
HAL Id: hal-00990758
https://hal.science/hal-00990758

Submitted on 16 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Business Process Simulation: Transformation of BPMN
2.0 to DEVS Models

Hassan Bazoun, Youssef Bouanan, Gregory Zacharewicz, Hadrien Boyer, Yves
Ducq

To cite this version:
Hassan Bazoun, Youssef Bouanan, Gregory Zacharewicz, Hadrien Boyer, Yves Ducq. Business Process
Simulation: Transformation of BPMN 2.0 to DEVS Models. SCS/ACM/IEEE Symposium on Theory
of Modeling and Simulation part of SpringSim 2014, Apr 2014, Tampa, United States. �hal-00990758�

https://hal.science/hal-00990758
https://hal.archives-ouvertes.fr

Business Process Simulation: Transformation of BPMN 2.0 to DEVS Models

Hassan Bazoun* **, Youssef Bouanan*, Gregory Zacharewicz*, Yves Ducq*, Hadrien Boye**

* Univ. Bordeaux,

IMS, UMR 5218 CNRS,

33405 Talence, France.

** Hardis / Hardis Conseil,

3 rue Guglielmo Marconi,

44800 Saint Herblain, France

hassan.bazoun@ims-bordeaux.fr, youssef.bouanan@ims-bordeaux.fr, gregory.zacharewicz@ims-bordeaux.fr,

yves.ducq@ims-bordeaux.fr, hadrien.boye@hardis.fr

Keywords: BPMN, DEVS, Model transformation, Business

Process simulation.

Abstract

 Industrial enterprises have gradually moved their goals

towards production of physical products supplemented by

intangible services to differentiate themselves in a

compatible market. The study of these services, their set up,

and the evaluation of their efficiency is a rising research

domain. In the frame of Model Driven Service Engineering

Architecture (MDSEA), a service system is modeled from

different point of views (static and dynamic) at the different

MDSEA levels: Business Service Model (BSM),

Technology Independent Model (TIM), and Technology

Specific Model (TSM). Simulation is a dynamic feature of

MDSE and which explains the need of coherent M&S

formalisms for simulation activities. Accordingly, this paper

presents the simulation of service systems based on DEVS

models. It defines a transformation approach of BPMN

models into DEVS simulation models based on the

metamodel approach, and describes the enrichment of

obtained DEVS models through performance indicators

(time and costs).

1. INTRODUCTION

 To remain competitive, a company must differentiate

itself from other competitors. Since improving the product’s

performance can reach some limits, one open solution is to

improve the enterprise service system, redefine its business

processes and share more information (considered as

additional services) with customers and suppliers.

 In the frame of Model Driven Service Engineering

Architecture (MDSEA) [Bazoun et al. 2014], a distinction

can be made between static and dynamic service system

modeling [Cardoso et al. 2012]. A business process is a

series of activities that produces a product or service for a

customer. Business Process Modeling (BPM) [Cardoso et

al. 2012] results in a representation of an organization’s

business processes to be analyzed and improved [Weske

2007]. Business process’s models provide a suitable static

view, but frequently missing the temporal dimension to

express output performance such as an expected cost or a

desired duration. In detail, the impact of correct or incorrect

behavior of complex models over time is not clearly visible

using static view. This issue can be solved by running a

business process simulation for analyzing and understanding

the business process model according to its dynamic.

 This paper presents research work results performed in

the frame of the FP7 MSEE (Manufacturing Service

Ecosystem) Integrated Project [FP7 2011]. The main result

of MSEE is the development of a Model Driven Service

Engineering Architecture (MDSEA). The first step of

MDSEA concerns the transformation of Business models

(represented with the Extended Actigram formalism) to

Technical models (represented with BPMN [OMG 2011])

and has been presented in [Bazoun et al. 2013]. This paper

introduces the second step. It defines a transformation of

BPMN models into DEVS simulation models based on

metamodel matching. This paper is presenting a work in

progress, it draws the general overview of the work

avoiding details due to unfinished work and space limits.

