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Abstract

We present a new covariate-adjusted response-adaptive randomized controlled trial design and in-

ferential procedure built on top of it. The procedure is targeted in the sense that (i) the sequence

of randomization schemes is group-sequentially determined by targeting a user-specified optimal ran-

domization design based on accruing data and, (ii) our estimator of the user-specified parameter of

interest, seen as the value of a functional evaluated at the true, unknown distribution of the data, is tar-

geted toward it by following the paradigm of targeted minimum loss estimation. We focus for clarity on

the case that the parameter of interest is the marginal effect of a binary treatment and that the targeted

optimal design is the Neyman allocation, in an effort to produce an estimator with smaller asymptotic

variance. For clarity too, we consider the case that the estimator of the conditional outcome given

treatment and baseline covariates, a key element of the procedure, is obtained by LASSO regression.

Under mild assumptions, the resulting sequence of randomization schemes converges to a limiting de-

sign, and the TMLE estimator is consistent and asymptotically Gaussian. Its asymptotic variance can

be estimated too. Thus we can build valid confidence intervals of given asymptotic levels. A simulation

study confirms our theoretical results.

Keywords: covariate-adjusted response-adaptive (CARA) design, randomized controlled trial (RCT),

least absolute shrinkage and selection operator (LASSO), targeted minimum loss estimation (TMLE)

1 Introduction

1.1 Overview

This technical report is devoted to the study of a so-called group-sequential CARA randomized controlled

trial (RCT), with a particular focus on incorporating more flexible (i.e., data-adaptive) techniques to model

the response. A CARA RCT is Covariate-Adjusted: the treatment randomization schemes are allowed to

be a function of the patients’ pre-treatment covariates. In addition, a CARA RCT is Response-Adaptive:

the investigators have the opportunity to adjust these schemes during the course of the trial based on

accruing information, including previous responses, in order to meet some pre-specified objectives. In a

group-sequential CARA RCT, the latter adjustments are made at interim time points given by sequential

inclusion of blocks of c patients, where c ≥ 1 is a pre-specified integer. We consider the case of c = 1 for

simplicity of exposition, though the discussions generalize to any c > 1.

The trial protocol pre-specifies the observed data structure, scientific parameters of interest, analysis

methods, and a criterion characterizing an optimal randomization scheme. Here, some baseline covari-

ates and a primary outcome of interest are measured on each patient. We choose the marginal treatment

effect of a binary treatment as our parameter of interest, ψ0. It is analyzed using targeted minimum

1



loss estimation (TMLE) on top of the so-called LASSO (least absolute shrinkage and selection operator)

methodology (Tibshirani, 1996) that we choose to illustrate the application of data-adaptive techniques to

model the response. The TMLE methodology was first introduced by (van der Laan and Rubin, 2006) in

the independent identically distributed setting. Its extension to adaptive RCTs was considered in (van der

Laan, 2008) and (Chambaz and van der Laan, 2013), upon which this technical report relies. The ex-

tension based on LASSO that we present here encompasses the parametric approach of (Chambaz and

van der Laan, 2013) as a special case. For concreteness, we choose the so-called Neyman design as

our optimal randomization scheme. The Neyman design minimizes the Cramér-Rao lower bound on the

asymptotic variances of a large class of estimators of ψ0. The resulting Neyman allocation probabili-

ties are evaluated conditionally on the baseline covariates. By targeting the Neyman design, we aim at

improving the efficiency of the study, i.e., at reaching a valid result using as few blocks of patients as

possible. We emphasize that the results and procedures presented here are generally applicable to other

parameters and optimal randomization schemes.

We show that, under mild conditions, the resulting TMLE estimator of ψ0 is consistent and asymp-

totically normal regardless of the consistency of the LASSO estimator of the conditional expectation of

the response given treatment and baseline covariates. Furthermore, the resulting targeted CARA design

converges to a fixed limiting design, which equals the Neyman design if the LASSO estimator is con-

sistent and if the Neyman design belongs to a user-supplied set of randomization schemes. The general

framework that combines CARA RCTs with machine-learning techniques is presented in a separate arti-

cle. Before we delve into the main contents, let us motivate our discussion with a bird’s eye view of the

landscape of CARA designs.

1.2 Literature Review

Adaptive randomization has a long history that can be traced back to the 1930s. We refer to (Rosenberger,

1996, Rosenberger, Sverdlov, and Hu, 2012), (Hu and Rosenberger, 2006, Section 1.2) and (Jennison and

Turnbull, 2000, Section 17.4) for a comprehensive historical perspective. Many articles are devoted to

the study of response-adaptive randomizations, which select current treatment probabilities based on re-

sponses of previous patients, but not on the covariates of the current patients. We refer to (Hu and Rosen-

berger, 2006, Chambaz and van der Laan, 2011, Rosenberger et al., 2012) for a bibliography on that topic.

In a heterogeneous population, however, it is often desirable to take into account the patients’ character-

istics for treatment assignment. CARA randomization tackles the issue of heterogeneity by dynamically

calculating the allocation probabilities based on previous responses and current and past values of cer-

tain covariates. Compared to the broader literature on response-adaptive randomization, the advances in

CARA procedures are relatively recent, but growing steadily. Among the first approaches, (Rosenberger,

Vidyashankar, and Agarwal, 2001, Bandyopadhyay and Biswas, 2001) considered randomization proce-

dures defined as explicit functions of the conditional responses, which are modeled by generalized linear

models. Though these procedures are not defined based on formal optimality criteria, their general goal

is to allocate more patients to their corresponding “better” treatment arm. Atkinson and Biswas (2005)

presented a biased-coin design with skewed allocation, which is determined by sequentially maximizing

a function that combines the variance of the parameter estimate, based on a Gaussian linear model for

the conditional response, and the conditional treatment effect given covariates. Up till here, very little

work had been devoted to asymptotic properties of CARA designs. Subsequently, Zhang, Hu, Cheung,

and Chan (2007), Zhang and Hu (2009) established the efficiency theory for CARA designs converg-

ing to any given target design, when the responses follow a generalized linear model, and proposed a

covariate-adjusted doubly-adaptive biased coin design whose asymptotic variance achieves the efficiency

bound. Chang and Park (2013) proposed a sequential estimation of CARA designs under generalized

linear models for the response. This procedure allocates treatment based on the patients’ baseline co-

variates, accruing information and sequential estimates of the treatment effect and uses a stopping rule

2



that depends on the observed Fisher information. With regard to hypothesis testing, Shao, Yu, and Zhong

(2010), Shao and Yu (2013) provided asymptotic results for valid tests under generalized linear mod-

els for the responses. Most recently, progress has also been made in CARA designs in the longitudinal

settings, see for example (Biswas, Bhattacharya, and Park, 2014, Huang, Liu, and Hu, 2013, Sverdlov,

Rosenberger, and Ryeznik, 2013).

