor

To cite this version:

Odalric-Ambrym Maillard, Shie Mannor. Latent Bandits. JFPDA, 2014, pp.05. �hal-00990804�

https://hal.science/hal-00990804
https://hal.archives-ouvertes.fr


Latent Bandits

Odalric-Ambrym Maillard1,3, Shie Mannor2,3

1 The Technion, Faculty of Electrical Engineering 32000 Haifa, ISRAEL
2 odalric-ambrym.maillard@ens-cachan.org

3 shie@ee.technion.ac.il

Résumé : We consider a multi-armed bandit problem where the reward distributions are indexed by
two sets –one for arms, one for type– and can be partitioned into a small number of clusters according
to the type. First, we consider the setting where all reward distributions are known and all types have
the same underlying cluster, the type’s identity is, however, unknown. Second, we study the case where
types may come from different classes, which is significantly more challenging. Finally, we tackle the
case where the reward distributions are completely unknown. In each setting, we introduce specific
algorithms and derive non-trivial regret performance. Numerical experiments show that, in the most
challenging agnostic case, the proposed algorithm achieves excellent performance in difficult scenarios.

Mots-clés : Multi-armed Bandits, Latent variables, Regret analysis.

1 Introduction

In a recommender system Li et al. (2010, 2011); Adomavicius & Tuzhilin (2005), an agent must display
an ad to each incoming client, and a context vector summarizes the observed properties of a client, such as
its navigation history or its geographic localization. In a cognitive radio Avner et al. (2012); Filippi et al.

(2008), an agent must select a communication channel, based on its current known location and network
conditions, while avoiding collision with other sources (such as radar, WiFI, etc). Both examples can be
analyzed within the contextual-multi-armed bandit framework Langford & Zhang (2007); Lu et al. (2010),
where the contexts summarize the information available to the learner. However, the context alone may not
be sufficient to solve these problems optimally : In recommender systems, information such as gender or
salary, is typically missing (due to privacy). In cognitive radios, information that a source (or an existing
user) is close or far is unknown. In both cases, important information about the reward structure is not

observed. Such would enable to classify similar situations and possibly output much better predictions.
We study in this paper the underlying problem that we call the latent multi-armed bandit problem (we

do not consider the contextual part of the problem, that is handled by previous work). More formally, let
{νa,b}a∈A,b∈B be a set of real-valued probability distributions, that is indexed by two finite sets A of items
(actions) and B of types. For clarity, and to highlight the role of latent information, we assume that both
sets are finite. Extension to continuous parametric settings such as linear contextual-bandit Abbasi-Yadkori
et al. (2011); Dani et al. (2008) is straightforward. We denote µa,b ∈ R the mean of νa,b and assume νa,b
to be R-sub-Gaussian (with known R), that is

∀λ ∈ R logEνa,b
exp (λ(X − µa,b)) 6 R2λ2/2 . (1)

At each step n ∈ N, Nature selects some bn ∈ B according to some unknown stochastic process Υ. Then
bn is revealed, and we must select some an ∈ A. Finally, a reward Xn is sampled from νan,bn and observed.
Our goal is to find for all N a sequence of actions a1:N = {an}16n6N with maximal cumulated reward.
The optimal sequence is given by {⋆bn}n∈N where ⋆b ∈ argmaxa∈A EX∼νa,b

[X]. The expected regret of
an algorithm A that produces a sequence of actions a1:N is then simply defined by

R
A

N =

N∑

n=1

EXn∼ν⋆bn
,bn

[
Xn

]
−

N∑

n=1

EXn∼νan,bn

[
Xn

]
.

We model the latent information by assuming that B is partitioned into C clusters C = {Bc}c=1,...,C such
that the distributions {νa,b}a∈A are the same for each b ∈ Bc. This common distribution is denoted νa,c and
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called a cluster distribution. We denote the optimal action in Bc by ⋆c, and introduce the optimality gaps
∆a,c = µ⋆c,c − µa,c. Both the partition and the number of clusters are unknown.

In the recommender system example, B would be the set of Ids of users having a same context, partitioned
for instance into C = 4 groups according to whether the user is a Male/Female and has High/Low income.
In the cognitive radio scenario, B could represent hours of the day, partitioned into C = 23 parts according
to three local radios being active or not 1.

Previous work In Agrawal et al. (1989) and more recently in Salomon & Audibert (2011) the case when
all cluster distributions are known and all users b come from the same unknown cluster c is considered. In
this already non-trivial setting, Agrawal et al. (1989) provided an asymptotic lower bound that significantly
differs from the standard lower bound known for the multi-armed bandit problem Lai & Robbins (1985);
Burnetas & Katehakis (1996), thus showing that the problem is intrinsically different from a bandit problem.
They also analyze a near-optimal (yet costly) algorithm for that problem. In Salomon & Audibert (2011),
a simpler algorithm is introduced and analyzed with less tight guarantee. We contribute to that setting in
Section 2 with a tighter regret bound for a simple algorithm. We then consider two challenging extensions. In
Section 3 users may come from different (instead of one) clusters, and in Section 4 nothing is known about
the environment. These new settings could be loosely related to Slivkins (2011) and Hazan & Megiddo
(2007), as well as to the recent work Gheshlaghi azar et al. (2013).

