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Abstract. In this study we examine the energy transfer mechanism during the nonlin-

ear stage of the Modulational Instability (MI) in the modified Korteweg–de Vries (mKdV)

equation. The particularity of this study consists in considering the problem essentially in

the Fourier space. A dynamical energy cascade model of this process originally proposed

for the focusing NLS-type equations is transposed to the mKdV setting using the existing

connections between the KdV-type and NLS-type equations. The main predictions of the

D-cascade model are outlined and thoroughly discussed. Finally, the obtained theoret-

ical results are validated by direct numerical simulations of the mKdV equation using

the pseudo-spectral methods. A general good agreement is reported in this study. The

nonlinear stages of the MI evolution are also investigated for the mKdV equation.
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1. Introduction

Nonlinear wave systems occur in numerous physical areas from optics to fluid mechan-
ics, from astronomy to geophysics, and one of the most important issues regarding these
systems is a description of its energy behavior. One of the most beautiful examples to
illustrate this point, is the hypothesis of Kolmogorov on the form of energy spectrum in
systems with strong turbulence, [29]. The theory describes the energy transfer from larger
to smaller eddies – this is called a (direct) energy cascade, until the Reynolds number
becomes small enough to stabilize the eddy’s motion and viscosity begins to dissipate the
kinetic energy. Under three main hypothesis, the energy spectrum is supposed to have the
universal form E(ℓ) ∼ ℓ−5/3 where ℓ is the size of the eddy. The main hypothesis are:

(1) existence of an energy conserving inertial range of space scales ℓ;
(2) in this range turbulence is locally homogeneous (no dependence on position);
(3) locally isotropic (no dependence on the direction).

This is an asymptotic theory and it works in the limit of very big Reynolds numbers,
[13]. Experimental studies demonstrate very often a good agreement with this hypothesis
but also contradictions, e.g. existence of an inverse energy cascade (from small to large
eddies), appearance of large coherent structures at high Reynolds numbers, etc. Nowadays
the theory of (strong) turbulence is further on developed and refined, [35].

The same three hypothesis, along with other assumptions, have been used in the kinetic
wave (or weak) turbulence theory (WTT). Dispersive waves play now the role of eddies
in the Kolmogorov’s theory of turbulence, and the energy spectrum is computed as a
stationary solution of the wave kinetic equation first introduced by Hasselmann in [20].
If dispersion function ω ∼ kβ, the form of energy spectra is again power law k−α where
k is the wave length first found by Zakharov & Filonenko (1971) for capillary water
waves, [43]. However, the exponent α is not universal anymore, and its form depends on
the dispersion function ω = ω(k) as computed from the linear part of the corresponding
weakly nonlinear dispersive evolutionary equation, [44]. If dispersion function has a more
complicated form, e.g. ω2 = gk + σk3, no analytical predictions for the form of the energy
spectra are given by the kinetic WTT.

This is also an asymptotic theory which is working for very small nonlinearity 0 <
εkin ⪅ 0.01, where small parameter εkin is taken as a product of wave amplitude with
wave number, εkin = Ak. The smallness of ε is very important while the kinetic WTT is
essentially based on the following assumption: time scales for 3–, 4–, . . ., s–wave resonances
are separated, at each time scale t/εkin, t/ε2kin, . . . different processes take place; these time
scales are regarded independently. For the confirmation of the results of this theory, a lot
of numerical simulations with the Euler equations and its reductions have been performed
in which it was shown that theory breaks at about ε ≈ 0.1, e.g. [2].

On the other hand, usual laboratory experiments and numerical simulations are per-
formed for ε ≈ 0.1 ÷ 0.4 for a very simple reason. For ε ∼ 0.01 time scales t/εkin, t/ε2kin, . . .
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are too long and kinetic energy cascades (K-cascades) can not be observed in an experi-
ment; examples of computations are given in [28]. Another questions and open problems
in the kinetic WTT still awaiting their resolving can be found in [32].

A new model (hereafter referred to as D-model) for the formation of the energy spectrum
has been developed by E. KARTASHOVA (2012) in [26]; the model can be applied for
describing nonlinear wave systems with nonlinearity parameter of the order of ε ∼ 0.1 ÷
0.4 and wave systems with narrow frequency band excitation. Basic physical mechanism
responsible for the formation of the energy spectrum in this model is not a s–wave resonance
but the modulation instability, and the main assumption of the model is that energy cascade
is formed by the most unstable modes in the system, i.e. modes with maximum increment
of instability. In [26], the Increment Chain Equation Method (ICEM) for computing the
energy spectrum of theD-cascade was developed for computing dynamical energy spectrum
in the systems possessing modulation instability.

The ICEM has been applied for the focusing NLS and mNLS, and energy spectra for
surface gravity and capillary waves were computed, with two different levels of nonlinearity.
A comparison of time scales at which of the D-cascades and K-cascades occur is given in
[28]. The form of the energy spectra in the D-model depends on the parameters of initial
excitation and on the dispersion relation; the spectrum might have exponential decay,
power law or even more complicated form as in the case of gravity-capillary waves, [37].
Various characteristic of a D-cascade pure gravity water waves — its direction, possible
scenarios of cascade termination, etc. are described in [27].

The NLS is a very attractive equation because of its integrability, but unfortunately it
gives sometimes not good enough description of the observed physical effects. Whitham

(1967) [40] studied various situations where the use of the NLS equation can be justified
or not in case of non-trivial three wave resonances. An example of non-trivial four wave
resonances is given by the phenomenon of modulation instability was discovered in labora-
tory experiments and explained by Benjamin & Feir (1967) [3], as instability of a narrow
wave packet in the framework of the NLS. In particularly, the instability interval

0 < ∆ω/Akω ≤ √2, (1.1)

has been written out. Here ω(k) is the linear dispersion relation, k is the wavenumber and
A is the amplitude of the Fourier mode ω. Quantity ∆ω is the distance between the parent
mode and its side band. The explicit analytical form of the instability interval is used for
the construction of the D-cascade and will be discussed in the next Section.

However, numerical simulations with NLS demonstrate a symmetric energy cascade in
the Fourier space while energy cascade experimentally observed in a water tank, is asym-
metric. To cope with this problem, it is necessary to introduce various modifications to
NLS, e.g. [9, 21]. These modification allow for the realistic values of small parameter,
0 < εreal ∼ 0.1 ÷ 0.4, and is more suitable for modeling real physical phenomena.