To tackle the issue of restrictive modeling assumptions, Chambaz and van der Laan (2013) proposed

a TMLE analysis of a CARA design where the treatment allocation is conditional on a summary mea-

sure of the covariates that takes only finitely many values. Under such a framework, the treatment effect

is defined nonparametrically, and the consistency and asymptotic normality of its estimator is robust to

misspecification of the parametric working model for the response. However, assigning treatment based

on such summary measures is perhaps too restrictive in real-life RCTs where response to treatment may

be correlated with a large number of a patient’s baseline characteristics, some of which being continuous.

Moreover, although a misspecified parametric working model for the response does not hinder the con-

sistency of the treatment effect estimator, it may affect its efficiency and the convergence of the CARA

design to the targeted optimal design.

In this technical report, we generalize the results of Chambaz and van der Laan (2013) to address

the two issues mentioned above. We adopt a loss-based approach to the construction of more flexible

CARA randomization schemes while exploiting data-adaptive estimators for the estimation of the re-

sponse model, in search for greater efficiency through better variable adjustments and more accurate

estimation of the variance of the estimator.

1.3 Organization

The remainder of this technical report is organized as follows. In Section 2 we introduce our LASSO-

based group-sequential CARA RCT design and the TMLE procedure built on top of it to infer the

marginal treatment effect of a binary treatment. Section 3 is devoted to the presentation of results pertain-

ing to the convergence of our targeted CARA design and to the asymptotics, consistency and central limit

theorem, of the TMLE estimator. A simulation study is described and its results summarized in Section 4.

The technical report closes on a discussion in Section 5.

2 Targeted CARA RCT using LASSO

In the introduction, we have outlined the motivation to use data-adaptive procedures to estimate the con-

ditional response given treatment and covariates. For concreteness of the formal theoretical development,

we consider here the LASSO estimator, which is a shrinkage and selection method for generalized re-

gression models that optimizes a loss function of the regression coefficients subject to the constraint that

the L1 norm of the coefficient vector be upper-bounded by a given value. The parametric estimators

considered in (Chambaz and van der Laan, 2013) are a special case of a LASSO estimator.

We begin by establishing the key features of the trial, namely, the parameter of interest, analysis

method, and the optimal randomization scheme. Then, we describe the data generating process (including

estimation of the response model using LASSO and adaptation of the randomization scheme) and the

targeted maximum likelihood estimation procedure.

2.1 Observed Data Structure, Parameter of Interest and Optimal Design

Prior to data collection, the trial protocol notably specifies the observed data structure, parameter of

interest, and the optimal randomization design to target, both expressed in terms of features of the true,

unknown data-generating process in the population of interest. In this technical report we consider a
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simple situation, judging by the definition of the data and our choice of parameter of interest. The range

of application of the methods presented here extends beyond this limited yet instructive framework.

Sections 2.1.1, 2.1.2 and 2.1.3 are respectively devoted to the presentation and discussion of the

observed data structure, parameter of interest, and optimal randomization design.

2.1.1 Observed Data Structure

The data structure O writes as O ≡ (W,A,Y ), where W ∈ W consists of the baseline covariates (some of

which may be continuous), A ∈ A ≡ {0,1} is the binary treatment of interest, and Y ∈ Y is the primary

outcome of interest. We assume that the outcome space O ≡ W ×A ×Y is bounded. Without loss of

generality, we may then assume that Y ∈ Y ≡ (0,1) is bounded away from 0 and 1.

Every distribution of O consists of three components. On one hand, the marginal distribution of W and

the conditional distribution of Y given (A,W ) form a couple which is given by nature. On the other hand,

the conditional distribution of A given W , also know as (a.k.a.) randomization scheme, is controlled by

the investigators of the RCT. To reflect this dichotomy, we denote PQ,g the distribution of O whose couple

formed by the marginal distribution of W and the conditional distribution of Y given (A,W ) equals Q and

whose randomization scheme equals g ∈ G , with G the set of all randomization schemes. For a given

Q, we denote QW the related marginal distribution of W and QY the related conditional expectation of Y

given (A,W ). Moreover, we denote Q0 the true couple in our population of interest, which is unknown to

us, and we assume that this Q0 does not vary during the whole duration of the RCT. Thus, for any Q and g,

PQ0,g is the true, partially unknown distribution of O when one relies on g, and EPQ,g(Y |A,W ) =QY (A,W ),
PQ,g(A = 1|W ) = g(1|W ) = 1−g(0|W ) PQ,g-almost surely.

2.1.2 Parameter of Interest

The parameter of interest under consideration in this technical report is the marginal treatment effect on

an additive scale:

ψ0 ≡ EPQ0 ,g
{QY,0(1,W )−QY,0(0,W )}=

∫

(QY,0(1,w)−QY,0(0,w))dQW,0(w),

which evidently depends on PQ0,g only through Q0. Of particular interest in medical, epidemiological and

social sciences research, this parameter can be interpreted causally under additional assumptions on the

data-generating process (Pearl, 2000). Central to our approach is seeing ψ0 as the value at any PQ0,g of

the mapping Ψ : M → [−1,1] characterized over the set M of all possible distributions of O by

Ψ(PQ,g)≡ EPQ,g
{QY (1,W )−QY (0,W )}=

∫

(QY (1,w)−QY (0,w))dQW (w). (1)

The mapping Ψ enjoys a remarkable property: it is pathwise differentiable (think “smooth”) with an

efficient influence curve (think “gradient”) which provides insight into the asymptotic properties of all

regular and asymptotically linear (think “well-behaved”) estimators of Ψ(PQ0,g). The following lemma

makes the latter statement more formal—we refer the reader to (Bickel, Klaassen, Ritov, and Wellner,

1998, van der Vaart, 1998, van der Laan and Robins, 2003) for definitions and proofs.