Contribution In Section 2, we review the important case when the cluster distributions {νa,c}a∈A,c∈C

are known, and all users come from the same cluster c. We provide intuition about the setting, introduce a
new algorithm called Single-K-UCB that is computationally less demanding than that of Agrawal et al.

(1989), and prove an explicit finite-time bound (Theorem 4) on its regret, improving on Salomon & Au-
dibert (2011). In Section 3, we analyze the significantly harder and largely unaddressed setting when the
cluster distributions are still known, but the users may now come from all clusters. We provide a lower
bound (Theorem 5) showing that when the number of clusters is too large with respect to the time horizon,
sub-linear regret is not attainable. We introduce an algorithm called Multiple-K-UCB and prove a non-
trivial regret bound (Theorem 6) that makes explicit the effect of the distribution of users Υ on the regret. In
Section 4, we target the challenging setting when nothing is known (neither Υ, the cluster distributions, nor
even the number of clusters). We provide regret bounds for benchmark UCB-like algorithms (Theorem 7),
and a new algorithm called A-UCB. Despite the very general setting and poor available information, we are
able to prove a weak result (Proposition 1), that enables us to deduce a regret guarantee under mild condi-
tions on the structure of arms (Lemma 1,2). Numerical simulations show in Section 4.2 that the introduced
algorithm achieves excellent performance in a number of hard situations. All proofs are provided in the
extended version Maillard & Mannor (2013).

Notations. At round n, we denote the number of observations for the pair (a, b) by Na,b(n) =
∑n

t=1 I{at =
a, bt = b} and use ν̂a,b(n) and µ̂a,b(n) to denote the empirical distribution and empirical mean built from
the same observations, respectively. We also introduce Nb(n) =

∑
a∈A

Na,b(n). For observations asso-
ciated to the pair a, b, we denote Ua,b(n) a high probability upper bound on the mean µa,b, and La,b(n) a
high probability lower bound. Unless specified, in the sequel we choose the following Ua,b(n) coming from
concentration inequality for R-sub-Gaussian variables (see (1)), and define La,b(n) symmetrically :

Ua,b(n) = µ̂a,b(n) +R

√
2 log(Nb(n)3)

Na,b(n)

La,b(n) = µ̂a,b(n)−R

√
2 log(Nb(n)3)

Na,b(n)
.

One could instead use Hoeffding’s inequality if the distributions have bounded support, empirical Bern-
stein’s inequality to take the variance into account, self-normalized concentration inequality such as in
Garivier & Moulines (2008); Abbasi-Yadkori et al. (2011), or even tighter upper bounds based on Kullback-
Leibler divergence as explained in Cappé et al. (2013). These would lead to slightly improved constants in
the regret bounds, at the price of clarity. Thus we focus here on bounds based on the mean only. Let the
confidence set be Sa,b(n) = [La,b(n), Ua,b(n)] and its size (the gap) be Ga,b(n) = Ua,b(n) − La,b(n). To
avoid some technical considerations, we assume that Sa,b(n) is centered around µ̂a,b(n).

1. We assume that radios are active at the same time everyday.
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2 Known cluster distributions with single cluster arrivals.

In this section, we consider the case when all the distributions {νa,c}a∈A,c∈C are known and arrivals
{bn}n>1 belong to the same unknown cluster c ∈ C. The difference from a standard multi-armed bandit
problem is that the set of possible distributions is finite and known. We can have for instance three arms,
two clusters and Bernoulli distributions of respective parameter 0.8, 0.2, 0.9 for one cluster, and Bernoulli
distributions of parameter 0.8, 0.1, 0.5 for the second one. This modifies the achievable guarantees :

Theorem 1 (Agrawal et al. (1989))

Let c ∈ C be the true class (that is supp(Υ) ⊂ Bc), and A− = A \ {⋆c} be the set of sub-optimal arms.

Then, a lower performance bound is

lim inf
N→∞

RN

log(N)
> min
ωc∈P(A−)

max
c′∈C(c)

∑

a∈A−

ωc,a∆a,c

∑

a∈A−

ωc,aKL(νa,c||νa,c′)
,

where C(c) =

{
c′ ∈ C : ν⋆c,c′ = ν⋆c,c and ⋆c 6= ⋆′c

}
.