The paper is organized as follows: first, a brief overview of

the research literature studying the transformation BPMN to

DEVS is proposed.Then the meta-models for BPMN and

DEVS are presented. After that, the model transformation

from BPMN to DEVS is explained. Finally, the perspectives

of this work will be proposed at the end of this paper.

2. STATE OF THE ART

2.1. Transformation from BPMN to DEVS

 In the context of BPMN to DEVS transformation,

authors in [Cetinkaya et al. 2012] and [Mittal et al. 2012]

presented a Model Driven Development (MDD) framework

for modeling and simulation (MDD4MS). In the frame of

this framework they defined a model to model

transformation from BPMN as a conceptual modeling

language to DEVS as a simulation model specification.

BPMN and DEVS Meta-models were presented. In

addition, a set of transformation rules were defined in order

to transform BPMN models into DEVS models. According

mailto:hassan.bazoun@ims-bordeaux.fr
mailto:gregory.zacharewicz@ims-bordeaux.fr
mailto:yves.ducq@ims-bordeaux.fr
mailto:hadrien.boye@hardis.fr

to these rules, some BPMN concepts (Pool, Lane,

SubProcess) were mapped to DEVS coupled component,

while Task, Event (Start, End, and Intermediate), and

Gateway were mapped to DEVS atomic component.

 Comparing the BPMN metamodel defined with the

latest version of BPMN 2.0 metamodel [OMG 2011] we can

conclude that several concepts are missing and thus were

not transformed into their corresponding DEVS concept.

Authors didn’t mention the different types of BPMN Tasks

(User Task, Manual Task, Service Task…) and BPMN

Intermediate Events (Message, Signal…) that can be

mapped differently when transformed into DEVS concepts.

The difference would be in the number of states forming

each DEVS Atomic Model. Based on these remarks, the

work presented in this paper takes into consideration these

points in an attempt to benefit from previous work and

propose new mapping and transformation rules.

2.2. DEVS Simulators

 Electing a target DEVS tool for model transformation

requires a literature review of current DEVS Simulation

tools. The DEVS group standardization maintains on its

website the updated list of most used DEVS tools known by

the DEVS community [Wainer 2013]. In [Hamri and

Zacharewicz 2012], the authors have given a brief

description and comparison of popular tools.

 ADEVS was the first DEVS tool developed in C++ by

the Arizona University. It consists in an ad-hoc simulator.

DEVS abstract classes should be extended by users to define

atomic and coupled models, and then the simulation can be

launched. The drawback resides in the fact that users need

programming skills to code the models.

 DEVSJAVA is a Java framework in which the kernel

simulator is ADEVS. It supports also modeling and

simulation of DEVS with variable structures. However, at

atomic level, the user should implement the corresponding

DEVS behavior in Java (in our opinion the user has not

enough skills to program his atomic models).

 CD++ Builder is a DEVS modeling and simulation

environment that integrates interesting features and facilities

for the user. It allows modeling and simulation of other

DEVS formalisms (cell-DEVS, Quantized-DEVS, etc). It

provides a DEVS graphical editor to model coupled and

atomic models, and to encapsulate them through

components for further reuse.

 Other DEVS tools are dedicated to specific areas. VLE,

this is a C++ M&S framework that integrates heterogeneous

models from different scientific fields. This integration is

based on the agent paradigm. In addition, JDEVS is the Java

implementation of a DEVS formal framework. It supports

multi-modeling paradigms based on DEVS. It ensures the

interoperability among the reused components. Also

SIMSTUDIO can be considered, it is focused on a

simplified DEVS editor for DEVS non Expert. The authors

also investigate LSIS_DME that is focused on a graphical

interface and code source generation in order to complete

the model by complex Java functions.

 At the end each DEVS editor is covering interesting

aspects that complete basic DEVS facilities or propose

different model views. Nevertheless we found it difficult to

import by the tool non DEVS models other than hard coded

matching, i.e. the customization is limited. We suggest that

the feeding by other model can be facilitated if following a

Model Driven approach, e.g. MDA. One core concept of

MDA is the Meta Model that is required for model

matching. In the paper [Garredu et al. 2012], a Meta model

is proposed.