Lemma 1. The mapping Ψ : M → [−1,1] is pathwise differentiable at every PQ,g ∈ M with respect

to (wrt) the maximal tangent space. Its efficient influence curve at PQ,g is D∗(PQ,g) which satisfies

D∗(PQ,g)(O) = D∗
W (PQ,g)(W )+D∗

Y (Q,g)(O) with

D∗
W (PQ,g)(W ) ≡ QY (1,W )−QY (0,W )−Ψ(PQ,g),

D∗
Y (Q,g)(O) ≡

2A−1

g(A|W )
(Y −QY (A,W )) .
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The variance VarPQ,g D∗(P)(O) is a generalized Cramér-Rao lower bound for the asymptotic variance

of any regular and asymptotically linear estimator of Ψ(PQ,g) when sampling independently from PQ,g.

Moreover, if either QY = Q′
Y or g = g′ then EPQ,g D∗(PQ′,g′)(O) = 0 implies Ψ(PQ,g) = Ψ(PQ′,g′).

The last statement of Lemma 1, often referred to as a “double-robustness” property, shows that one

can seek help from D∗ to protect oneself against model misspecifications when estimating ψ0. This is

especially relevant in our setting where we know precisely what is the randomization scheme g at play

when one samples an observation from PQ0,g.

2.1.3 Optimal Design

Suppose our goal of adaptation is to reach a randomization scheme of higher efficiency, i.e., to obtain a

valid estimate of ψ0 using as few blocks of patients as possible. By Lemma 1, the asymptotic variance

of a regular, asymptotically linear estimator is lower-bounded by ming∈G VarPQ0 ,g
D∗(PQ0,g). In this light,

the Neyman design (Hu and Rosenberger, 2006)

g0 ≡ argmin
g∈G

VarPQ0 ,g
D∗(PQ0,g) = argmin

g∈G

EPQ0 ,g

(Y −QY,0(A,W ))2

g2(A|W )
(2)

can be considered as an optimal randomization design (“optimal design” for short). Since its definition

involves the unknown Q0, the optimal design g0 is unknown too. It is readily seen that g0 is characterized

by g0(1|W ) = σ0(1,W )/(σ0(1,W )+σ0(0,W )), where σ2
0 (A,W ) is the conditional variance of Y given

(A,W ) under Q0. It therefore appears that, under this randomization scheme, the treatment arm with

higher probability for a patient with baseline covariates W is the one for which the conditional variance

of the outcome is higher.

If we knew the optimal design then we could undertake the covariate-adjusted trial consisting in

drawing independently observations from PQ0,g0
. The next task would be to build a regular, asymptot-

ically linear estimator with asymptotic variance VarPQ0 ,g0
D∗(PQ0,g0

) based on the resulting data. In the

present situation, we are going to “target” g0 at some pre-determined interim steps. By targeting g0 we

mean estimating g0 based on past observations and relying on the resulting estimator to collect the next

block of data. In addition to targeting g0, each interim analysis will also consist in building an adaptive,

targeted, regular and asymptotically linear estimator of ψ0. The details of this procedure are presented in

Section 2.2.

2.2 Data-Generating Mechanism and Estimation Procedures

Describing the data-generating mechanism amounts to presenting how we target the optimal design g0 at

each interim step, which involves the estimation of the conditional expectation QY,0. We initiate the de-

scription in Section 2.2.1, describe a LASSO estimation procedure of QY,0 in Section 2.2.2 and the related

targeting procedure of g0 in Section 2.2.3. By then, the data-generating mechanism is fully characterized

by recursion.

2.2.1 Initiating the Data-Generating Mechanism

In the sequel, we denote Oi ≡ (Wi,Ai,Yi) the ith observation that we sample. The indexing reflects the

time ordering of the data collection: j < i implies that O j was collected before or at the same time as Oi.

For convenience, we let On ≡ (O1, . . . ,On) be the ordered vector of first n observations, with convention

O0 ≡ /0. In the adaptive trial, the treatment Ai is drawn conditionally on Wi from the Bernoulli law

with parameter gi(1|Wi), where the randomization scheme gi : A → [0,1] depends on past observations

Oi−1. We set gn ≡ (g1, . . . ,gn), the ordered vector of first n randomization schemes. The data-generating
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distribution of On is denoted PQ0,gn . It is formally characterized by the following factorization of the

density of On wrt the product of the dominating measures: for any g ∈ G ,

PQ0,gn(On) =
n

∏
i=1

PQ0,gi
(Oi) =

n

∏
i=1

QW,0(Wi)×gi(Ai|Wi)×PQ0,g(Yi|Ai,Wi).

Let gb be the balanced randomization scheme, for which each arm is assigned with probability 1/2

regardless of baseline covariates. For a pre-specified n0, we first draw n0 independent observations

O1, . . . ,On0
from PQ0,gb . At an interim point, suppose one has thus far drawn n observations On ∼ PQ0,gn .

An estimator of QY,0 is obtained based on On. The next randomization scheme gn+1 is defined using

the latter estimator and (On,gn), then the (n+ 1)th observation On+1 is drawn from PQ0,gn+1
. We will

describe the estimation of QY,0 and construction of gn+1 in the two following sections.

2.2.2 LASSO Estimation of the Outcome’s Conditional Expectation

Consider {bn}n≥1 and {dn}d≥1 two non-decreasing, possibly unbounded sequences over R+ and, for

some M > 0 and every n ≥ 1, introduce the subset

BM,n ≡
{

β ∈ ℓ1 : ‖β‖1 ≤ min(bn,M) and ∀ j ≥ dn, β j = 0
}

(3)

of ℓ1 ≡
{

β ∈ R
N : ∑ j∈N |β

j|< ∞
}

. Let
{

φ j : j ∈ N
}

be a uniformly bounded set of functions from A ×
W to R. Without loss of generality, we may assume that ‖φ j‖∞ = 1 for all j ∈ N, where ‖ · ‖∞ denotes

the supremum norm. For all β ∈ ℓ1, we denote Φβ : A ×W → R the function such that Φβ (A,W ) ≡

∑ j∈N β jφ j(A,W ).
The construction of our LASSO estimators of QY,0 relies on a working model Q1 and on a loss

function L for QY,0, both specified by the investigators. This means that QY,0 is the minimizer of QY 7→
PQ0,gL(QY ) over the set of all conditional expectations of Y given (A,W ), of which Q1 is a user-specified

subset (the value of g ∈ G plays no role in this statement). For instance, they can take Q1 ≡ {QY,β ≡ Φβ :

β ∈ BM,n} with M = 1, and the least-square loss function L characterized over the latter by

L(QY,β )(O)≡ (Y −QY,β (A,W ))2. (4)