Theorem 2 (Agrawal et al. (1989))

For each c ∈ C, let ω⋆
c that achieves the minimum in the lower bound of Theorem 1. The algorithm proposed

by Agrawal et al. (1989) makes use of {ω⋆
c}c∈C and achieves

RN 6

(
max

c′∈C(c)

∑
a∈A−

ω⋆
c,a∆a,c∑

a∈A−

ω⋆
a,cKL(νa,c||νa,c′)

+o(1)

)
log(N) .

Although theoretically appealing, it may be in general expensive to compute the quantities {ω⋆
c}c∈C ,

which makes the algorithm less practical. On the other hand, Salomon & Audibert (2011) introduced the
GCL algorithm, seemingly without being aware of the work of Agrawal et al. (1989) and got the following
non-asymptotic result :

Theorem 3 (Salomon & Audibert (2011))

Assume that for all c, c′ ∈ C, for all a ∈ A, then either νa,c 6= νa,c′ or (either ⋆c 6= a or ⋆′c = a), or

∃a′ 6= a : Pνa′,c
(
dνa′,c

dνa′,c′
(X) > 0) = 0. Then if c ∈ C with unique best arm is the true environment, then for

all β > 0 it holds for some constants C,C ′ that

∀n∀a 6= ⋆c P

( ∑

b∈Bc

Na,b(n) > C
log(n)

∆2
a,c

)
6 C ′n−β .

GCL is fairly easy to implement, however the way this bound is stated makes it hard to understand, all the
more so that the constants are not explicit. Also the dependency with ∆2

a,c seems sub-optimal.
For completeness, we now introduce an efficient algorithm directly inspired from Agrawal’s work. The

price for the reduced complexity is that we lose the asymptotic optimality. We start with some intuition
about our setting.

High level intuition For clarity, we focus on means only (instead of distributions). Let Cn−1 =
{
c ∈

C, ∀a ∈ A : µa,c ∈ Sa,B(n − 1)
}

be the set of admissible classes at round n − 1, where the confidence

set Sa,B(n− 1) is built using observations for the pairs {(a, b)}b∈B. Note that by concentration of measure,
with high probability the true class c is admissible and thus Cn−1 is not empty. Let then c̃ ∈ Cn−1 be an
admissible class. It makes sense to pull its optimal arm ⋆c̃ = argmaxa∈A µa,c̃ (that is known). Now several
situations may occur :

a) For another class c′ ∈ C, if |µ⋆c̃,c′ − µ⋆c̃,c̃| > Ga,B(n− 1), then c′ cannot be admissible. Now if when
c′ is admissible then ⋆c̃ = ⋆c′ , it means that choosing to play ⋆c̃ for c̃ ∈ Cn−1 is safe (that is ⋆c̃ = ⋆c
happens with high probability).
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b) If ∃c′ ∈ C such that both |µ⋆c̃,c′ − µ⋆c̃,c̃| 6 Ga,B(n − 1) and ⋆c̃ 6= ⋆c′ , there are many admissible
classes that lead to different actions to play. The situation is tricky since playing arm ⋆c̃ does not separate c̃
from c′ (it may be that ν⋆c̃,c̃ = ν⋆c̃,c′ ), and may moreover be sub-optimal since we may have ⋆c̃ 6= ⋆c.

Algorithm Agrawal et al. (1989) uses a fancy procedure to handle case b). Here, we note that if we choose
the class c̃ (and thus action ⋆c̃) with maximal best mean, this ensures that µ⋆c,c − µ⋆c̃,c 6 µ⋆c̃,c̃ − µ⋆c̃,c

and thus a controlled error. This observation leads to the Single-K-UCB algorithm, whose pseudo-code
is provided in Algorithm 1. Straightforwardly, if Cn−1 is empty, it reduces to playing round-robin, in case
a), A⋆

n−1 is a singleton, and in case b), we have a controlled error.

Algorithm 1 The Single-K-UCB algorithm.

Require: The cluster distributions {νa,c}a∈A,c∈C .
1: for n = 1...N do

2: Receive bn ∼ Υ.

3: Define the set of admissible classes Cn−1 =
{
c ∈ C : ∀a ∈ Aµa,c ∈ Sa,B(n− 1)

}
.

4: Define the set of “elite” admissible arms A⋆
n−1 = {a ∈ A; ∃c ∈ Cn−1 ⋆c = a}.

5: Choose the next arm (breaks ties with round-robin)

an = argmax
a=⋆c,c∈Cn−1

µ⋆c,c . (2)

6: end for

Regret bound Such an algorithm enjoys the following regret performance :

Theorem 4 (Regret bound for single cluster arrivals)

The regret of Single-K-UCB satisfies

R
Single-K-UCB

N 6
∑

a∈A⋆

24R2∆a,c log(N)

∆+2
a,c

+∆a,c

(
1+

π2

3

)
,

where A⋆ =

{
a ∈ A : ∃c ∈ C s.t. ⋆c = a

}
and

∆+
a,c = inf

c′∈C

{
µa,c′ − µa,c : ⋆c′ = a ∩ µ⋆c′ ,c

′ > µ⋆c,c

}
.