3. MODEL TRANSFORMATION FROM BPMN 2.0

TO DEVS MODELS

 This section introduces the main transformation

principles from BPMN model to DEVS model, including

the transformation architecture, DEVS metamodel, the

mapping of BPMN concepts to DEVS concepts, and the

implementation using a transformation language.

3.1. Concept

3.1.1. Transformation Architecture

 The metamodel approach [OMG 2003] is one of the

most used transformation techniques. Figure 1 presents the

metamodel approach adapted to the context of model

transformation from BPMN2.0 model to DEVS model.

Three different levels are identified: model, metamodel, and

meta-metamodel. The BPMN model is the source model to

be transformed, while the DEVS model is the target model

resulting from the ATL transformation. BPMN and DEVS

models conform to the BPMN 2.0 and DEVS metamodels

respectively.

Figure 1.Transformation architecture

In addition both metamodels conform to a meta-metamodel

named Ecore [McNeill 2010] metamodel (metamodels were

developed using an Ecore based modeling framework). A

mapping is defined between the concepts belonging to

BPMN2.0 and DEVS metamodels. This mapping is

implemented by ATL (Atlas Transformation Language)

[ATL 2013].

3.1.2. BPMN and DEVS MetaModels

 Source and target metamodels should be well identified

to proceed with the transformation (Figure 1). BPMN 2.0

metamodel specified in [OMG 2011] is the source

metamodel. There is no endorsed metamodel for the target

DEVS metamodel, but several researches were held for the

purpose of building a DEVS metamodel but a synthesis

work is proposed in [Garredu et al. 2012]. The

transformation from BPMN to DEVS models has required

gathering previous works for setting a DEVS metamodel, as

a result the authors proposed a simplified DEVS

metamodel. It is used as a target metamodel which conforms

to the DEVS specification [Zeigler et al. 2000].

Figure 2 presents the DEVS metamodel defined in Eclipse

Ecore format.

Figure 2.Simplified DEVS metamodel

In DEVS, there are two types of models: atomic and

coupled models. Each model has a list of InputPorts and

OutputPorts. An atomic model has four main methods:

internal transition, external transition, output, and time

advance. A coupled model is a decomposition of DEVS

models (atomic or coupled) and DEVS Coupling. In

addition, there are three types of coupling between ports:

External Input Coupling (connections between the

inputports of the coupled model and its internal

components), External Output Coupling (connections

between the internal components and the output ports of the

coupledmodel, and Internal Coupling (connections between

the internal components).

3.1.3. Mapping of concepts

 The role of mapping in model transformation is to

define links between concepts and relations from both

metamodels (BPMN and DEVS). In [Mittal et al. 2012], a

first mapping was proposed by the authors. Nevertheless,

this early mapping didn’t distinguish all the various types of

tasks and events existing in BPMN 2.0 which differ with

respect to the potential situations a task might treat.

 To complete this approach, different types of tasks are

detailed (Receive task, Send Task, User Task, Service Task,

and Manual Task); all of these tasks are mapped to “DEVS

Atomic Model” concept but with different local behavior.

This is also applied to intermediate events (Receiving and

Sending Messages). Also we clearly distinguish between

tokens and messages. The structure of tokens and messages

is a multi-value event as described in G-DEVS

[Zacharewicz 2008] that is implemented by one object with

several variables. Each variable is representing one data.

Some information of the token will be updated by the

workflow according to actions defined in the task, current

values of the token, and message received. At the end, the

token reflects the path taken, the duration, etc. All the data

are tracked in order to compute some performance

indicators. This paper will not detail each concept, but only

the most relevant are elaborated in the following.

3.1.3.1. Tasks

 Basic Task model: a task is an activity where a work is

performed by a resource. It consumes a certain amount of

time. Token represents the work item with its arrival status.