Korteweg–de Vries (KdV) equation is another widely used model equation, especially
for water waves, describing long wave limit, i.e. small wave vectors k. Though KdV does
not have modulation instability [1], its various modifications do possess this property, un-
der certain conditions. Thus, perturbations of a quasi-periodical wave train with small
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amplitudes in the generalized KdV equations with nonlinearity of the form (up+1)x
gKdV(u±) ≐ ut + uxxx + (up+1)x = 0 , (1.2)

are modulationally stable if p < 2, while they are modulationally unstable if p > 2, [19]. A
more general version of this result allowing for nonlocal dispersion can be found in [23].
However, all these results does not allow nice analytical presentation for the instability
interval as in (1.1), and a numerical study is unavoidable.

Our aim in this paper is to study a particular case with p = 2 and one space dimension
— the so-called modified Korteweg–de Vries (mKdV) equation

mKdV(u±) ≐ ut + uxxx ± 6u2ux = 0 , (1.3)

with u being a real-valued scalar function, x and t are space and time variables consequently,
and the subscripts denote the corresponding partial derivatives.

As a starting point for our simulations aiming to study the MI in the mKdV, i.e. p = 2

in (1.2), we use the estimates obtained in [19] by combination of analytical results and
numerical estimates, namely that for p = 2, the wave is spectrally stable for all wave
vectors 0 < k2 < 2. Another reference point important for our study of mKdV is the
following remarkable feature of this equation: it can be reduced, under certain conditions,
to the mNLS where the MI can be studied by analytically. This reduction can be made by
the variational methods [40] or by standard asymptotical approach as in [16].

It is also shown in [16] that wave packets are unstable only for a positive sign of the
coefficient of the cubic nonlinear term in (1.3), and for a high carrier frequency. Being
interested in modulation instability, we restrict the study further on the case of focusing
mKdV equation:

mKdV(u+) ≐ ut + uxxx + 6u2ux = 0. (1.4)

In the present paper we aim to study formation and properties of D-cascade in the frame
of KdV equation (1.4).

As there are several exact analytical solutions known for the (1.4) equation, we will use
them for the verifying our numerical model. The exact cnoidal wave solutions to the KdV
equation can be found in [6]:

u(x, t) = 1

s
3s2−1 +

√
2(1−s2)
6s2−2 sin(√3s2 − 1(x − x0 − t))

− s, s ∈ [−1,−
√
3

3
] ∪ [
√
3

3
,1], x0 ∈ R.

(1.5)
The one-soliton solution is given by

u(x, t) = a + b2√
4a2 + b2 cosh y + 2a, y = bx − (6a2b + b3)t + c , (1.6)

where a, b, c are arbitrary constants, [31]. There exists also a rational solution of the form

u(x, t) = a − 4a

4a2(x − 6a2t)2 + 1 ,
where a is arbitrary constant, [33].
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The present manuscript is organized as follows. In Section 2 we give a sketch of a
D-cascade formation for this equation and formulate the properties of the cascade and its
spectra which should be verified numerically. In Section 4 we describe shortly our numerical
approach and present results of our numerical simulations. Finally, the main conclusions
of this study are discussed in Section 5.

2. D-cascade in the model equation

Initially, the D-cascade has been introduced in the case of the NLS and mNLS equa-
tions [26]. The main mechanism generating this cascade is the side-band or modulational
instability discovered first in optics in [4] and one year later in hydrodynamics [3].

It is well-known that the celebrated KdV equation does not possess the modulational
instability. On the other hand, the mKdV equation does possess this property which is
the object of our investigations. Moreover, it can be shown that the mKdV equation can
be reduced to the well-studied mNLS case [16]. Consequently, our results apply in both
cases.

The main effect of the Modulational Instability (MI) is the disintegration of periodic
wavetrains in the deep water [42]. If we pick up a particular wave after a sufficiently long
time evolution, we can assert that this wave is a result of the disintegration a parent wave
into side bands. That is why the MI is also referred to in the literature as the side band
instability.

Benjamin & Feir (1967) [3] showed that there is a connection between the frequen-
cies, wavenumber and amplitudes of unstable modes in the framework of the focusing (+)
Nonlinear Schrödinger (NLS) equation, which reads after a proper rescaling:

NLS(v±) ≐ ivt + vxx ± ∣v∣2v = 0
Namely, they computed the instability interval in the form

0 < ∆ω/Akω ≤ √2, (2.1)

where ω(k) is the linear dispersion relation, k is the wavenumber and A is the amplitude
of the Fourier mode ω. Quantity ∆ω is the distance between the parent mode and its side
band. Henceforth, the instability interval (2.1) contains the infinite number of unstable
modes along with their potential side bands. It was conjectured that in the actual evolution
of a physical system the selected side band leads to the most unstable solution which can
be found by the computing of the so-called increment of instability (see the recent review
by Zakharov & Ostrovsky (2009) [45] and the references therein). In the case of deep
water waves Benjamin & Feir (1967) [3] showed that the most unstable mode satisfies
the following relation:

∆ω/Akω = 1. (2.2)

Further on let us denote by (k0, ω0,A0) the parameters set of the parent wave and (k±1, ω±1,A±1)
will be used for the right and left side bands correspondingly. In these new variables we
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can rewrite (2.2) as two separate equations for each side band frequency:

ω±1 = ω0 ± A0k0ω0,

where ε ≐ A0k0 is the wave steepness, which is assumed to be a small parameter hereinbelow.
The side band amplitudes A(ω±1) can be easily related to the parent mode amplitude in
the following way:

A±1 ≐ A(ω±1) = A(ω0 ± εω0).
The right-hand side can be expanded in the Taylor series

A±1 = A(ω0 ±A0k0ω0) = +∞
∑
s=0

A
(s)
0

s!
(±A0k0ω0)s =

A0 ± A
′

0A0k0ω0 + 1

2
A
′′

0(±A0k0ω0)2 + . . . (2.3)

where the primes denote the differentiation with respect to ω0. The expansion (2.3) is an
explicit relation between the amplitudes of parent and side-band modes. This completes
the first step of the D-cascade construction.

Let us assume that we already found the amplitudes of Fourier modes at the step n − 1.
The amplitudes A±n can be then constructed by applying recursively the same procedure
(see Figure 1 for the illustration). Namely,

ω±n = ω(n−1) ± A(n−1)k(n−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
εn

ω(n−1), (2.4)

The last two relations are called the chain equations which constitute the basis of the
D-cascade construction. A similar Taylor expansion yields

A±n = A(n−1) ± A
′

(n−1)A(n−1)k(n−1)ω(n−1) + 12A
′′

(n−1)(±A(n−1)k(n−1)ω(n−1))2 + . . . , (2.5)

and the estimated in this way amplitudes {A±n} allow us to compute the energy spectra
{∣A±n∣2} in the Fourier space. The indices of positive (negative) sign correspond to the
direct (inverse) energy cascade.