They can also take Q1 ≡{QY,β ≡ expit(Φβ ) : β ∈BM,n} with M a deterministic upper-bound on | logit(Y )|
(recall that Y is assumed bounded away from 0 and 1), and the quasi negative-log-likelihood loss function

L characterized over the latter by

−L(QY,β )(O)≡ Y log(QY,β (A,W ))+(1−Y ) log
(

1−QY,β (A,W )
)

. (5)

Note that in both cases, for all β ∈ BM,n, ‖QY,β‖∞ is upper-bounded by a deterministic upper-bound

on |Y |.
Recall that we have already drawn n observations On ∼ PQ0,gn . Given a user-specified reference

gr ∈ G that is bounded away from 0 and 1, we estimate QY,0 with QY,βn
, where

βn ∈ argmin
β∈BM,n

1

n

n

∑
i=1

(

L(QY,β )(Oi)
gr(Ai|Wi)

gi(Ai|Wi)

)

. (6)

The above minimization with the constraint ‖β‖1 ≤ min(bn,M), see (3), can be rewritten as a minimiza-

tion free of the latter constraint by adding a term of the form λn‖β‖1 to the empirical criterion, where

λn depends on bn. This is the so-called LASSO procedure introduced by Tibshirani (1996) for the sake

of obtaining estimators with fewer nonzero parameter values, thus effectively reducing the number of

variables upon which the given solution is dependent. Note that when dn = d is held constant by choice,

(6) should be interpreted as a standard parametric procedure rather than as a LASSO.
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2.2.3 Adapting Towards the Optimal Design

We now turn to the construction of the next randomization scheme gn+1.

Our optimal design minimizes g 7→ VarPQ0 ,g
D∗(PQ0,g) over the class G of all randomization schemes,

see (2). We adopt a loss-based approach, by defining gn+1 as the minimizer in g of an estimator of

VarPQ0 ,g
D∗(PQ0,g) over a user-specified class of randomization schemes. This approach is applicable in

the largest generality. In the case that W is discrete, or if one is willing to assign treatment only based

on a discrete summary measure V of W , gn+1 can be defined explicitly as an estimator of the Neyman

design based on QY,βn
and observations On; we refer the readers to (Chambaz and van der Laan, 2013)

for details.

To proceed, we first note that, for all g′ ∈ G ,

g0 = argmin
g∈G

EPQ0 ,g
′

(Y −QY,0(A,W ))2

g(A|W )g′(A|W )
.

This equality teaches us that for the sake of estimating g0 using observations drawn from PQ0,g′ we may

consider the loss function LQY
characterized over G by

LQY
(g)(O)≡

(Y −QY (A,W ))2

g(A|W )
,

provided it is weighted by 1/g′(A|W ). Note that this loss function is indexed by a given QY .

Recall that we have already drawn n observations On ∼ PQ0,gn and estimated QY,0 with QY,βn
. Now,

given a class G1 ⊂ G of randomization schemes uniformly bounded away from 0 and 1, we define the

next randomization scheme as

gn+1 ∈ argmin
g∈G1

1

n

n

∑
i=1

LQY,βn
(g)(Oi)

gi(Ai|Wi)
= argmin

g∈G1

1

n

n

∑
i=1

(

Y −QY,βn
(Oi)

)2

g(Ai|Wi)gi(Ai|Wi)
(7)

This completes the description of our data-generating mechanism.

2.3 Targeted Maximum Likelihood Estimation

Given n observations On ∼ PQ0,gn and the estimator QY,βn
of QY,0 defined in (6), we may carry out the

estimation of the parameter of interest ψ0. We adopt the targeted minimum loss estimation methodology.

In the setting of a covariate-adjusted RCT with fixed design, a TMLE estimator is unbiased and asymp-

totically Gaussian regardless of the specification of the working model used for the estimation of QY,0.

It is known that unbiasedness and asymptotic normality still hold in the context of this technical report

(CARA RCT for the estimation of ψ0 based on copies of O), provided that the randomization schemes

depend on W only through a summary measure taking finitely many values and that the working model

used for the estimation of QY,0 be a simple linear model (this basically amounts to taking dn = d constant

and bn = M) in Section 2.2.2), see (Chambaz and van der Laan, 2013). Yet by relying on more flexible

randomization schemes and on more adaptive estimators of QY,0 we may achieve a greater efficiency

through better estimation of the optimality criteria that may facilitate adaptation toward the optimal de-

sign, better adjustment of the variables that may directly improve on the estimation of the parameter of

interest, and a more accurate estimation of the variance of the estimator.

In a glimpse, the proposed strategy consists in targetedly fluctuating the initial estimator QY,βn
by min-

imizing a pre-specified loss along a least favorable (wrt ψ0) submodel through QY,βn
, and then evaluating

Ψ at the resulting updated estimator of Q0. Formally, consider the following one-dimensional parametric

working model through QY,βn
: for a given closed, bounded interval E ⊂ R containing 0 in its interior,

{

QY,βn
(ε)≡ expit

(

logit(QY,βn
)+ εH(gn)

)

: ε ∈ E
}

, (8)
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with notation H(g)(O)≡ 2A−1
g(A|W ) for every g ∈ G1. This model passes through QY,βn

at ε = 0 in such a way

that ∂
∂ε L(QY,βn

(ε))|ε=0 = D∗
Y (QY,βn

,gn). The optimal fluctuation parameter εn minimizes the weighted

empirical risk along the working model:

εn ∈ argmin
ε∈E

1

n

n

∑
i=1

L(QY,βn
(ε))(Oi)

gn(Ai|Wi)

gi(Ai|Wi)
. (9)

Set Q∗
Y,βn

≡ QY,βn
(εn) then Q∗

βn
≡ (QW,n,Q

∗
Y,βn

) where QW,n is the empirical marginal distribution of

the W . The TMLE estimator of ψ0 is finally defined as

ψ∗
n ≡

1

n

n

∑
i=1

Q∗
Y,βn

(1,Wi)−Q∗
Y,βn

(0,Wi).

It satisfies ψ∗
n = Ψ(PQ∗

βn
,g) for any g ∈ G .

3 Asymptotics

We first introduce further notation in Section 3.1 then we successively investigate the convergence of the

targeted CARA design in Section 3.2 and the asymptotic behavior of the TMLE estimator in Section 3.3.