This status is evolving during simulation. At the end, token

data are employed to analyze performance indicators

regarding the service process completion.

 A task is specified by the following parameters:

• Working time required to complete the task by a

resource on a token.

• Once a task is executed the value of a token changes,

the token is described by variables that are affected by

the process.

 To represent the behavior of a business process with

some duration, the simulation component of the task will

delay a token arriving at the port of entry for a specified

period of time before sending it to the output port.

 When a task is in the "Init" state, it means that no

resource currently performs this task. Due to the arrival of

an external event, the state changes to "State_X" with

{X∈[1...*]}. Figure 3 is describing the basic task with its

equivalent DEVS model according to DEVS graphical

representation. The task is triggered by the token only. Then

the activity executes during a certain period of time and

after the token is released with some modification on its

variable attributes.

Figure 3.Basic Task DEVS State diagram

Reception Task Model: For a more accurate matching

between BPMN model and DEVS model it has been chosen

to distinguish the “Reception Task” from the “Basic Task”

(Figure 4). The reason is based on the synchronization

between the considered task and a triggering message that

can come from another resource lane or pool. In that case

the reception of the token is not sufficient to launch the task;

the task is submitted to a triggering message.

Figure 4.State diagram Task Reception Model

We distinguish two Types of Inputport: Message Object and

Token Object. The outputport Type is only a Token Object.

The execution of this task is based on the received input

message’s information that will be used to modify the token.

3.1.3.2. Events

 The notion of Event is used to represent something that

“happen” during the execution of the process, it represents a

step in the process and its meaning differs from DEVS

event. These events affect the flow of the process. There are

three types of events, based on when they affect the flow:

Start Event, Intermediate Event, and End Event. In this

paper we will present an example of an Intermediate Event;

Intermediate Reception Event (Figure 5).

 An Intermediate Event can occur during a process flow.

It means that a triggering event is required to continue the

process. An Intermediate Event may occur on the edge of

"Tasks" and "Sub Processes". In this case, it is a triggered

event during the course of the activity. It indicates that an

event coming from another lane or pool can occur between

the beginning and the end of a process.

Figure 5.State diagram Intermediate Event Model

Table 1 presents a non-detailed mapping between BPMN

and DEVS. It states the new concepts (*) added regarding

the previous approaches in the literature introduced in

section 2.1.

BPMN DEVS

Pool DEVS Coupled Model

Lane DEVS Coupled Model

Sub process DEVS Coupled Model

Flow
 Message Flow*
 Sequence Flow*

DEVS Atomic Model

Task
 Basic Task
 Send Task*
 Receive Task*

DEVS Atomic Model

Event
 Start* { Message, Timer, Conditional}
 Intermediate* {Message, Signal, Conditional}
 End* {Message, Timer, Conditional}

DEVS Atomic Model

Gateway
 Exclusive Gateway
 Inclusive Gateway*
 Parallel Gateway

DEVS Atomic Model

Table 1.BPMN elements to DEVS components

This conceptual mapping has been implemented into

transformation rules using ATL transformation language.

Each atomic component is generated from the BPMN model

than the generated components are assembled in the coupled

model.

3.2. Implementation

3.2.1. Transformation Language

 ATL is a model transformation language specified as

both a metamodel and a textual concrete syntax. In the field

of Model-Driven Engineering (MDE), ATL provides

developers with a mean to specify the way to produce a

number of target models from a set of source models.

 ATL is notable for its hybrid approach to model

transformation. Most parts of a transformation to be

implemented can be specified in ATL's declarative style.

Because declarative style code is not as expressive as

imperative code, some model transformation problems are

hard to implement by using a declarative-only approach.

Therefore ATL offers also support for imperative code.

Imperative code can be used in do blocks of transformation

rules, or completely separated in helper rules.

 ATL-code is compiled and then executed by the ATL

transformation engine. ATL supports only unidirectional

transformations. ATL offers dedicated support for tracing.

The order of the rule execution is determined automatically,

with the exception of lazy rules, which need to be called

explicitly. Helper functions provide imperative constructs.