Equation (2.5) could be considered as an Ordinary Differential Equation (ODE) with
respect to the one unknown wave amplitude A(n−1)(ω0), if we knew the wave amplitude
A±n(ω0) at the next recurrence step. This infinite system of equations can be closed if we
assume that at some level of this hierarchy we know the relation between A±n and A±(n−1).
It turns out that in recent experiments on the capillary wave turbulence [41] it was shown
that it is the simplest functional relation (i.e. proportionality) which is realized:

A±n ∝ A±(n−1) ⇒ A±n = √pA±(n−1), 0 < p < 1.

By keeping only the first two terms in the Taylor expansion (2.5) and using the last closure
relation we obtain

√
pAn ≈ An ±A′nAnknωn ⇒ A

′

n = ±
√
p − 1
ωnkn

,
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where ω0, A0 are excitation parameters, n is the common index and p = p(ω0,A0). The
last ODE can be solved in quadratures

A(ω±n) = ±(√p − 1)∫ ω+n

ω0

dωn

ωnkn
+ C±(ω0,A0, p) (2.6)

Accordingly, by definition the energy En(ωn) ∝ A2(ωn), which provides us with the discrete
set of energies of individual harmonics. The spectral density E(Dir)(ω) can be now computed

E(Dir)(ω) ≐ lim
∆ωn→0

E(ωn+1) −E(ωn)
∆ωn

.

A similar formula can be written for the inverse cascade as well. However, the limits of
integration in (2.6) will be inverted correspondingly to ∫ ω0

ω−n
.

2.1. Geometrical interpretation

In this section we would like to provide a simple geometrical interpretation of the energy
cascade formation described hereinabove. On Figure 1 we illustrate the first three steps
of the direct cascade (towards increasing frequencies) according to the chain rule (2.4).
The cascading modes are shown with vertical solid lines. On the other hand, the non-
cascading (or broadening) modes are depicted with dashed lines. Since at every step of the
cascade there is a formation of two modes, only one being cascading, we observe the fast
spectrum broadening. This process is schematically shown in Figure 2 where cascading
and non-cascading modes are shown as colored and empty circles correspondingly. Modes
with bigger amplitudes are shown with bigger circles. A simple combinatorial computation
shows that after n cascade steps 2n Fourier modes will be excited at most. Finally, on
Figure 3 we show the fully developed Fourier spectrum formed as a result of the D-cascade
formation.

2.2. Assumptions of the D-cascade model

In this Section we summarize the main hypotheses behind the D-cascade model.
The main assumption about the initial state consists in the narrow frequency banded

excitation, in contrast to previous cascade models proposed by Kolmogorov (strong
turbulence) and Zakharov (weak turbulence) which require the excitation of the whole
Fourier spectrum (all scales). However, most practical situations fall into the class of
problems with rather a narrow forcing.

The main mechanisms driving the energy cascade is the Modulational Instability (MI).
That is why the nonlinearity parameter is bounded from above by the physical wave break-
ing limitation which depends on a system in hand. For water wave problem εMI ⪅ 0.1 ÷ 0.4.
On the other hand, our approach does not have the limitation on the time scales when the
cascading process takes place. In the kinetic theory the K-cascade occurs on the time scale
t ∝ ε2(2−s, where s is the minimal number of waves which interact resonantly (with a
non-vanishing interaction coefficient), while in the D-cascade the time scale is independent
of generic resonances.
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ωω0 ω+1ω−1 ω+2ω−2 ω−3 ω+3

A

A(ω−1)
A(ω0)

A(ω−2)
A(ω+1)

A(ω−3) A(ω+3)
A(ω+2)

Figure 1. Schematic representation of the initial stage of the direct cascade
formation. The pairs of modes created at the same step of the cascade are shown

with the same color and connected with a horizontal bar.

Figure 2. Schematic representation of the cascade broadening. Cascading modes

are shown as blue circles, non-cascading (or broadening) modes — as empty
circles. The relative circle size indicates the energy content of the mode.
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ωO

A

ω+1 ω+2 ω+3

A(ω+1)
A(ω+2)

A(ω+3)

Figure 3. Illustration to the final stage of the cascade stabilization due to the
spectrum broadening.

Finally, another technical assumption states that the cascade is formed of the most
modulationally unstable modes.

2.3. Predictions of the D-cascade model

The main predictions of the D-cascade model are summarized below.
Directly, from the definition of the MI (as a special case of 4–wave interaction) it follows

that it occurs on the time scale tMI ∝ t/ε2. Additionally, from the chain equations (2.4)
it follows that the distance between the frequencies dependes on the initial wave steepness
(or another nonlinearity problem parameter).

One can easily see from the chain equations (2.4) that the frequency ω±n depends non-
linearly on the previous frequency ω(n−1) and amplitude A(n−1). Moreover, after simple
calculations one can show that the chain equations at every step correspond to the exact
resonance of four 2 nd order Stokes waves [37]. Consequently, the assumption of the modu-
lational instability can be replaced by another assumption of the existence of exact Stokes
wave resonance. It broadens somehow the applicability of the model, while the MI remains
a very useful setting to describe the D-cascade.

The model allows to compute approximatively the Fourier spectrum shape. Strictly
speaking its form will also depend on the problem degree of the nonlinearity ε and the initial
conditions (A0, ω0). For small nonlinearities a satisfactory description can be provided by
a family of NLS equations written in the vicinity of every cascading mode. For moderate
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nonlinearities one needs to take into account the higher order effects which result in the
mNLS-type terms. In general, the spectrum decays exponentially. At the cascade step n the
energy is En ∝ pnE0 where E0 is the energy of the initially excited mode E0 = ∣A0∣2 and p is
the cascade intensity. In various laboratory experiments (e.g. [41]) it was observed that the
cascade intensity p can be assumed and to be constant with high degree of accuracy. Then,
the estimation of p from the measured data becomes straightforward. For the theoretical
investigations the cascade intensity p can be explicitly written out as a function of the
excitation A0 and ω0 for a given dispersion relation ω = ω(k):

p = p(A0, ω0, k0),
where the functional dependence is different for every wave system under consideration.

The direction (direct or inverse) of the cascade can be determined from the recurrence
relation for the cascading wave frequencies (2.4):

Direct: if ωn > ωn−1
Inverse: otherwise

Once the energy spectrum has been determined, this condition can be checked by the direct
substitution for the expression for An. For example, for the direct cascade one obtains:

ω±n − ωn−1 = ±An−1kn−1ωn−1 = (±(√p − 1)∫ ωst

ω0

dωn

ωnkn
+ C±(ω0,A0, p))kn−1ωn−1 > 0.