The notation ∆+
a,c comes from the fact that ∆+

a,c > ∆a,c. Note the link between this bound and that of
Theorem 2 (also ∆+

a,c and C(c)). Of course the bound of Theorem 2 can be better and this seems to be the
price for the simplicity of Single-K-UCB. On the other hand, since Theorem 4 scales with ∆+

a,c (which
can be arbitrarily larger than ∆a,c ; see Figure 1), it improves on the result of Theorem 3, and moreover
provides explicit constants. Finally, it is straightforward to improve the constants using tighter confidence
bounds as discussed in the introduction.

3 Known cluster distributions with multiple cluster arrivals.

We now turn to the more challenging case when the distributions {νa,c}a∈A,c∈C are still known to the
learner, but when the users may come from different clusters, and the learner does not know what class
c corresponds to some input b ∈ B. In this setting, the lower bound from Theorem 1 can be strengthen.
Indeed, without further assumptions, it may be the case that if the number of clusters C is too large with
respect to the time horizon N , we don’t have time to learn and we can not ensure to have sub-linear regret :

Theorem 5 (Regret lower-bound for multiple cluster arrivals)

Let Υ be the uniform distribution over B and consider that the distributions are partitioned exactly into

C > A groups of equal size. Then, it holds

inf
algo

sup
νa,c

RN >
1

20
min{

√
NAC,N} .
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This shows that for the scaling C = Ω(N) the problem becomes hopeless, since for any bandit algorithm
there exists a set of distributions {νa,b}a∈A,b∈B such that the regret is linear in N .

Despite this difficulty, it is possible to slightly modify Single-K-UCB for that setting, which leads to
algorithm 2 that enjoys the following regret performance.

Algorithm 2 The Multiple-K-UCB algorithm.

Require: The cluster distributions {νa,c}a∈A,c∈C .
1: for n = 1...N do

2: Receive b = bn ∼ Υ.

3: Define the set of admissible classes Cn−1(b) =
{
c ∈ C, ∀a ∈ A : µa,c ∈ Sa,b(n− 1)

}
.

4: Define the set of “elite” admissible arms A⋆
n−1 = {a ∈ A; ∃c ∈ Cn−1(bn) ⋆c = a}.

5: Choose the most optimistic “elite” arm

an = argmax
a=⋆c, c∈Cn−1(bn)

µ⋆c,c .

6: end for

Theorem 6 (Regret for multiple cluster arrivals)

The regret of Multiple-K-UCB satisfies

R
Multiple-K-UCB

N 6
∑

b∈B

∑

a∈A⋆

min

{
24R2∆a,cb log(NΥ(b))

∆+2
a,cb

+ O
(
Υ(b)−1

)
,∆a,cbNΥ(b)

}
,

where cb ∈ C denotes the class corresponding to b ∈ B.

In order to see the benefit of knowing the distributions {νa,c}a∈A,c∈C , a natural benchmark algorithm
is the one that simply plays independent copies of UCB on each b ∈ B (see Auer (2003)), without using
the knowledge of the cluster distributions. We call this algorithm UCB on B ; see Algorithm 3. Impor-
tantly, due to the inequality ∆+

a,cb
> ∆a,cb and because only elite arms a ∈ A⋆ are pulled, the regret of

Multiple-K-UCB is never worse than that of UCB on B (Theorem 7) ; it can potentially be much smaller.

Algorithm 3 The UCB on B algorithm
1: for n = 1...N do

2: Receive bt ∼ Υ.
3: Compute the empirical means µ̂a,b(n− 1).
4: Choose the next arm (breaks ties arbitrary)

an = argmax
a∈A

Ua,bn(n− 1) . (3)

5: end for

Illustration In order to highlight the role played by ∆+
a,c, Figure 1 depicts the upper-bounds from Theo-

rem 6 and and from Theorem 7, for one randomly generated problem (we do not compare the regret, but
the bounds, to emphasize the theoretical gap). For clarity, we reported the values of ∆+

a,c as well as of the
optimality gaps ∆a,c for each arm and each class. Here three arms that may be pulled by UCB on B are never
pulled by Multiple-K-UCB. Note that the improvement can sometimes be huge : for instance when all
⋆c are equal, then ∆+

a,c = ∞ for all sub-optimal arm and the bound from Theorem 6 equals zero.