ATL does not support incremental model transformation, so

a complete source model is read and complete target model

is created.

 An ATL M2M (eclipse) component is developed in the

Eclipse Modeling Project (EMP). The ATL Integrated

Environment (IDE) provides a number of standard

development tools (syntax highlighting, debugger, etc.) that

aims to ease development of ATL transformations. The

ATL project includes also a library of ATL transformations.

The project is using ATL M2M for compliance reason with

SLMToolBox also developed under Eclipse and presented

in the next section.

 Due to non-sufficient space in this paper,

transformation rules and specifications will be introduced in

another paper representing the authors’ final work.

3.2.2. SLMToolBox

SLMToolBox [Boye et al. 2014] is a software tool

developed by Hardis [Hardis 2013] in the frame of MSEE

project. The SLMToolBox will be used by enterprises

willing to develop a new service or improve an existing one,

within a single enterprise or a virtual manufacturing

enterprise. The tool will be used at the stage of

“requirement” and “design” of the service engineering

process. The SLMToolBox is regarded to be an integration

of several scientific concepts related to services into one

tool. These concepts can be summarized by MDSEA

methodology, services’ modeling, engineering, simulation,

monitoring and control.

 The simulation feature is based on model

transformation from BPMN to DEVS models. Source

BPMN model is extracted from the BPMN graphical editor

(integrated in SLMToolBox), a transformation engine is

implemented based on ATL, and the output of this engine is

DEVS model. A new developed version of [Zacharewicz et

al. 2008] will be integrated in the SLMToolBox for

graphical visualization and simulation of DEVS models.

3.3. Case Study

 One use case model from the MSEE European project

has been reused to serve in this research as a case study. The

process consists in the creation of a cloth patron adapted and

fitted to each client by tailoring thanks to customer data.

 In the project, the modeling is starting from BSM level

with an Extended Actigram model. Then the next step is

going down to the BPMN model at TIM level. At this level

before the creation of service from the model it could be

valuable to simulate its behavior in order to correct potential

errors of conception that can be detected through dynamical

aspects not seen by reading a static model. The next part of

the section will focus on the transformation to the

simulation model.

 One extract from the BPMN model is detailed in Figure

6. Two pools of the client and manufacturer are described in

the use case model presented. In particular the sequence and

the messages exchanged with the client are considered. The

distinctive contribution of this research work permits first to

differentiate the type of BPMN event. For instance the

model shows an intermediary “Message Event”. In addition,

the task 1 is emitting a message to another blind pool (with

basic a reception and triggering behavior). We consider this

possibility as expressing representatively BPMN 2.0

collaboration model.

Figure 6.BPMN2.0 model for DEVS transformation

 At DEVS level, the LSIS_DME editor [Zacharewicz et

al. 2008] was tentatively selected to perform tests on the

DEVS models obtained from BPMN matching before

moving to final development stage, to the DEVS engine of

the SLMTOOLBOX. One interest for the tool comes from

the fact that it enables the creation, storage library,

modification and composition of XML based models that

can be feed in our case by the ATL transformation from

ATL BPMN models. Also, the editor allows editing visually

a model with geometric shapes representing the different

elements of a DEVS atomic or coupled DEVS model.

 Mapping realized the DEVS Coupled Model based on

the library developed from BPMN components (Table 1)

and integrated in the LSIS_DME DEVS models library of

BPMN diagram. The DEVS coupled model presented in

Figure 7 is the transformation results of the selected extract

from the Figure 6 BPMN model of MSEE Case. Each

atomic DEVS component is selected from the library and

instantiated according to data values coming from the

BPMN description. Then the models are coupled to

represent the BPMN chain of tasks and it take into account

resources represented by lanes. In this example we

differentiate between a fully described lane and another non

detailed lane (blind lane).