3.1 Notation

In general, given a known g ∈ G and an observation O drawn from PQ0,g, Z ≡ g(A|W ) is a deterministic

function of g and O. Note that Z should be interpreted as a weight associated with O and will be used

as such. Therefore, we can augment O with Z, i.e., substitute (O,Z) for O, while still denoting (O,Z) ∼
PQ0,g. In particular, during the course of our trial, conditionally on Oi−1, the randomization scheme gi

is known and we can substitute (Oi,Zi) = (Oi,gi(Ai|Wi)) ∼ PQ0,gi
for Oi drawn from PQ0,gi

. By uniform

boundedness of G1, the inverse weights 1/gi(Ai|Wi) are bounded.

The empirical distribution of On is denoted Pn. For a function f : O × [0,1] → R
d , we will use the

notation Pn f ≡ n−1 ∑
n
i=1 f (Oi,Zi). Likewise, for any fixed PQ,g ∈ M , PQ,g f ≡ EPQ,g f (O,Z) and, for each

i = 1, . . . ,n, PQ0,gi
f ≡ EQ0,gi

[ f (Oi,Zi)|Oi−1], PQ0,gn f ≡ n−1 ∑
n
i=1 EQ0,gi

[ f (Oi,Zi)|Oi−1].
We endow the set {QY : PQ,g ∈M } of all conditional expectations of Y given (A,W ) under PQ,g ∈M

with the norm ‖ · ‖Y,0 characterized by

‖QY −Q′
Y‖

2
Y,0 ≡ EPQ0 ,g

r

(

QY (A,W )−Q′
Y (A,W )

)2
.

Similarly, we endow the set G with the norm ‖ · ‖A,0 characterized by

‖g−g′‖2
A,0 ≡ EQW,0

(

g(1|W )−g′(1|W )
)2
.

For any class F of functions equipped with a norm ‖ · ‖ and ε > 0, N(F ,‖ · ‖,ε) is the ε-bracketing

of F wrt ‖·‖ and J(1,F ,‖·‖)≡
∫ 1

0

√

logN(F ,‖ · ‖,ε)dε is the corresponding bracketing entropy (eval-

uated at 1). Finally, the uniform norm of a real-valued operator Π on F is ‖Π‖F ≡ sup f∈F |Π( f )|.

3.2 Convergence of the Targeted CARA Design

Our first concern is the convergence of QY,βn
, see (6).

Proposition 1 (Convergence of QY,βn
). Consider the following assumptions:
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A1. The conditional density under Q0 of Y given (A,W ) wrt some dominating measure is bounded away

from 0.

A2. There exists a unique β0 ∈
⋃

n≥1 BM,n such that

β0 ∈ argmin
β∈
⋃

n≥1 Bn

PQ0,gr L(QY,β ).

A3. It holds that dn = O(nr) for some r > 0 and supβ∈BM,n
|(Pn −PQ0,gn)L(QY,β )|= oP(1).

Under A1–A3,
∥

∥QY,βn
−QY,β0

∥

∥

Y,0
→ 0 in probability.

In summary, QY,βn
converges to QY,β0

in probability for the norm ‖ · ‖Y,0 if such a limit exists and

if the dimension of the LASSO parameters grows polynomially wrt the sample size. Note that the limit

QY,β0
depends on the user-supplied reference design gr. Based on (Dümbgen, Van De Geer, Veraar, and

Wellner, 2010) we show that A3 holds for instance when L is given by (4) and Q1 = {Φβ : β ∈ B1,n}.

The proof of Proposition 1 relies on empirical process theory for martingales, chaining arguments and

tools developed by van Handel (2011). It requires that the sequence {gn}n≥1 of randomization schemes

be uniformly bounded away from 0 and 1, which is guaranteed by specification of the user-supplied set

G1.

We now turn to the convergence of the targeted CARA design {gn}n≥1, see (7), toward a fixed,

limiting design g∗0 ∈ G1.

Proposition 2 (Convergence of the targeted CARA Design). Consider the setup of Proposition 1 and the

following additional assumptions:

A4. There exists a unique g∗0 ∈ G1 such that

g∗0 ∈ argmin
g∈G1

PQ0,gr

LQY,β0
(g)

gr
. (10)

A5. The class 1/G1 ≡ {1/g : g ∈ G1} satisfies the finite entropy condition J(1,1/G1,‖ · ‖A,0)< ∞.

Under A1–A5, ‖gn(1|W )−g∗0(1|W )‖A,0 → 0 in probability.

We have already emphasized that through the choice of G1, the investigators of the RCT benefit from

a great flexibility in treatment allocation. The main constraint on G1 is A4, a condition on the complex-

ity/richness of the class. We refer the reader to(van der Vaart, 1998, Examples 19.7-19.11, Lemma 19.15)

for typical examples. They notably include “well-behaved” parametric classes and VC classes. In par-

ticular, G1 can consist of randomization schemes such that the allocation probabilities only depend on W

through a discrete summary measure of it, as considered in (Chambaz and van der Laan, 2013).

The limiting randomization scheme g∗0 depends on the user-supplied reference design gr only through

QY,β0
: replacing gr with any g ∈ G in (10) does not alter the definition of g0∗. Furthermore, g∗0 can be

interpreted as the most optimal design in G1 given the limiting conditional outcome model QY,β0
:

g∗0 ∈ argmin
g∈G1

VarPQ0 ,g
D∗

Y (QY,β0
,g) = argmin

g∈G1

{

VarPQ0 ,g
D∗

Y (Q0,g)+PQ0,g

(

QY,0 −QY,β0

)2

g2

}

.

Comparing the above equality with (2) yields that g∗0 = g0, the Neyman design, whenever QY,β0
= QY,0.

In general, g∗0 minimizes an objective function writing as the sum of the Cramér-Rao lower bound and a

second-order term residual. This underscores the motivation for using a flexible estimator in estimating

QY,0: by minimizing this second-order residual of the limiting conditional outcome model, we are closer

to adapting toward the desired optimal design.
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3.3 Consistency and Central Limit Theorem

As with the initial LASSO estimators of the conditional outcome, we are firstly concerned with the

convergence of the updated estimators Q∗
Y,βn

:

Proposition 3 (Consistency). Consider the setups of Propositions 1 and 2 and the follow additional

assumption:

A6. There exists a unique ε0 ∈ E such that

ε0 ∈ argmin
ε∈E

PQ0,g
∗
0
L(QY,β0

(ε)).