4 The agnostic case.

In Sections 2 and 3, using the knowledge of the cluster distributions, we derived regret bounds that may
significantly improve on their equivalent agnostic version. We now detail an improvement that is even more
effective and applicable both in case cluster distributions are known or not.
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FIGURE 1 – Theoretical regret bounds for Multiple-K-UCB (Theorem 6) and UCB on B (Theorem 7)
for one problem characterized by |A| = 3, |B| = 50, |C| = 4 and

1 2 3 4
µa,c : 1 0.527 0.209 0.713 0.762

2 0.717 0.193 0.575 0.230
3 0.669 0.751 0.120 0.485

∆
+
a,c : 1 0.235 0.553 0.0 0.0

2 0.0 +∞ 0.142 +∞

3 0.082 0.0 0.631 +∞

∆a,c : 1 0.190 0.542 0.0 0.0
2 0.0 0.558 0.138 0.533
3 0.0475 0.0 0.593 0.277
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We first note that using estimates from each distributions νa,b separately in order to decide the best action
for the cluster c(b) = c seems sub-optimal since the number of samples Na,b(n) available for the couple
(a, b) is typically small, while we could possibly gain much more by using all observations in each Bc

(This is basically what happens in Section 2). Indeed, if two distributions νa,b and νa,b′ are the same, then
grouping the corresponding observations provides a faster convergence speed. In general, grouping subsets
of {νa,b}b∈B may lead to a dramatic speed-up if we group similar distributions, and may create a bias if
they significantly differ. Thus, there is a trade-off between getting fast versus accurate convergence, and it
is a priori not clear whether we can get a provable improvement.

Benchmark We now introduce an oracle that knows the identity of the clusters perfectly. The simplest
one is an algorithm that runs a version of UCB separately on each group Bc (and not each b). We call this
benchmark UCB on C. Note that although it knows the clusters this is not the best oracle : In some cases, it
may be better to further group some clusters together. This algorithm is easy to analyze. To understand the
kind of improvement we are targeting, the following theorem compares the regret of UCB on B, to that of
the oracle UCB on C.

Theorem 7 (Baseline and Oracle regret for multiple cluster arrivals)

The expected regret at time N of the algorithm UCB on B is upper bounded by

R
UCB on B
N 6

∑

b∈B

∑

a∈A

min
{24R2 log(NΥ(b))

∆a,b
+ O

(
Υ(b)−1

)
,∆a,bNΥ(b)

}
,

where ∆a,b = µπ⋆(b),b − µa,b is the optimality gap of arm a for environment b. Similarly, the expected

regret at time N of UCB on C is upper bounded by

R
UCB on C
N 6

C∑

c=1

∑

a∈A

min
{24R2 log(NΥ(Bc))

∆a,c
+ O

(
Υ(Bc)

−1
)
,∆a,cNΥ(Bc)

}
,

where ∆a,c is the common value of the ∆a,b for b ∈ Bc.

As a result, the regret of UCB on C can be significantly smaller than the one of UCB on B. Indeed,
only looking at the term in factor of log(N), we get an improvement going from

∑
b∈B

∑
a∈A

∆−1
a,b to

∑C
c=1

∑
a∈A

∆−1
a,c. This can be substantial, since typically C is much smaller than B. Note of course that

the partition C is unknown in practice. Also, we emphasize that the lower bound of Theorem 5 also holds
for that setting.

Grouping distributions We now detail the improvement we are going to consider. Let B ⊂ B. We define,
similarly to µ̂a,b(n), La,b(n) and Ua,b(n) the empirical group estimate ν̂a,B(n) with associated group mean
µa,B(n), confidence intervals Ua,B(n), La,B(n) and confidence set Sa,B(n), where

ν̂a,B(n) =

∑
b′∈B

ν̂a,b′(n)Na,b′(n)I{b′ ∈ B}∑
b′∈B

Na,b′(n)I{b′ ∈ B} ,

µa,B(n) =

∑
b′∈B

µa,b′Na,b′(n)I{b′ ∈ B}∑
b′∈B

Na,b′(n)I{b′ ∈ B} .

Note that in the special case when B = Bc, then µa,Bc
(n) = µa,c. This may not hold in general for other

sets B in case the {µa,b′}b′∈B are distinct from µa,c. Thus, grouping the observations generally creates a
bias. However, the speed of convergence of the group depends on Na,B(n) =

∑
b′∈B

Na,b′(n)I{b′ ∈ B},
which is typically much faster than that of a single point b (that depends on Na,b(n)). Thus the confidence
interval Sa,B(n) = [La,B(n), Ua,B(n)] is potentially much smaller than Sa,b(n). Finally, note that, by
construction, we have µa,B(n) ∈ Sa,B(n) with high probability, but that for some b ∈ B there is no reason
that µa,b ∈ Sa,B(n) due to the introduced bias.

In order to leverage the structural bias, we restrict possible groups B, using two observations. First, if
µa,b = µa,b′ , then we must have Sa,b(n)∩Sa,b′(n) 6= ∅ with high probability. More generally, a set B such
that µa,b = µa,b′ for all b, b′ ∈ B must satisfy that for all B′ ⊂ B and all B′′ ⊂ B, with high probability,
Sa,B′′(n)∩Sa,B′(n) 6= ∅. Second, we define, for an adaptive ε = εa,b,b′,n, the enlarged confidence bounds

Ua,b(n; 1 + ε) = µ̂a,b(n) + (1 + ε)
(
Ua,b(n)− µ̂a,b(n)

)
,

La,b(n; 1 + ε) = µ̂a,b(n)− (1 + ε)
(
µ̂a,b(n)− La,b(n)

)
,
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and then Sa,b(n; 1+ε)= [La,b(n; 1+ε), Ua,b(n; 1+ε)]. This enables us to get the property that if µa,b = µa,b′

and 2 Ga,b′(n) 6
ε
2Ga,b(n), we must have Sa,b′(n) ⊂ Sa,b(n; 1 + ε) with high probability.

Note that we here focus only on mean-based procedures for clarity, but it is of course possible to use
empirical distributions ν̂a,b(n) to remove points sb′ that have an obvious mismatch in Kullback-Leibler
divergence. We do not discuss such improvements to avoid distracting the reader from the main message.

All in all, we define two sets of sets : First Bb(n) for compatible sets, and then B
+
b (n) for maximally

compatible (or “elite”) sets, that have maximal group speed of convergence and a controlled bias :

Bb(n)
def
=

{
B⊂B:∀a∈A∀b′,b′′∈B Sa,b′(n)⊂Sa,b′′(n; 1+ε)

∩ b ∈ B ∩ ∀B′, B′′ ⊂ B, Sa,B′′(n) ∩ Sa,B′(n) 6= ∅
}
,

B
+
b (n)

def
= Argmax

B∈Bb(n)

B (for the relation ⊂ ) . (4)

(Note that Argmax returns a set, contrary to argmax.) These sets are simply groups of points that are
compatible with the properties that we expect from confidence intervals. They are thus the natural candidates
for an algorithm that tries to aggregate observations from several users together.

4.1 The Agnostic UCB for clustered-bandits.

We are now ready to introduce A-UCB, whose pseudo-code is provided as Algorithm 4.
Proving strong regret bounds in this agnostic setting is difficult without further assumptions, since the

true class may change at each single time step. For that reason, we proceed in two steps : Proposition 1
controls the number of pulls of sub-optimal arms under some events, that we then handle in specific cases
in Lemma 1 and 2. Note that A-UCB uses a parameter γ that enables to control the enlargement coefficient
ε and that we discuss below.

Algorithm 4 The A-UCB algorithm
Require: Parameter γ.

1: for n = 1...N do

2: Receive bn ∼ Υ,
3: Compute µ̂a,b(n− 1), then Ua,b(n− 1), La,b(n− 1), Sa,b(n− 1) and Ga,b(n− 1).
4: Define the quantity ε = εbn,b′,n−1 by

max

{√
2γ log(Nb′(n− 1))

log(Nbn(n− 1))
− 1, 0

}
.

5: Compute the set B+
bn
(n− 1) of maximally compatible aggregation sets via (4).

6: Pull an elite arm that is the most optimistic

an ∈ argmax
a∈A

max
B∈B

+

bn
(n−1)

Ua,B(n− 1) (5)

7: end for

Proposition 1 (Control of the number of pulls of sub-optimal arms)

Let Ωn =
{
Bcn

∈ Bbn(n − 1)
}

be the event that the true class cn is admissible at round n, and Eα
n =

{
G⋆cn ,Bcn

(n− 1) < α∆an,cn

}
the event that the confidence interval of the optimal arm of cluster Bcn

is

2. This is because we restrict to confidence interval centered around µ̂a,b(n) ; in general we would need Ga,b′ (n) 6

εmin{Ua,b(n)− µ̂a,b(n), µ̂a,b(n)− La,b(n)} .
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small enough, for small α ∈ (0, 1). Then, 3 for a suboptimal an, under Ωn ∩ Eα
n and for all η ∈ (α, 1],

either Nan,bn(n− 1)<
(
1+

ε

2

)2 24R2 log(Nbn(n− 1))

(η − α)2∆2
an,cn

,

or Nan,Bcn
(n− 1) <

24R2 log(NBcn
(n− 1))

(1− η)2∆2
an,cn

.

That is, the total number of pulls, for either the current user bn or its class cn, of a chosen sub-optimal

arm is controlled. As a result, the regret is small under Ωn ∩ Eα
n .

In particular for small ε, α and η → 1, Proposition 1 shows that under Ωn ∩ Eα
n the regret of A-UCB is

essentially in between that of UCB on B and UCB on C : up to constants, it is never worse than UCB on B,
which is the naive baseline, and can be significantly better by competing occasionally with the oracle UCB
on C. This is highlighted precisely on Figure 5, where A-UCB behaves like UCB on B, in the beginning,
and then progressively behaves like UCB on C. It now remains to show that Ωn ∩ Eα

n happens with high

probability in order to deduce a non-trivial regret bound.

Illustration Ωn is the event that the true class cn is admissible at round n,. Now the event Eα
n essentially

says that N⋆cn ,Bcn
(n − 1) > O(log(n)), that is, since N⋆c,Bc

(n) =
∑

b∈Bc
N⋆c,b(n), it is enough that

one N⋆cn ,b(n) be as large to ensure that Eα
n happens. For illustration, let us turn to the case of Bernoulli

distributions (R = 1/2) with C = 4 equally probable classes of equal size B = 50. Individual upper bound
confidence bounds Ua,b(25000) are non trivial (i.e. less than 1) if (a, b) is seen at least 15 times. Now if
each pair (⋆c, b) for b ∈ Bc is visited at least 15 times (out of the ≃ 125 available time steps for each b ∈ Bc)
then G⋆c,Bc

(25000) < 0.27, and for 50 visits, the bound reduces to 0.145. Similarly, for B = 250 we get
abound 0.12 with 15 visits of the optimal action, which is enough to ensure that Eα

n happens in non-trivial
situations. Of course these numbers can be significantly reduced by using better confidence bounds (see
Abbasi-Yadkori et al. (2011)). Let us now provide conditions under which both Eα

n and Ωn happen.

Adaptive enlargement Let us first deal with the event Ωn that Bcn is admissible. To that end, we resort
to an adaptive enlargement ε. Indeed a constant ε (such that ε = 1) does not always ensure that Bcn is
admissible with high probability, but only that a subset of Bcn is admissible at round n. In order to better
understand the set of points that are gathered in Sa,b(n; 1 + ε) and that are admissible, let us introduce the
following problem-dependent quantity, that only depends on the law of arrivals Υ :

Definition 1 (Internal balance of arrivals in a cluster)

The γ-balance of B with respect to the cluster c, for a point b ∈ Bc is defined by

Bc(b; γ) =

{
b′ ∈ Bc : Υ(b) 6 γΥ(b′)

}
.

Together with this quantity, it is natural to introduce the distortion factor of group Bc, defined by

γc =
maxb∈Bc

Υ(b)

minb∈Bc
Υ(b)

.

These quantities enable us to quantify the effective number of points that are grouped together with b ∈ B.
This directly defines the speed-up the algorithm can achieve for this environment. Importantly, note that if
γ > γc, then it holds that Bc(b; γ) = Bc for all b ∈ Bc. A-UCB uses an adaptive ε that ensures that if γ
is essentially greater than γc, then Bc(b; γ) and thus Bc is admissible with high probability (but one should
choose a small γ since the regret is increasing with γ) ; more precisely

Lemma 1 (Probability that the true class is admissible)

In A-UCB, if γ is chosen such that γ > γc +O
(
n−1/2

)
, then it holds that

P(Ωn) > 1−O
(
n−2A

∑

b∈B

Υ(b)−2
)
− 2|B|n−2 .

3. In section C.2 of the extended version Maillard & Mannor (2013), we show a slightly stronger result, though more difficult to
interpret.
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Such a O(n−2) control is standard in regret proofs.

Ensuring the optimal arm is pulled enough We now turn to Eα
n . In full generality, there is no reason

that A-UCB makes Eα
n happen. The following lemma however ensures that under a mild condition on the

structure of the problem, this actually holds with high probability. A simple regret bound follows trivially.

Lemma 2 (Probability of small-enough confidence intervals under mismatch assumption)

Let us assume that Υ is the uniform distribution, that all clusters have the same size B0, and that the cluster

distributions satisfy ∀c, c′ ∈ C ∀a ∈ A

either µ⋆c,c−µ⋆c,c′<∆a,c/2 or µ⋆c,c−µ⋆c,c′>
3

2
∆a,c .

(That is, a mismatch between two classes is either clear or harmless.) In such a case, if A-UCB is run

with γ ∼ γc = 1, then P(Eα
n ) > 1−O(n−2) holds for α = 1/2.

Combining Proposition 1 together with Lemma 1 and Lemma 2, we deduce that, in some specific situa-
tions we are able to control with high probability the number of pulls of a sub-optimal arm, and as a result,
the regret of the considered strategy. We currently do not know how to extend the analysis to handle the
most general case. Note that the mismatch assumption in Lemma 2 is easy to check and holds in several
situations (but we believe it is not necessary in order to get a controlled regret).

4.2 Numerical experiments

In this section, we study the behavior of the algorithm A-UCB on some experiments.

Algorithms We use the vanilla version of UCB (that aggregates all contexts), UCB on B that is the naive
application of UCB separately on each context, and the oracle UCB on C. We implemented a simplified
version of A-UCB where we do not compute the maximally compatible sets exactly (which is NP-hard in
general), but average the means of the compatible sets instead. This slightly worsen the numerical constants
in our results, even though characterizing entirely the effect of this relaxation in terms of regret and nume-
rical efficiency goes beyond the scope of this paper.

Experiments We consider experiments with Bernoulli distributions : this is intuitively the hardest case,
since one can only rely on the means to separate distributions ; it also appears in several applications.
For each experiment, we show the number of actions |A|, of users |B|, of classes |C|, and the parameters
{µa,c}a∈A,c∈C when there are not too many. We plot the regret of all algorithms on the same figure : A
thick line is used for the mean regret and dashed lines for quantiles at levels 0.25, 0.5, 0.75, 0.95 and 0.99.
In all experiments, the parameters {Υ(b)}b∈B are defined by Υ(b) = wb/

∑
b∈B

wb, where the weights wb

are drawn uniformly randomly in [0.1, 0.9]. Thus for each class, the distortion factor γc is less than 9, and
we set the parameter γ of A-UCB to the value γ = 9. For one experiment with given fixed parameters, the
algorithms are run over several trials (500) for a large time horizon N = 25000. We do not report the values
of {Υ(b)}b∈B since this is generally uninformative.

Figure 2 presents an expected situation, where both the naive UCB and UCB on B perform poorly with
respect to the oracle, whereas A-UCB performs very well. Note that here the best arm is different in the
different classes, with corresponding value that is always very high and well separated from other arms.

Figure 3 presents a tricky situation : UCB on B performs poorly, while both A-UCB compete with the
oracle, and all are defeated by UCB, which is not surprising since here one arm is the best in all contexts.

Figure 4 presents a variant when the set of actions A is large. As expected the performance of all algo-
rithms degrade, but A-UCB is still competitive with respect to the oracle and benchmark algorithms.
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FIGURE 2 – Regret of several algorithms in the following scenario with |A| = 3, |B| = 50, |C| = 4 and
µa,c 1 2 3 4

1 0.527 0.209 0.713 0.762

2 0.717 0.193 0.575 0.230
3 0.669 0.751 0.120 0.485
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FIGURE 3 – Regret of several algorithms in the following scenario with |A| = 3, |B| = 50, |C| = 4 and
µa,c 1 2 3 4

1 0.370 0.750 0.609 0.207
2 0.150 0.290 0.475 0.464
3 0.671 0.897 0.781 0.9

FIGURE 4 – Regret of several algorithms in some randomly generated situation with |A| = 50, |B| =
50, |C| = 4.
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Figure 5 presents a variant when the set of users B is large. Note that in this experiment, one only gets
to see each b about 50 times, this setting is thus challenging. It can be seen that A-UCB still works fairly
decently in this case. In accordance with Proposition 1, let us also remark that here A-UCB behaves initially
like UCB on B, and progressively behaves like UCB on C (though with a shifted regret due to the initial
phase).

Finally figure 6 presents a variant when the number of clusters C is large. A-UCB still competes with the
oracle here.

In all these experiments, we observe that A-UCB consistently competes with UCB on C, while UCB and
UCB on B sometimes obtain poor regret. This indicates that the proposed strategy is essentially able to
capture the right information and does not under nor over-group the inputs b. This is promising.

FIGURE 5 – Regret of several algorithms in the following scenario with |A| = 3, |B| = 500, |C| = 4 and
µa,c 1 2 3 4

1 0.1 0.621 0.1 0.362

2 0.544 0.697 0.554 0.181
3 0.512 0.409 0.234 0.1

5 Discussion

We introduced a novel setting for sequential decision making problem where there are some latent va-
riables, such as in recommender systems, cognitive radio networks and others. We provided several contri-
butions in a general framework in order to precisely address the issues raised by the latent structure. As a
result, our contribution can be straightforwardly applied for instance to the linear-bandit setting (see Abbasi-
Yadkori et al. (2011); Dani et al. (2008)), where the number of actions is replaced with the dimension of a
feature space, and confidence intervals with confidence ellipsoids, and potentially many others.

Let us remark that we assumed in this work that the reward distributions are clustered, that is each νa,b is
one of the {νa,c}c. A natural extension is to consider the case when each νa,b is a mixture of the {νa,c}c,
with an underlying low-rank structure. This is left for future research.
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FIGURE 6 – Regret of several algorithms in some randomly generated situation with |A| = 3, |B| =
100, |C| = 50.

In the non-trivial setting of Section 2, we showed that a simple procedure improves on Salomon & Au-
dibert (2011) on the theoretical side and on Agrawal et al. (1989) on the computational side. We then
introduced the more challenging setting of Section 3, that has not been addressed previously, and extended
our procedure to that setting. We provided a lower-bound explaining why the setting is challenging and then
a non trivial regret bound that makes appear explicitly the role of the distribution Υ of arrivals.

We finally tackled the agnostic setting, when not even the number of clusters is known. We introduced
an algorithm that demonstrates excellent performance on a number of difficult situations, and provided a
result enabling to derive regret guarantees in some non-trivial situations. We leave the intricate question of
extending Lemma 1 and 2 to the fully general case as an open problem.
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