Figure 7.Equivalent DEVS model example in LSIS DME

 Then Figure 7 has been run to present an extract of the

simulation results provided by the tool. In this simulation it

was confirmed that the token variables declared in the initial

state of each “start event” atomic model can be followed in

term of evolution of their attributes values accordingly to

activities actions of the process and regarding time. The new

values depend on the operation of the task and message

received. The main idea resulting from the first simulations

performed is the proof of feasibility in terms of definition

and monitoring of quality indicators, the capacity to

measure the impact of input factors and parameters. The

goal is to provide simulation feedbacks to parameters tuning

to reach as close as possible the services desired results.

 The simulation result in Figure 8 shows an extract of

the output of the simulation. The simulation has been set up

to follow performance indicators on tokens that circulate

through the different process’s components. Tokens gather

information on service development and its delivery, they

can be considered as the memory of service development.

For instance the time to complete the service delivery can be

traced during the simulation. The number of resources

called to achieve the service delivery process and the cost of

material and human resources can be computed using the

simulation. Another point is to analyze failure in the service

delivery. Some service building can lead to bottle necks.

Several scenarios can be proposed and run to evaluate the

best one before the next implantation step: the architecture

implementation.

 At the moment, results are not handled to be displayed

graphically nor interpreted by BPMN modeler.

Figure 8. DEVS Workflow model results example

4. PERSPECTIVE

 Transformation from BPMN models to DEVS models

is one key step in a procedure covering business process

modeling languages, model transformations, and simulation.

It remains to visualize the DEVS models resulting from the

transformation to be later displayed in a DEVS Graphical

editor completely integrated in the SLMToolBox. The

DEVS metamodel will be completed independently from

any simulator’s architecture to take into account multi value

state variables. In addition, new features such as export

format will be developed. Storage will be improved.

Authors claims that the durability of this work relies on the

adoption of the open platform. In addition, BPMN models

(subject of simulation) will be animated for better

understanding of the process. Thanks to the visualization of

DEVS models, users will be capable of tuning more

precisely performance indicators’ values (time, costs and

combined indicators) needed for simulation. The simulation

results offer sufficient information needed for business

process analysis, but the problem frequently faced is the

lack of temporal data from enterprises because of the

domain no long experience.

5. CONCLUSION

 This paper introduced business process modeling and

simulation in the frame of the Model Driven Service

Architecture (MDSEA) project. As a result, it presented a

transformation of BPMN models into DEVS models based

on previous researches done in this domain. The approach

has now proposed an exhaustive mapping, based on existing

works plus additional concept mapping from BPMN

concepts to DEVS concepts. It detailed also the

transformation architecture, and an implementation in an

M&S tool (SLMToolBox). The work is still ongoing, and it

still lacks the final integration of the tailored simulation

code in the SLMToolBox and the dynamic animation of the

BPMN model. Also the implementation of the performance

indicators is still under discussion.

Acknowledgement

This work has been partially supported by the FP7 Research

Project MSEE “Manufacturing Service Ecosystem” ID

284860. http://www.msee-ip.eu/

http://www.msee-ip.eu/

References

[ATL 2013]“ATL/User Guide – The ATL Language”

http://wiki.eclipse.org/ATL/(accessed 10 November 2013).

[Bazoun 2013]: Bazoun, H., Zacharewicz. G., Ducq. Y.,

Boye, H. “Transformation of Extended Actigram Star to

BPMN 2.0 and Simulation Model in the frame of Model

Driven Service Engineering Architecture”. TMS, (2013).

[Bazoun 2014]: Bazoun, H., Zacharewicz. G., Ducq. Y.,

Boye, H. “SLMToolBox: An implementation of MDSEA for

Servitisation and Enterprise Interoperability”. Paper

accepted in I-ESA (2014) 7th international conference.

[Boye 2014]: boyé, H., Bazoun, H., Belkhelladi, K.

"SLMToolBox: ATool Set For Service Engineering". Paper

accepted in MODELSWARD 2014 2nd international conf

on Model-Driven Engineering and Software Development

[Cardoso 2012]: Cardoso, J., Pedrinaci, C., Leidig, T.,

Rupino, P., De Leenheer P. “Open semantic service net-

works.” Paper presented at: The international Symposium

on Service Science (ISSS); (2012).