Assume that A1–A6 are met and define Q∗
Y,β0

≡ QY,β0
(ε0). It holds that ‖Q∗

Y,βn
−Q∗

Y,β0
‖Y,0 → 0 in

probability. Moreover, ψ∗
n consistently estimates ψ0.

If QY,β0
= QY,0 then ε0 = 0: the updating procedure preserves the consistency of the initial estimator

Ψ(PQY,βn
,g) for any g ∈ G . More importantly, Proposition 3 guarantees that even if QY,β0

6= QY,0 then

ψ∗
n still consistently estimates ψ0, by double-robustness. Nonetheless, the convergence of the updated

estimators Q∗
Y,βn

(to the truth or otherwise) is crucial for studying the asymptotic behavior of ψ∗
n .

Proposition 4 (Central Limit Theorem for ψ∗
n ). Consider the setups of Propositions 1, 2 and 3 and the

following additional assumption:

A7. For any deterministic function F, F(O) = 0 PQ0,g
∗
0
-almost surely implies that F = 0.

Assume that A1–A7 are met. For both β = β0 and β = βn, introduce d∗
Y,β and q∗

Y,β characterized by

d∗
Y,β (O,Z) ≡

2A−1

Z

(

Y −Q∗
Y,β (A,W )

)

,

q∗Y,β ≡ Q∗
Y,β (1,W )−Q∗

Y,β (0,W )

and, for any g ∈ G ,

Σn ≡
1

n

n

∑
i=1

(

d∗
Y,βn

(Oi,Zi)+D∗
W (P∗

Qβn
,g(Wi))

)2

. (11)

Then (Σn/n)−1/2(ψ∗
n −ψ0) converges in distribution to the standard normal distribution.

The asymptotic results in Proposition 4 underpin the statistical analysis of the proposed targeted

CARA RCT. In particular, denoting ξ1−α/2 the (1−α/2)-quantile of the standard normal distribution,
[

ψ∗
n ±ξ1−α/2(Σn/n)1/2

]

is a confidence interval of asymptotic level (1−α).

4 Simulation Study

We present here the results of a simulation study of the performances of the targeted procedure exposed

in the previous sections.

4.1 Simulation Scheme

We rely on the same simulation scheme as in (Chambaz and van der Laan, 2013). For completeness, let

us recall that Q0 is such that:
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• the baseline covariate W equals (U,V ), where U and V are independently drawn with U uniformly

distributed on [0,1] and QW,0(V = 1) = 1/2, QW,0(V = 2) = 1/3, QW,0(V = 3) = 1/6;

• the conditional distribution of Y given (A,W ) is the Gamma distribution with conditional mean

QY,0(A,W ) = 2U2 +2U +1+

(

AV +
1−A

1+V

)

and conditional variance

σ2
0 (Y |A,W ) =

(

U +A(1+V )+
1−A

1+V

)2

.

The marginal treatment effect on an additive scale satisfies ψ0 =
91
72

≃ 1.264.

We target the optimal designs corresponding to eight parametric working models G11, . . . ,G18 that we

present in Table 1.

working model parametric form dimension optimal variance

G11 θ0 1 18.50

G12 ∑
3
v=1 θv1{V = v} 3 18.18

G13 θ0 +θ1U 2 18.37

G14 ∑
3
v=1 θv1{V = v}+θ4U 4 18.05

G15 θ0 +∑
3
v=1 θv1{V = v}U 4 18.12

G16 ∑
3
v=1 θv1{V = v}+θ4U +∑

3
v=2 θ3+v1{V = v}U 6 18.01

G17 θ0 +∑
3
v=1 θv1{V = v}U +∑

3
v=1 θ4+v1{V = v}U2 7 18.36

G18 ∑
3
v=1 θv1{V = v}+θ4U +θ5U2 +∑

3
v=2 θ4+v1{V = v}U

+∑
3
v=2 θ6+v1{V = v}U2 9 18.03

Table 1: Parametric working models G1k (k = 1, . . . ,8). In the second column, we report the parametric

forms of logit((gθ (W )−δ )/(1−2δ )) for generic elements gθ ∈ G1k (k = 1, . . . ,8). We set δ = 10−2.

In the third column, we give the dimensions of the models. In the fourth column, we report the nu-

merical values of argming∈G1k
VarPQ0 ,g

D∗(PQ0,g)(O) (k = 1, . . . ,8), with precision 10−2. Recall that

VarP
Q0 ,g

b
D∗(PQ0,g)(O) = 23.87, with precision 10−2.

In addition to the latter parametric working models, we consider eight statistical procedures for the

estimation of the conditional expectation QY,0. Four of them consist in parametric estimation on small-

dimensional models Q11, . . . ,Q14. In contrast, the four others rely on moderate-dimensional paramet-

ric models, ℓ1-penalization and cross-validation to select the best regularization parameter. We denote

Q15, . . . ,Q18 these “machine-learning”, as opposed to “parametric”, procedures/models, which embody

the LASSO estimating procedure of Section 2.2.2. We summarize in Table 2 what are Q11, . . . ,Q18. All

procedures involve the logistic loss, even though the support of the marginal distribution of Y under P0 is

R+, not [0,1]. In fact, given a sample O1, . . . ,On, we first scale Y1, . . . ,Yn to [0,1], then regress the scaled

outcomes on (A,W ) based on the logistic loss and one procedure among Q11, . . . ,Q18, then scale back

the resulting conditional expectation to the original range of the observed outcomes.

Set B = 1000 and let n = (250,500,750,1000,1250,1500,1750,2000,2250,2500) be a sequence of

sample sizes. For each combination (k, l)∈ {1, . . . ,8}2, we repeatedly simulate B = 1000 times a targeted

CARA RCT based on G1k and Q1l , performing an update of the randomization scheme and the computa-

tion of the TMLE of ψ0 at every intermediate sample size ni (1 ≤ i ≤ 10), which we denote ψ∗
ni,klb. The

simulations are mutually independent. The associated 95%-confidence intervals Ini,klb rely on estimated
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working model parametric form dimension

p
ar

am
et

ri
c

Q11 ∑
3
v=1 θv1{V = v}+θ4U +θ5A 5

Q12 θ0 +A
(

θ1U +∑
3
v=2 θv1{V = v}

)

+(1−A)
(

θ4U +∑
3
v=2 θ3+v1{V = v}

)

7

Q13 A
(

∑
3
v=1 θv1{V = v}+θ4U

)

+(1−A)
(

∑
3
v=1 θ4+v1{V = v}+θ8U

)

8

Q14 A
(

∑
3
v=1 θv1{V = v}+θ4U +θ5U2

)

+(1−A)
(

∑
3
v=1 θ5+v1{V = v}+θ9U +θ10U2

)

10

L
A

S
S

O

Q15 A
(

∑
3
v=1 θv1{V = v}+θ4U +θ5U2

)

+(1−A)
(

∑
3
v=1 θ5+v1{V = v}+θ9U +θ10U2

)

10

Q16 A
(

∑
3
v=1 θv1{V = v}+∑

5
l=1 θ3+lU

l
)

+(1−A)
(

∑
3
v=1 θ8+v1{V = v}+∑

5
l=1 θ11+lU

l
)

16

Q17 A
(

∑
3
v=1 θv1{V = v}+∑

10
l=1 θ3+lU

l
)

+(1−A)
(

∑
3
v=1 θ13+v1{V = v}+∑

10
l=1 θ16+lU

l
)

26

Q18 A
(

∑
3
v=1 θv1{V = v}+∑

20
l=1 θ3+lU

l
)

+(1−A)
(

∑
3
v=1 θ23+v1{V = v}+∑

20
l=1 θ26+lU

l
)

46

Table 2: Working models Q1k(k=1, . . . , 8) for the conditional expectation QY,0. In the second col-

umn, we report the parametric form of logit((qθ (A,W )−δ )/(1−2δ )) for generic elements qθ ∈ Q1k

(k = 1, . . . ,8). We set δ = 10−2. In the third column, we give the dimensions of the models. All

working models are exploited in combination with the quasi negative-log-likelihood loss function (5).

Models Q11,Q12,Q13,Q14 are straightforwardly fitted by relying on the R function glm. Models

Q15,Q16,Q17,Q18 are LASSO-fitted by relying on the R function glmnet.

variances of the TMLE as given in (11). For each combination (k, l) and intermediate sample size ni, we

compute the empirical variance of the corresponding TMLE

Ŝni,kl =
1

B

B

∑
b=1

ψ∗2
ni,klb −

(

1

B

B

∑
b=1

ψni,klb

)2

and the empirical coverage of the corresponding confidence interval

Ĉni,kl =
1

B

B

∑
b=1

1{ψ0 ∈ Ini,klb}.

The simulation study is conducted using R (R Core Team, 2014) and the package glmnet (Friedman,

Hastie, and Tibshirani, 2010).

4.2 Discussion of the Results

4.2.1 Coverage

We propose an evaluation of the coverage performances based on testing. For every (k, l) ∈ {1, . . . ,8}2

and ni (1 ≤ i ≤ 10), the statistic B× Ĉni,kl follows a Binomial distribution with parameter (B,πni,kl) for

some πni,kl ∈ [0,1]. Denote p̂95
ni,kl the exact p-value of the one-sided binomial test of H95

ni,kl : “πni,kl ≥ 95%”

against “πni,kl < 95%”. Under H95
ni,kl , p̂95

ni,kl is drawn from the uniform distribution on [0,1].
For every ni (1 ≤ i ≤ 10), we carry out one-sample Kolmogorov-Smirnov tests of the null stating that

the common law of { p̂95
ni,kl : 1≤ k ≤ 8, l ∈L } (L ⊂{1, . . . ,8}) is the uniform distribution on [0,1] against
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ni 250 500 750 1000 1250 1500 1750 2000 2250 2500
⋂

1 ≤ k ≤ 8

1 ≤ l ≤ 8

H95
ni,kl < 0.001 < 0.001 0.011 0.003 0.011 0.006 0.110 0.362 0.003 0.059

⋂

1 ≤ k ≤ 8

1 ≤ l ≤ 4

H95
ni,kl < 0.001 0.015 0.023 < 0.001 0.151 0.034 0.025 0.080 0.281 0.414

⋂

1 ≤ k ≤ 8

5 ≤ l ≤ 8

H95
ni,kl < 0.001 < 0.001 0.175 0.567 0.004 0.037 0.785 0.804 0.004 0.072

⋂

1 ≤ k ≤ 8

1 ≤ l ≤ 8

H94
ni,kl 0.028 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table 3: Evaluating the coverage performances based on testing. The first row gives p-values of

Kolmogorov-Smirnov tests of the null consisting of the intersection of all H95
ni,kl . The second and third

rows give p-values of Kolmogorov-Smirnov tests of the nulls consisting in the intersections of all H95
ni,kl

based on parametric procedures (second row) and of all H95
ni,kl based on LASSO procedures (third row).

The fourth row gives p-values of Kolmogorov-Smirnov tests of the null consisting of the intersection of

all H94
ni,kl .

the alternative that the common law is stochastically smaller than the uniform distribution on [0,1]. Re-

jecting the null for its alternative indicates a defective coverage. The p-values of four such Kolmogorov-

Smirnov tests are reported in Table 3. The first row corresponds to the choice L = {1, . . . ,8}. It teaches

us that the expected 95%-coverage is generally not guaranteed. One may wonder if the same conclu-

sion holds when focusing in turn on the parametric procedures (set L = {1, . . . ,4}) or on the LASSO

procedures (set L = {5, . . . ,8}). Inspecting the second and third rows of Table 3 does not reveal an

interesting pattern. One may now wonder to what extent the 95%-coverage is deficient. To answer this

question, we proceed similarly. We denote p̂94
ni,kl the exact p-value of the one-sided binomial test of H94

ni,kl :

“πni,kl ≥ 94%” against “πni,kl < 94%”. Under H94
ni,kl , p̂94

ni,kl is drawn from the uniform distribution on [0,1].
For every ni (1 ≤ i ≤ 10), we carry out a one-sample Kolmogorov-Smirnov test of the null stating that the

common law of {p̂94
ni,kl : 1 ≤ k ≤ 8,1 ≤ l ≤ 8} is the uniform distribution on [0,1] against the alternative

that the common law is stochastically smaller than the uniform distribution on [0,1]. The p-values of

these tests are reported in the fourth row of Table 3. The conclusion is clear and satisfactory: even if the

95%-confidence intervals fail to guarantee the wished coverage, one can safely consider them as valid

94%-confidence intervals.

4.2.2 Standard Deviation

Here we investigate how the targeted CARA RCT behaves in terms of standard deviation of the produced

estimators. As in the previous subsection, the investigation relies on testing. For every (k, l) ∈ {1, . . . ,8}2

and ni (1 ≤ i ≤ 10), we first compute the statistic

Tni,kl =
1
B ∑

B
b=1(Σni,klb)

1/2 −
(

Ŝni,kl

)1/2

(

1
B ∑

B
b=1 Σni,klb −

(

1
B ∑

B
b=1(Σni,klb)1/2

)2
)1/2

,

where Σni,klb is the estimated variance of the TMLE produced at intermediate sample size ni by the bth

simulated targeted CARA RCT based on G1k and Q1l , see (11). Thus, Tni,kl sheds some light on the

estimation of the standard deviation of the TMLE ψ∗
ni

at sample size ni by (Σni
/n)1/2 for the targeted

CARA RCT based on G1k and Q1l .

13



For every ni (1 ≤ i ≤ 10), we perform a Lilliefors test of normality based on the sample {Tni,kl : 1 ≤
k ≤ 8, l ∈L } with L = {1, . . . ,8}. The p-values of these tests are reported in Table 4. They teach us that

there is no stark evidence of non-normality across the ten intermediate sample sizes. This first conclusion

justifies the next step: for every ni (1 ≤ i ≤ 10), we perform a one-sided Student test of “µni
≥ 0” against

“µni
< 0”, where µni

denotes the mean of the common distribution of {Tni,kl : 1≤ k ≤ 8, l ∈L } with L =
{1, . . . ,8}. The p-values of these tests are reported in the two first rows of Table 4. Adjusting for multiple

testing in terms of the Benjamini and Yekutieli procedure for controlling the false discovery rate at the

5% level, we conclude that estimating the variance as in (11) is over-optimistic at least for intermediate

sample sizes smaller than or equal to n3 = 750. One may wonder if the same conclusions hold when

focusing in turn on the parametric procedures (set L = {1, . . . ,4}) or on the LASSO procedures (set

L = {5, . . . ,8}). Inspecting separately the third and fourth rows of Table 4 on one hand then the fifth

and sixth rows on the other hand leads to the conclusion that estimating the variance as in (11) is over-

optimistic only for intermediate sample sizes smaller than or equal to n2 = 500, still adjusting for multiple

testing in terms of the Benjamini and Yekutieli procedure for controlling the false discovery rate at the

5% level.

The gap between the conclusions reached when considering all procedures or the parametric and

LASSO ones separately may be simply explained by a loss of power due to the reduction of sample size

(64 versus 32), or by subtle differences induced by the nature of Q1l . In any case, in light of Section 4.2.1,

the under-estimation of the true variance based on (11) is necessarily slight at most.

ni 250 500 750 1000 1250 1500 1750 2000 2250 2500

Lilliefors 0.670 0.330 0.866 0.033 0.538 0.837 0.133 0.528 0.466 0.022

Student < 0.001 < 0.001 0.002 0.006 0.008 0.012 0.007 0.008 0.044 0.038

Lilliefors 0.755 0.043 0.270 0.021 0.543 0.620 0.206 0.172 0.685 0.206

Student < 0.001 < 0.001 0.013 0.026 0.025 0.026 0.021 0.036 0.226 0.420

Lilliefors 0.561 0.894 0.864 0.517 0.500 0.314 0.251 0.783 0.971 0.283

Student < 0.001 < 0.001 0.044 0.059 0.087 0.116 0.084 0.063 0.050 0.011

Table 4: Investigating the targeted CARA RCT in terms of standard deviation of the produced

estimators. In the first row we report the p-values of the Lilliefors tests of normality of the sample

{Tni,kl : 1 ≤ k, l ≤ 8} (1 ≤ i ≤ 10). In the second row, we report the p-values of the Student tests of

“µni
≥ 0” against “µni

< 0”, where µni
denotes the mean of the common distribution of {Tni,kl : 1 ≤

k, l ≤ 8}. In the third and fourth rows (fifth and sixth rows, respectively), we report the p-values of the

same Lilliefors and Student tests based on the samples {Tni,kl : 1 ≤ k ≤ 8,1 ≤ l ≤ 4} corresponding to

parametric procedures (on the samples {Tni,kl : 1≤ k ≤ 8,5≤ l ≤ 8} corresponding to LASSO procedures,

respectively).

5 Discussion

We have presented in this technical report a new group-sequential CARA RCT design and inferential

procedure built on top of it. The procedure is targeted in the sense that (i) the sequence of randomization

schemes is group-sequentially determined by targeting a user-specified optimal randomization design

based on accruing data and, (ii) our estimator of the user-specified parameter of interest, seen as the value

of a functional evaluated at the true, unknown distribution of the data, is targeted toward it by following

the paradigm of targeted minimum loss estimation. We focused for clarity on the case that the parameter

of interest is the marginal effect of a binary treatment and that the targeted optimal design is the Neyman

allocation, in an effort to produce an estimator with smaller asymptotic variance, but our methodology

extends beyond this instructive framework. For clarity too, we considered the case that the estimator
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of the conditional outcome given treatment and baseline covariates, a key element of the procedure, is

obtained by LASSO regression, although our methodology can hinge on a wide class of data-adaptive

estimators. Under mild assumptions, the resulting sequence of randomization schemes converges to a

limiting design, and the TMLE estimator is consistent and asymptotically Gaussian, with an asymptotic

variance that we can estimate too. Thus we can build valid confidence intervals of given asymptotic

levels. A simulation study confirms our theoretical results. Across 64 different choices of pairs of working

models and 10 intermediate sample sizes ranging from 250 to 2500, there is no empirical evidence that our

95%-confidence intervals do not provide at least 94%-coverage, based on 1000 independent replications.

In addition, in the same framework, there is no empirical evidence that our estimators of the variances of

the TMLE estimators are over-optimistic for sample sizes larger than 500, adjusting for multiple testing

in terms of the Benjamini and Yekutieli procedure for controlling the false discovery rate at the 5% level.

For smaller sample sizes, the under-estimation is slight at most.

We will soon make available a R package to allow interested readers to test the procedure. The proofs

of our theoretical results will be presented in a forthcoming article. In this article, we will also describe

and study a more general targeted CARA RCT design and related TMLE methodology involving possibly

aggressive data-adaptive/machine-learning procedures and not only LASSO regression. In the future, we

will also consider alternative strategies to randomly assign successive patients to the treatment arms in

such a way that the overall empirical conditional distribution of treatment given baseline covariates be as

close as possible to the current best estimator of the targeted optimal design. This will require both new

theoretical developments and simulation studies.
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