The last inequality provides us with a sufficient condition for the direct cascade formation.
It is straightforward to obtain a similar condition for the inverse cascade by changing the
limits of integration and inequality sign to the opposite. Moreover, it was also observed
that once the direction is determined, it will remain true for all n > 0.

A special attention has to be payed when ω±n−ωn−1 ≈ 0, but ω±n−ωn−1 ≠ 0 (the equality
to zero is a condition of the cascade termination, see the next Section). In this case the
appearance of both direct and inverse cascades is possible. Moreover, this situation was
observed experimentally for surface water waves in [39].

From the D-cascade construction we can see that several scenarios of its termination
are possible. The cascade termination is another strong prediction of the model described
above. Some most probable scenarios are described in more details below in Section 2.4.
Moreover, in Section 2.5 we demonstrate how this D-cascade model can be applied to the
4 th order NLS equation to compute energy spectra of capillary waves.

2.4. Cascade termination in the Fourier space

Since every Stokes wave is unstable, one could think that the cascading process will
continue indefinitely. However, it is not necessarily the case, unless a very special initial
condition is chosen1. In this section we will describe several most probable scenarios of
the ending of the cascade process. However, this list is not exhaustive. See [27] for more
information.

1This class of initial conditions for surface gravity waves was described in [27].
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2.4.1 Stabilization process

The cascading process is terminated when the instability condition (2.1) is not fulfilled.
At this step the chainrule (2.4) breaks as well and no further modes can be generated. This
situation is referred to as the stabilization process. From (2.4) one can obtain the following
termination condition ω±n = ω±(n−1) ≡ ωst, i.e.

ω±n − ωn−1 = ±An−1kn−1ωn−1 = (±(√p − 1)∫ ωst

ω0

dωn

ωnkn
+ C±(ω0,A0, p))kn−1ωn−1 = 0.

After substituting the linear dispersion relation ω(k) into the last equation, one obtains
an implicit relation for kn−1 and the initial parameters of the problem which provides the
cascade stabilization in the Fourier space at frequency ωst. In particular, for dispersion
relations of the type ω ∝ kα (with α ≠ 1) this condition will become an algebraic equation.
For gravity waves in deep water this condition was studied in [27].

2.4.2 Wave breaking mechanism

The cascade is triggered from one Fourier harmonics with the nonlinearity Ak ≡ ε0 given
by the initial conditions. In the course of the cascade development the number of cascading
modes grows linearly. If all cascading modes are considered as a single wave packet, its
steepness εwp will be equal to

εwp = ε0 + ε1 + ε2 + . . .

If the total steepness of the wavepacket εwp ⩾ εcr, where εcr is the limiting Stokes wave
steepness, the wave breaking will inevitably occur. This mechanism was confirmed in
laboratory experiments [8].

2.4.3 Intermittency mechanism

We remind that the modulational instability is a 4-wave resonance process of a very spe-
cial kind. Namely, the interacting modes have very close frequencies along with wavenum-
bers. During the cascade evolution many other Fourier harmonics become excited and some
generic 4–wave or even 3–wave resonances are possible. The intensity of these interactions
depends on the interaction coefficient. It may happen that such interaction involves both
a cascading and a non-cascading mode with the intensity stronger than the MI. In this
case, the energy, instead of following the cascade direction, will enter in such quasi-periodic
resonant interactions with non-cascading modes. This will be the sign of the intermittency.
This scenario was observed experimentally in [39].

To make a conclusion, the choice of the stabilization scenario which will occur depends
on the excitation parameter and the initial condition.

2.5. Example of the energy spectrum computation

For the sake of illustration, we will obtain the energy spectra for the pure capillary
waves where ω(k)∝ k−3/2. Hogan (1985) [21] derived for this case a fourth-order modified
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Nonlinear Schrödinger (mNLS) equation in (2+1)d which reads:

mNLS(v) ≐ 2ivt + 3
4
vxx + 3

2
vyy + 1

8
∣v∣2v = −3

4
ivxyy − 1

8
ivxxx − 1

16
iv2v⋆x + 3

8
i∣v∣2vx + vφ̄x,

where v(x, t) is the envelope of the free surface elevation and φ̄ is the mean flow potential
(see [21] for more details).

Under the conditions of the small nonlinearity, the maximum instability condition reads
[21]:

∆ωn

1
24
Anknωn

= 1.

All computations are completely similar to the examples presented above. The ODE equa-
tion to determine the wave amplitudes become

±(√p − 1)An ≈ 1

24
A
′

nω
5/3
n .

Then, the direct and inverse discrete energy spectra can be readily obtained:

E(Dir)(ωn)∝ [(1 −
√
p)

16
ω
−2/3
n +C(Dir)]2, E(Inv)(ωn)∝ [−(1 −

√
p)

16
ω
−2/3
n +C(Inv)]2,

C(Dir) ≐ A0 − (1 −
√
p)

16
ω
−2/3
0 , C(Inv) ≐ A0 + (1 −

√
p)

16
ω
−2/3
0 .

Accordingly, the energy densities for these both cases read

E(Dir)(ω) ∝ −(1 −
√
p)2

16
ω−7/3 −C(Dir)(1 −√p)ω−5/3,

E(Inv)(ω) ∝ −(1 −
√
p)2

16
ω−7/3 +C(Inv)(1 −√p)ω−5/3.

3. MI in the mKdV equation

The following generalized Korteweg–de Vries (gKdV) equation was derived by R. Grimshaw

(2002) [15] as a weakly nonlinear model for internal long waves in a stratified fluid. Af-
ter some transformations of the variables, the gKdV equation can be written in unscaled
variables:

gKdV ∶vt + vvx + v2vx + vxxx = 0

A simple change of variables given in [16] allows to reduce the last gKdV equation to the
mKdV equation (1.3) with positive nonlinearity:

ut + uxxx + 6u2ux = 0,

where u = v + 1
2
, x ↦ x + 1

2
t. Let us remind that the mKdV equation is integrable and

it can be reduced to the KdV equation through the Miura transformation which is briefly
explained in Appendix A. By following Grimshaw et al. (2001) [16] the mKdV equation
can be also reduced to the NLS equation describing the dynamics of weakly nonlinear wave
packets [34]. Let us seek for a solution in the form

u(x, t) = εA1(X,T )eiθ + ε2A2(X,T )e2iθ + c.c. + . . . ,
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where θ ≐ kx − ωt, ω ≐ −k3, X ≐ εX, T ≐ εt and ε ≪ 1 is a small parameter. By
A1,2(X,T ) we denote the first and the second harmonics correspondingly. Substituting this
solution ansatz into the mKdV equation, one obtains a hierarchy of asymtotic relations.
For the first harmonic we obtain:

ε2(∂ A1

∂T
+ cg

∂ A1

∂X
) + ε3(ik∂ 2A1

∂X2
+ 6ik∣A1∣2A1) = O(ε4),

where cg = −3k2 ≐ ∂ ω

∂k
is the group velocity of the carrier wave. After making the Galilean

transform ξ ≐ X − cgT and τ ≐ εT and droping the index 1, the last equation becomes
the classical Nonlinear Schrödinger (NLS) equation to an asymptotic accuracy O(ε4):

i
∂ A

∂τ
= 3k

∂ 2A

∂ξ2
+ 6k∣A∣2A. (3.1)

By derivation equation (3.1) describes the envelope propagation for the mKdV solutions.
Since both models are modulationally unstable, the D-cascade model can be applied to
them. However, the NLS equation is built upon the additional assumption of the narrow
band spectrum. Consequently, the D-cascade for a single NLS equation consists of only
one cascading mode, possibly accompanied with the spectrum broadening. This situation
is illustrated on Figure 4 where equation (3.1) was solved numerically for a modulated
plane wave initial condition.

The full description of a non-trivial cascade in the NLS framework requires a sequence
of the NLS models: each NLS equation describing the vicinity of a cascading mode. On
the other hand, the mKdV equation does not have such restrictions. Consequently, we can
expect to observe the full D-cascade in this model.

4. Numerical simulations

In order to solve numerically the KdV equation on a periodic domain we used the classical
Fourier-type pseudo-spectral method [5, 38]. The derivatives are computed in the Fourier
space, while the nonlinear products – in the physical one (with the linear CPU-time).
Thanks to the FFT algorithm [11, 10, 12] the passage between these two representations
is done in the super-linear time O(N log(N)), which determines the overall algorithm
complexity (per time step). For the dealiasing we used the classical 2/3-rule [38] which
was combined (when necessary) with the Fourier smoothing method proposed in [22] for
more delicate treatment of higher frequencies. The discretization in time was done with
the embedded adaptive 5 th order Cash–Karp Runge–Kutta scheme [7] with the adaptive
PI step size control [18].

Since our main goal in this paper is a comparison of the theoretical predictions of the
D-cascade model against the numerical solutions to the focusing mKdV equation (1.4), the
numerical solver was validated first on the simple tests of the cnoidal wave propagation
(see Figure 5, s = 0.75) and the overtaking collision of solitary waves (see Figure 6).
We checked that up to the numerical accuracy the spectrum was stationary in the former
simulation showing that the wave is perfectly preserved by the numerical solver and no
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Figure 4. MI in the NLS equation (3.1) for the initial condition parameters
given in Table 1.

dispersive tail was present after the collision in the latter, confirming the integrability of
the mKdV equation.

For our numerical simulations of the Modulational Instability (MI) we adopt the set-up
used also earlier in [17]. We consider the following initial condition posed on a periodic
domain [−ℓ, ℓ] = [−π/k0, π/k0]:

u(x,0) ≡ u0(x) = a(1 + δ sin(K0x)) sin(k0x), (4.1)

where a is the base wave amplitude, δ is the perturbation magnitude and the wavenumbers
k0, K0 are chosen such that their ratio k0/K0 ∈ Z. The values of parameters are given in
the Table 1. The number N of Fourier modes used in simulations presented below will be
set to N = 32768 and the tolerance parameter in the PI step size control was set to 10−8.

4.1. Effect of the spectral domain

For the Fourier domain limited to k ∈ [0, 8] the simulation results shown on Figures 7
and 8 are in a good qualitative agreement with the results presented in [17]. Unfortunately
the authors in [17] did not report the evolution of the Fourier spectrum. We will fill in this
gap in the present study. For instance, one can notice the presence of a second peak in
the Fourier spectrum (in the vicinity of k ≈ 6) which corresponds to the second cascading
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Figure 5. Free propagation of a cnoidal wave in the mKdV equation for the
parameter s = 0.75.

Base wave amplitude, a 0.08

Perturbation magnitude, δ 0.05

Base wavenumber, k0 1.884

Perturbation wavenumber, K0 0.00785

Ratio of wavelengths, k0/K0 240

Table 1. Numerical parameters from the previous study [17] used for the
comparison with the present results.

mode. During the development of the MI we observe a broadening of the spectrum around
two cascading modes present in this numerical simulation. This broadening continues
until the MI is fully developed (see Figure 8(c, d)). The left and right broadening wings
can appear to be symmetric up to the graphical resolution, however our measurements
reported in Table 2 show that it is not actually the case. The broadening intensities

defined as the ratio of energies of two consecutive modes, i.e. βr,l ≐ ∣uk±1∣2
∣uk ∣2 and observed in

the experiments depend on the initial wave amplitude. Namely, when the nonlinearity is
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Figure 6. Overtaking solitons collision in the mKdV equation.

Amplitude, a Left intensity, βl Right intensity, βr

0.02 2.109 2.085

0.03 1.590 1.550

0.04 1.406 1.367

0.05 1.340 1.314

0.08 1.292 1.253

Table 2. The left and right spectrum broadening intensities measured in

numerical simulations of the mKdV equation for different values of the base wave
amplitude. The measurements were made at the fully developed MI.

increased, the broadening tails become flatter, thus involving more Fourier harmonics into
this process.

In order to observe more than two cascading modes, the Fourier space has to be broaden.
These results are shown on the left panel of Figure 9. In this case the Fourier domain is
almost four times larger going up to k = 32. Accordingly to the theoretical predictions,
the direct D-cascade is formed from the first instances of the numerical simulation. The
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(b) Fourier spectrum at t = 100.0
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(d) Fourier spectrum at t = 400.0
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(f) Fourier spectrum at t = 510.0

Figure 7. Development of the modulational instability in the mKdV equation for

parameters given in Table 1. The left panel shows the mKdV solution and on the
right panel we show the Fourier spectrum for k ∈ [0, 8].
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(b) Fourier spectrum at t = 560.0
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(c) Solution at t = 600.0
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(d) Fourier spectrum at t = 600.0
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(e) Solution at t = 700.0
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(f) Fourier spectrum at t = 700.0

Figure 8. (Continued). See Figure 7 for the detailed description.
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linear fit in the Fourier space suggests the exponential shape of the energy spectrum Ek ∝
exp(−αk), for some positive value of the slope α. Moreover, we computed the distances
between two successive cascading modes. It turns out that this value is constant to the
numerical precision (obviously, for a fixed initial condition).

4.2. Effect of the excitation amplitude

In this Section we study the effect of the base wave amplitude on the development of
the MI in the mKdV equation. Namely, we perform the same simulation described in the
previous section with numerical parameters given in Table 1, except for the amplitude a
which will be chosen as 2a = 0.16 and 3a = 0.24. Moreover, we will take a larger spectral
domain k ∈ [0,32] in contrast to the previous case. A larger domain is precisely needed to
observe several cascading modes and to make some conclusions on their distribution in the
Fourier domain. The simulation results are shown on Figures 9 and 10.

In particular, one can see that the initial condition with the amplitude two times bigger
(a = 0.16) develops the MI much faster. According to the theoretical predictions [28], the
time TMI needed for the MI to be fully developed in the physical space scales as TMI ∝O(ε−2). So, the increase of the amplitude leads also to the increase in the nonlinearity ε.
Consequently, our numerical results corroborate this prediction of the theory. On the other
hand, we stress that the position (and consequently the distance between) of the cascading
modes remains unaffected by the change in the amplitude.

4.3. Effect of the excitation wavenumber

On Figures 9 and 10 the base wavenumber k0 was fixed and taken from Table 1. In
this Section we describe the numerical experiments for another value of the parameter
k0 = 5 × 1.884. The results of numerical simulations are reported on Figures 11 and
12. Namely, on Figure 11 it is shown that the new exponent of the spectrum is much
lower than in the previous case. Moreover, if we increase the base wave amplitude a for
the new value of k0 = 9.42, the spectrum shape remains constant, however we cannot
affirm anymore that it is still exponential as it is hinted on Figure 12. The positions and
energies of cascading modes for these two simulations are reported in Table 3. From these
observation one can clearly see that the initial wave amplitude does not affect the structure
of the D-cascade.

Another important consequence of the variation of the parameter k0 is the distance
between cascading modes in the Fourier space. More precisely, the distance increases with
the increase in k0. For example, our simulations show that the distance increases from
∆k ≈ 3.81 to 18.42 when k0 goes from 1.884 to 5 × 1.884 = 9.42.

4.4. Effect of the perturbation magnitude

In the numerical simulations performed so far we have always taken the perturbation
with magnitude m = 0.05, which results in 5% amplitude modulation in terms of the base
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(a) a = 0.08, t = 60
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(b) a = 0.16, t = 60
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(c) a = 0.08, t = 400
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(d) a = 0.16, t = 400
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(e) a = 0.08, t = 840
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(f) a = 0.16, t = 840

Figure 9. Development of the MI in the mKdV equation for the initial wave
amplitudes a = 0.08 (left panel) and 2a = 0.16 (right panel) and several

simulation times.

wave amplitude a. We tested various values of parameter m in our numerical tests. Here
we report on Figure 13 the most severe case of m = 0.5 (i.e. 50% of the perturbation).
Even in such an extreme case, the D-cascade is still present. However, we cannot state
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Figure 10. Development of the MI in the mKdV equation for the initial wave

amplitude 3a = 0.24 at the final simulation time T = 840.

a 0.08

k 9.428 28.26 47.11 65.94 84.8 103.6

E 3.35 × 10−4 2.83 × 10−5 5.07 × 10−6 6.35 × 10−7 5.29 × 10−10 1.79 × 10−13

a 0.16

k 9.396 28.27 47.09 65.92 84.77 103.6

E 1.04 × 10−3 4.30 × 10−5 1.18 × 10−5 8.15 × 10−8 3.52 × 10−10 3.2 × 10−14

Table 3. Wavenumbers and energies of cascading modes for a = 0.08 and

a = 0.16. The simulation snapshots are shown on Figure 12(a,b) correspondingly.

anymore with certitude that its shape is exponential. This questions will require more
detailed investigations with even more resolved numerical simulations.

5. Discussion

In this study we have investigated the D-cascade formation in the framework of the
mKdV equation. The main mechanism generating this cascade is the Modulational In-
stability (MI). Since the D-cascade is not a widely known model yet, we reproduced its
construction. Moreover, in the earlier publications it was described only for the NLS-
type equations, while the main focus here is on the mKdV equation (1.3). A geometrical
interpretation was provided along with the NLS equation derivation from the mKdV.
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(b) t = 150

Figure 11. MI simulation for k0 = 5 × 1.884, all the other parameters are the
same as given in Table 1. The red dashed line on the bottom panels indicates the

fit of the previous simulations for k0 = 1.884. The blue dashed line shows the
new fit. The magenta dashed line shows the direction of the eventual inverse
cascade.
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Figure 12. MI simulation for k0 = 5 × 1.884, and two different values of the
base wave amplitude a. The red bold dotted line corresponds to the energy

spectrum shape observed in the numerical simulation.
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Figure 13. MI simulation for k0 = 5 × 1.884, and the perturbation magnitude
m = 10 × 0.05 = 0.5. The red bold dotted line corresponds to the energy

spectrum shape observed in the numerical simulation.
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5.1. Main results

In the numerical experiments we studied the nonlinear stage of the MI evolution aiming
to observe the evolution of Fourier spectra additionally to the wave observation in the
physical space, already reported in previous studies [16, 36]. The main findings can be
briefly summarized in the following list:

● For a wide class of the initial conditions leading to the MI we clearly observe the
formation of the direct (i.e. in the direction of increasing wavenumbers k)D-cascade.
The ranges of parameters considered in this study are given here:

Amplitude: a = 0.01 ÷ 0.24

Perturbation magnitude: m = 0.05 ÷ 0.5

Base wavenumber: k0 = 1.8 ÷ 60.0

Simulation time horizon: T = 40 ÷ 2000 ∝ O(ε−2)
Number of Fourier harmonics: N = 1024 ÷ 131072

● In our numerical simulation the MI develops on the dynamical time scales of the
order of O(ε−2) which is in agreement with theoretical predictions [28].
● It is interesting to note that this time scale refers to the complete development of

the MI in the physical space (see Figure 9(d, e)). On the other hand one can see
that the main structure of the D-cascade is already observable in Fourier spectra
from the first instances of the dynamical evolution. Consequently, the development
of the MI in the physical space corresponds to the spectral broadening of cascading
modes. It is remarkable that their positions and energies are quasi-stationary.
● The observed D-cascade skeleton in the Fourier space is very robust and it has the

exponential decay Ek ∝ exp(−α ⋅ k) (see Figures 9 and 10). The exponent α was
found to be independent of the base wave amplitude a for fixed values of other
parameters.
● The increase of k0 (the base wave wavenumber) has more drastic consequences

on the spectrum shape. The agreement with the exponential spectrum Ek ∝

exp(−α ⋅ k) is not satisfactory anymore. This highly nonlinear regime requires a
more detailed investigation with higher resolutions in the Fourier space in order
to obtain a longer cascade before making some conclusions about its shape (most
of simulations presented in this study were already performed with N = 32768

Fourier harmonics).
● We performed a series of numerical experiments for different values of the pertur-

bation magnitude m = 0.05 ÷ 0.5. We conclude that the main features of the
D-cascade described above are preserved (see Figure 13). The choice of the pertur-
bation influences the time scale on which the MI will develop in the physical space.
Generally, higher magnitudes of the perturbation tend to accelerate this process.
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5.2. Perspectives

5.2.1 Inverse cascade

So far we observed and studied in details the formation and structure of the direct D-
cascade. However, the theory predicts the possibility of the inverse D-cascade existence.
In future investigations we will study under which conditions the inverse D-cascade can be
observed in the mKdV equation.

5.2.2 Modulation of cnoidal waves

The question of modulational stability or instability for periodic traveling waves of the
KdV-type with finite amplitudes (a = O(1)) has been investigated quite recently in [23, 24,
25, 6]. The authors suggested an elegant way of determining which periodic traveling wave
solutions, u(x, t) = v(x− ct), to mKdV are modulationally unstable. Indeed, substitution
of v(x − ct) in (1.3) together with simple transformations allows to rewrite (1.3) in the
Hamiltonian form as

(v′)2 = 2(E − V (v; c, a)) ,

where V (v; c;a) ≐ v4/4 − cv2/2 − au. Here, E is like the ODE Hamiltonian energy, and V
is the potential energy. This argument gives you the existence of a three parameter family
parameterized by a,E, c of periodic traveling wave solutions to the KdV-type equation.
Now the stability of a periodic traveling wave solution of mKdV can be reduced to the
properties of the roots of quartic polynomial:

P (z) = E − V (z; c, a).

If all four roots are real, the solution is stable, otherwise it is unstable, [6]. From this simple
characterization, lots of results follow: all cnoidal wave solutions of KdV (corresponding
to a = 0) are modulationally stable, while all the dnoidal solutions (corresponding to
a = 0) are modulationally unstable. The above result allows also for a ≠ 0, and so
gives information on solutions which are not simply expressible in terms of Jacobi elliptic
functions. It would be interesting to check whether or not the model of D-cascade can be
adopted for the case of waves with finite amplitudes. This is the work in progress.

On Figure 14 we show some preliminary results on the numerical simulation of slowly
modulated cnoidal waves (1.5) to the mKdV equation. The exact periodic travelling so-
lution was deformed as in the previous sine-wave simulations according to (4.1), with the
same value of the parameter δ, and K0/k0 = 120.

Our computations show that for s = 0.59 this polynomial has four complex roots (theory
gives no conclusion) and for s = 0.95 two real roots (instability). The results of the
numerical simulations are shown on Figure 14(a,b) correspondingly. In particular, one can
see that for so strong nonlinearities the distance between cascading modes is decreasing
as we go further down to the small scales. The question of the strongly nonlinear waves
stability remains essentially underinvestigated, especially in the cases where the theory is
not conclusive.
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Figure 14. Example of a large amplitude cnoidal wave simulation with a

modulated envelope perturbation.
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A. Transformations

It is well known that the mKdV equation can be transformed into the classical KdV
equation

KdV(v±) ≐ vt ± 6vvx + vxxx
by Miura transformation, [30]:

KdV(v±) = (2u ± ∂x)mKdV.

As this transformation has the nontrivial kernel, solutions of KdV equation are solutions
of the KdV equation but not vice versa. However, a very interesting result by Geszetesy

& Holden, [14], can be regarded as a “partial invertibility” of the Miura transformation
in the following sense. Introducing the first order differential expression

P̃ (V ) = 2V ∂x − Vx.
Then one derives

mKdV(ϕ) ≐ ±∂x(ψ±1((ψ∓1)t − P̃ (V±)ψ∓1)),
where

ϕ = ψx/ψ, ψ > 0, V± = ϕ2
±ϕx.

Next, let V = V (x, t) be a solution of the KdV equation, KdV(V ) = 0, and ψ > 0 be
function satisfying

ψt = P̃ (V )ψ, −ψxx + V ψ = 0,
Then ϕ solves the KdV equation, mKdV(ϕ) = 0, [14].

References

[1] M. J. Ablowitz and H. Segur. Solitons and the Inverse Scattering Transform. Society for
Industrial & Applied Mathematics, 1981.

[2] S. Y. Annenkov and V. I. Shrira. Role of non-resonant interactions in the evolution of

nonlinear random water wave fields. J. Fluid Mech., 561:181–207, Aug. 2006.
[3] T. B. Benjamin and J. E. Feir. The disintegration of wavetrains in deep water. Part 1. J.

Fluid Mech., 27(417), 1967.

[4] V. I. Bespalov and V. I. Talanov. Filamentary Structure of Light Beams in Nonlinear Liquids.
JETP Lett., 3:307, 1966.

[5] J. P. Boyd. Chebyshev and Fourier Spectral Methods. 2nd edition, 2000.



Cascade in the modified KdV equation 31 / 33

[6] J. C. Bronski, M. A. Johnson, and T. Kapitula. An index theorem for the stability of periodic

travelling waves of Korteweg-de Vries type. Proc. R. Soc. Edinburgh Sect. A, 141(06):1141–
1173, Nov. 2011.

[7] J. R. Cash and A. H. Karp. A variable order Runge-Kutta method for initial value prob-

lems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software,
16(3):201–222, Sept. 1990.

[8] P. Denissenko, S. Lukaschuk, and S. Nazarenko. Gravity Wave Turbulence in a Laboratory
Flume. Phys. Rev. Lett., 99(1):014501, July 2007.

[9] K. B. Dysthe. Note on a modification to the nonlinear Schrödinger equation for application
to deep water. Proc. R. Soc. Lond. A, 369:105–114, 1979.

[10] M. Frigo. A fast Fourier transform compiler. In Proc. 1999 ACM SIGPLAN Conf. on

Programming Language Design and Implementation, volume 34, pages 169–180. ACM, May
1999.

[11] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc.

1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing, volume 3, pages 1381–1384.
IEEE, 1998.

[12] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Proceedings of the

IEEE, 93(2):216–231, 2005.
[13] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov, volume 317. Cambridge University

Press, Cambridge, Apr. 1995.

[14] F. Gesztesy and H. Holden. The Cole-Hopf and Miura transformations revisited. In Math-
ematical physics and stochastic analysis. Essays in honor of Ludwig Streit, pages 198–214.
World Scientific, Singapore, 2000.

[15] R. Grimshaw. Internal Solitary Waves. In R. Grimshaw, editor, Environmental Stratified
Flows, pages 1–27. Springer US, 2002.

[16] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and T. Talipova. Wave group dynamics in weakly

nonlinear long-wave models. Phys. D, 159(1-2):35–57, Nov. 2001.
[17] R. Grimshaw, E. Pelinovsky, T. Talipova, M. Ruderman, and R. Erdelyi. Short-Lived Large-

Amplitude Pulses in the Nonlinear Long-Wave Model Described by the Modified Korteweg-

De Vries Equation. Stud. Appl. Math., 114(2):189–210, Feb. 2005.
[18] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-

Algebraic Problems. Springer Series in Computational Mathematics, Vol. 14, 1996.

[19] M. Haragus and T. Kapitula. On the spectra of periodic waves for infinite-dimensional
Hamiltonian systems. Phys. D, 237(20):2649–2671, Oct. 2008.

[20] K. Hasselmann. On the non-linear energy transfer in a gravity-wave spectrum Part 1. General

theory. J. Fluid Mech., 12(04):481–500, Mar. 1962.
[21] S. J. Hogan. The fourth-order evolution equation for deep-water gravity-capillary waves.

Proc. R. Soc. A, 402(1823):359–372, 1985.

[22] T. Y. Hou and R. Li. Computing nearly singular solutions using pseudo-spectral methods.
J. Comp. Phys., 226(1):379–397, Sept. 2007.

[23] M. A. Johnson. Stability of Small Periodic Waves in Fractional KdV-Type Equations. SIAM

J. Math. Anal., 45(5):3168–3193, Oct. 2013.
[24] M. A. Johnson and K. Zumbrun. Rigorous Justification of the Whitham Modulation Equa-

tions for the Generalized Korteweg-de Vries Equation. Stud. Appl. Math., 125(1):69–89, Mar.

2010.



D. Dutykh & E. Tobisch 32 / 33

[25] M. A. Johnson, K. Zumbrun, and J. C. Bronski. On the modulation equations and stability

of periodic generalized Korteweg-de Vries waves via Bloch decompositions. Phys. D, 239(23-
24):2057–2065, Nov. 2010.

[26] E. Kartashova. Energy spectra of 2D gravity and capillary waves with narrow frequency

band excitation. EPL, 97(3):30004, Feb. 2012.
[27] E. Kartashova. Energy transport in weakly nonlinear wave systems with narrow frequency

band excitation. Phys. Rev. E, 86(4):041129, Oct. 2012.
[28] E. Kartashova. Time scales and structures of wave interaction exemplified with water waves.

EPL, 102(4):44005, May 2013.
[29] A. N. Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous Fluid for

Very Large Reynolds Numbers. Proc. R. Soc. Lond. A, 434(1890):9–13, July 1991.

[30] R. M. Miura. Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit
Nonlinear Transformation. J. Math. Phys., 9(8):1202, 1968.

[31] R. M. Miura, C. S. Gardner, and M. D. Kruskal. Korteweg-de Vries Equation and Generaliza-

tions. II. Existence of Conservation Laws and Constants of Motion. Journal of Mathematical
Physics, 9(8):1204, 1968.

[32] A. C. Newell and B. Rumpf. Wave Turbulence. Ann. Rev. Fluid Mech., 43(1):59–78, Jan.

2011.
[33] H. Ono. Algebraic Soliton of the Modified Korteweg-de Vries Equation. J. Phys. Soc. Jpn.,

41(5):1817–1818, Nov. 1976.

[34] E. J. Parkes. The modulation of weakly non-linear dispersive waves near the marginal state
of instability. J. Phys. A: Math. Gen., 20(8):2025–2036, June 1987.

[35] S. B. Pope. Turbulent Flows, volume 1. Cambridge University Press, Cambridge, Jan. 2000.

[36] M. S. Ruderman, T. Talipova, and E. Pelinovsky. Dynamics of modulationally unstable ion-
acoustic wavepackets in plasmas with negative ions. J. Plasma Phys., 74(05), Apr. 2008.

[37] E. Tobisch. Energy spectrum of ensemble of weakly nonlinear gravity-capillary waves on a

fluid surface. Accepted to JETP Lett., 2014.
[38] L. N. Trefethen. Spectral methods in MatLab. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2000.

[39] M. P. Tulin and T. Waseda. Laboratory observations of wave group evolution, including
breaking effects. J. Fluid Mech., 378:197–232, Jan. 1999.

[40] G. B. Whitham. Variational Methods and Applications to Water Waves. Proc. R. Soc. Lond.

A, 299(1456):6–25, June 1967.
[41] H. Xia, M. Shats, and H. Punzmann. Modulation instability and capillary wave turbulence.

EPL, 91(1):14002, July 2010.

[42] H. C. Yuen and B. M. Lake. Nonlinear dynamics of deep-water gravity waves. Adv. App.
Mech., 22:67–229, 1982.

[43] V. E. Zakharov and N. N. Filonenko. Weak turbulence of capillary waves. Journal of Applied

Mechanics and Technical Physics, 8(5):37–40, 1971.
[44] V. E. Zakharov, V. S. Lvov, and G. Falkovich. Kolmogorov Spectra of Turbulence I. Series

in Nonlinear Dynamics, Springer-Verlag, Berlin, 1992.

[45] V. E. Zakharov and L. A. Ostrovsky. Modulation instability: The beginning. Phys. D,
238(5):540–548, Mar. 2009.



Cascade in the modified KdV equation 33 / 33

LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-

du-Lac Cedex, France

E-mail address: Denys.Dutykh@univ-savoie.fr

URL: http://www.denys-dutykh.com/

Institute for Analysis, Johannes Kepler University, Linz, Austria

E-mail address: Elena.Tobisch@jku.at

URL: http://www.dynamics-approx.jku.at/lena/


	Introduction
	D-cascade in the model equation
	Geometrical interpretation
	Assumptions of the D-cascade model
	Predictions of the D-cascade model
	Cascade termination in the Fourier space
	Stabilization process
	Wave breaking mechanism
	Intermittency mechanism

	Example of the energy spectrum computation

	MI in the mKdV equation
	Numerical simulations
	Effect of the spectral domain
	Effect of the excitation amplitude
	Effect of the excitation wavenumber
	Effect of the perturbation magnitude

	Discussion
	Main results
	Perspectives
	Inverse cascade
	Modulation of cnoidal waves

	Acknowledgments

	Transformations
	References