[FP7 2011]: FP7 – FoF-ICT-2011.7.3 – “Manufacturing

SErvice Ecosystem Project- Annex 1 description of work” –

July 29th 2011. http://interop-vlab.eu/

[Garredu 2012]: Garredu, S., Vittori, E., Santucci, J-F.,

Bisgambiglia, P-A. “A Meta-Model for DEVS Designed

following Model Driven Engineering specifications.”

SIMULTECH, page 152-157. SciTePress, (2012).

[Hardis 2013]: Hardis is a software company with specialist

expertise in management computing http://www.hardis.fr/

eng/ jsp/site/Portal.jsp (accessed 18 October 2013).

[Hamri 2012]: Hamri, M. and Zacharewicz, G. “Automatic

generation of object-oriented code from DEVS graphical

specifications.”. In WSC'12. Article 409 , 12 pages, 2012.

[Cetinkaya 2012]: Çetinkaya, D., Verbraeck, A., Seck,

M.D. “Model Transformation from BPMN to DEVS in the

MDD4MS Framework”, TMS-DEVS, (2012): 304-309

[Mittal 2012]: Mittal, S., and Risco Martin, J.L. Netcentric

System of Systems Engineering with DEVS Unified Process.

610-613, 2012. CRC Press.

[McNeill 2010] Ken McNeill “How to extend the Eclipse

Ecore metamodel.” http://www.ibm.com/developerworks/

library/os-eclipse-emfmetamodel/index.html

[OMG 2011]: OMG, “Business Process Model and Notation

(BPMN) version 2.0” document num: formal/2011-01-03.

[OMG 2003] : OMG, “MDA Guide Version 1.0.” document

number: omg/2003-05-01.

[Thoben 2001]: Thoben, K.-D., Jagdev, H., Eschenbcher, J.

“Extended Products: evolving traditional product

concepts” In the 7th International Conference on

Concurrent Enterprising: Bremen, Germany, June 2001.

[Wainer 2013]: DEVS TOOLS, hosted by G. Wainer at

Carlton University, November 2013,

http://www.sce.carleton.ca/faculty/wainer/standard/tools.ht

m

[Zacharewicz 2008]: Zacharewicz G.; Frydman C.;

Giambiasi N. “G-DEVS/HLA Environment for Distributed

Simulations of Workflows”, Simulation, 2008, 84(5), pp.

197–213

[Weske 2007]: Weske, M., 2007. “Business Process

Management: Concepts, Languages, Architectures”. New

York, Springer-Verlag, (2007): p. 368.

[Zeigler 2000]: Zeigler, B.P., Praehofer, H. and Kim, T.G.

“Theory of Modeling and Simulation”, NY, 2000.

Biography

Hassan Bazoun is a software engineer at Hardis and PHD

student at IMS Lab. His research domain includes business

process modeling, model transformation, and Discrete Event

Simulation. He is involved in an European project (MSEE)

and has participated in the development of the modeling tool

SLMToolBox.

Youssef Bouanan

Gregory ZACHAREWICZ is Associate Professor at

University of Bordeaux (IUT MP) with both competences in

enterprise engineering and computer sciences. His research

interests include Discrete Event Modelling (e.g. DEVS),

Distributed Simulation, HLA, and Workflow. He has been

involved in several European projects (e.g. MSEE and

FITMAN). He is recently focused on Enterprise Modelling

and Semantic Interoperability. He has published more than

50 papers in international journals and conferences.

Yves Ducq

Hadrien Boye is a project manager at HARDIS. He is in

charge of the e-solution skills center in the western offices

of the company. His main fields of interest include web

technologies, software architecture and enterprise

information systems.

http://interop-vlab.eu/
http://www.hardis.fr/%20eng/%20jsp/site/Portal.jsp
http://www.hardis.fr/%20eng/%20jsp/site/Portal.jsp
http://www.ibm.com/developerworks/
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm

