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Abstract: Following up on an earlier, De Broglie-Bohm approach within the 
framework of quantum gauge theory of gravity, and based on the Schrödinger-Dirac 
equation for gravitons, we argue that gravitons are effectively massive due to their 
localized circulatory motion. This motion is analogous to the proposed 
zitterbewegung (ZB) motion of electrons.  
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1. Introduction 
Following, D. Hestenes, the idea that the 
electron spin and magnetic moment are 
generated by a localized circulatory motion of 
the electron has been proposed independently 
by many physicists [1]. Schrödinger’s 
zitterbewegung (ZB) model for such motion 
is especially noteworthy because it is 
grounded in an analysis of solutions to the 
Dirac equation [2-4]. Surely, if the ZB motion 
is a real physical phenomenon, then it tells us 
something fundamental about the nature of 
the electron. The role ascribed to the ZB 
motion in standard formulations of quantum 
mechanics, nonetheless, has been 
metaphorical at best. 
 

 
The ZB of photons is studied via the 
momentum vector of the electromagnetic 
field. These studies show that ZB motion can 
occur only in the presence of virtual 
longitudinal and scalar photons [28-30]. The 
vector property of this motion is described by 
the polarization vectors of the 
electromagnetic field [28-30]. 
 
Various workers have attempted to derive 
General Relativity from a gauge-like 
principle, involving invariance of physics 
under transformations of the locally (i.e. in 
the tangent space at each point) acting 
Lorentz or Poincare group. ([5-7]). N. Wu 
[8−11] proposed a Quantum Gauge Theory of 
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Gravity (QGTG) based on the gravitational 
gauge group (G). In Wu’s theory, the 
gravitational interaction is considered as a 
fundamental interaction in a flat Minkowski 
space-time and not as space-time geometry. A 
model of interacting massive gauge gravitons, 
and a proposed heavy gauge graviton 
resulting from shell decay of Higgs bosons, 
were developed recently by the author within 
the framework of QGTG [12-14]. In a recent 
paper, we also proposed the leading order 
approximation, a De Broglie-Bohm approach 
within the framework of QGTG [15].  
 
Based on the Schrödinger-Dirac equation for 
gravitons, in this essay we argue that 
gravitons are effectively massive due to a 
motion analogous to the ZB motion.  
 
2. Fundamentals of QGTG 
According to N. Wu’s theory, the 
infinitesimal transformations of the 
gravitational gauge group G can be written in 
the form [8]: 
 

1 ,U i P    0,1, 2,3,    (1) 
 

where  are the infinitesimal parameters of 

the group, and /P i x      are the 
generators of the gauge group.   
 
It is known that these generators commute 
each other [8]: 
 
[ , ] 0.P P       (2) 

 
This property of the generators, however, 
does not imply that the gravitational gauge 
group is an Abelian group, since the elements 
of the gravitational group do not commute 
[8]: 
 

2 2
[ , ] 0.U U       (3) 

 
The gravitational gauge-covariant derivative 
is defined by: 
 

( )D igC x     ,   (4) 

where Cμ(x) is the gravitational gauge field, 
and g is the gravitational gauge coupling 
constant. Cμ(x) is a Lorentz vector. Under 

gravitational gauge transformation, Cμ(x) 
transforms as: 
 

1

1

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( )( ( )),

C x C x U x C x U x

i
U x U x

g

    

  





 
    (5) 

whereas Dμ transforms covariantly as: 
1ˆ ˆ( ) ( ) ( ) ( ) ( ).D x D x U x D x U x        (6) 

 
Gravitational gauge field Cμ(x) can be 
expanded in the form of linear combinations 
of generators of gravitational gauge group, 
 

ˆ( ) ( ) ,C x C x P       (7) 

where C   is the component field of the 

gravitational gauge field. 

Although component field 
C   resembles a 

second-rank tensor, this is not a tensor field. 
The index   is not an ordinary Lorentz index 
but a gauge group index. Since gravitational 

gauge field C   has only one Lorentz index, 

it is a kind of vector field.  
 
The strength of the gravitational gauge field 
is defined by the second-order Lorenz tensor: 
 

1
, ,F D D

ig
         (8) 

or: 
 

( ) ( )

( ) ( ) ( ) ( ),

F C x C x

igC x C x igC x C x

    
   
   

   (9) 

 
F  is a vector in group space; therefore, it 

can be expanded in group space as: 
 

ˆ( ) ( ) .F x F x P       (10) 

 
The explicit form of the strength of the 
component field: 

( ) ( )

( ) ( )

F C C

gC C gC C

      
        

   
   

.

  (11) 

The strength of the gravitational gauge field 
transforms covariantly under gravitational 
gauge transformation. In analogy with 
traditional gauge field theory, the kinematical 
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term for the gravitational gauge field can be 
written as: 
 

0

1
.

4
g F F           (12) 

 
It can be demonstrated that this Lagrangian is 
not invariant under gravitational gauge 
transformation. It transforms covariantly as 
follows: 
 

0 0 0
ˆ( ).U         (13) 

 
To resume the gravitational gauge symmetry 
of the action, we introduce an essential factor 
in the form of: 
 

1( ) ,
g CI Ce e

   1( ) .I C g C    (14) 

 
The full Lagrangian   is then given by:  
 

( )
0 ,I Ce   .     (15) 

 
The action S for the gravitational gauge field 
is defined by:  
 

4 .S d x       (16) 

 
It can be proven that this action has local 
gravitational gauge symmetry [8]. According 
to the gauge principle, global symmetry gives 
out a conserved current: 
 

( ) 0
01 .

( )

I C
iT e C

C

      
         

 (17) 

 

We call quantity iT   inertial energy-
momentum tensor [8].  

The Euler-Lagrange equations for C   
gauge 

fields are: 

.
( )C C

    
         (18) 

 
These forms are identical with those that 
occur in quantum field theory [8]. By 
inserting equation (15) into (18), we get: 

0 0
1 0

0
1

( )

( )
( )

g
C C

g C
C

    
    





      
   

  . (19) 

 
Suppose that the gravitational gauge field 

C   
is very weak in vacuum, i.e. gC  ≈ 0. In 

leading order approximation, by substituting 
equation (14) to equations (19), we obtain:  
 

00 0 0.
( )

F
C C

    
          (20) 

 
The gravitons’ equations of motion thus 
become: 
 

0 0.F   
     (21)

  
We define: 
 

,ij ijk kF B    0 .i iF E    (22) 

 
Equation (21) then takes the form: 
 

0,B      (23) 

0.E B
t

         (24) 

 
Taking definitions (22) into account, we 
derive the following equations:  
 

0,E      (25) 

0.B E
t

         (26) 

 
But for their superscript α, equations (23-26) 
would be the ordinary Maxwell equations. In 
conventional quantum field theory the 
gravitational field in vacuum is extremely 
weak. The gravitational wave in vacuum, 
therefore, is composed of four independent 
vector waves.  
 
Although the gravitational gauge field is a 
vector field, its component fields Cα

μ have 
one Lorentz index μ and one group index α. 
Both indexes have the same behavior under 
Lorentz transformation – a behavior that 
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makes the gravitational gauge field to 
resemble a tensor field. We thus call this 
gravitational gauge field a pseudo-tensor 
field. The spin of the gravitational gauge 
field, determined by its behavior under 
Lorentz transformation, is 2. 
  
In conventional quantum field theory, a spin-
1 field is a vector field, and a vector field is a 
spin-1 field. In QGTG, this correspondence is 
violated. This is because, unlike in 
conventional gauge field theory where the 
spin of a field is independent of the group 
index, in QGTG the group index contributes 
to the spin of a field. 
 
3. Can gravitons be effectively massive due 
to a motion analogous to ZB motion? 
 
In a recent paper, we proposed a De Broglie-
Bohm approach to the QGTG to explain the 
propagation of gravitons [15].  
 
Alternatively, the propagation of gravitons 
can be described by the quantity Eα −iBα [15],  
where Eα and Bα  are the gravitational electric 
and the gravitational magnetic field [17-27], 
respectively. 
 
This description is formulated in the same 
way in which the Schrödinger wave function 

/R eiS   describes the motion of material 
particles in de Broglie-Bohm theory [21-22].  
 
With this choice, the physical meaning of the 
graviton wave function is acquired ab initio. 
Indeed, there are impressive similarities 
between the present formulation of QGTG 
and de Broglie-Bohm theory [15].  
 
We consider the complex valued quantity: 
 

1
( )

2
E iB     [15].  (27) 

Introducing ψα in the field equations of 
vacuum graviton (23-26), these become: 
 

0   ,    (28) 

i
t

       .   (29) 

 
 

Relation (28) can be regarded as a constraint 
on the field ψα. Relation (29) can take another 
form by introducing the following set of 
hermitian matrices: 
 

1

0 0 0

0 0

0 0

i

i


      

, 2

0 0

0 0 0

0 0

i

i


      

,

3

0 0

0 0

0 0 0

i

i
       .

   (30) 

 
These matrices satisfy the commutation 
relation: 
 
[ , ] .i j ijk k        (31) 

 
Equation (29) can then be written as: 
 

i H
t

    ,    (32) 

 
or, carrying off the components, 

( ) ki
ij j k ij ji H

t

          [15]. (33) 

 
Equation (33) has the form of a Schrödinger-
Dirac equation.  
 
Following J.P. Vigierr [28], the graviton’s 
velocity operator in the Heisenberg picture is 
defined by: 
 

1( ) [ , ]
dU

i U H
dt

 
.
   (34) 

 
Kobe [28] has shown that, for U(t), equation 
(34) yields the value: 
 

( ) (0) (0)

(0) cos (0) sin

U t U U

U t U t  


 

 
 



,
  (35)  

 
where /pc    is the angular frequency of 
the corresponding classical gravitational 
wave in the leading order approximation of 
QGTG.  
 
The Heisenberg equation for the displacement 
operator: 
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( )[ , ] ( )
dx

i x H U t
dt

     (36) 

 
yields by integration: 

0

( ) (0) (0)

exp{ } (0)
t

x t x V t

dt it H U 

 
   





.

  (37) 

 
The first term on the right hand side of 
equation (37) is the initial position of the 
graviton. Since the graviton moves with a 
constant longitudinal velocity operator, 

(0)U  , in the direction of its constant 

momentum, p̂ , the second term of equation 
(37) is the subsequent displacement of the 
graviton. The third term thus yields the time 
dependence of the displacement ( )X t  due to 
the graviton’s motion (analogous to the ZB 
motion). After integration of equation (37) we 
derive: 
 

1
1

1

( ) (0) (0) (0) sin( )

(0) cos( )

x t x U U t

U t

 
 




  


  (38) 

 
- a formula tied with a constant displacement

1(0) (0)x x U     . The last two terms of 
(38) evidently imply a spatial extension( )x t  
resulting from a motion analogous to the ZB 
motion.  
 
The displacement operator (0) (0)x x   
precesses about the displacement ( )U t t  with 

an angular frequency , associated to an 

amplitude /c  . This suggests that the orbital 
angular momentum of the ZB motion 
corresponds to the graviton’s spin operator S, 
associated with an effective ‘relativistic 
graviton mass’, 2 2

0 / /m E c c   . The 
graviton’s spin operator S is defined by: 
 

0

1
ˆ{ ( ) ( ) . .}

2
S x t m U t H c p     

.
 (39) 

 
The graviton can thus be considered as a 

particle of mass 2
0 0 /m c  , moving 

around its direction of propagation p̂ , in a 

circle of radius /c  . The corresponding 
orbital momentum is    and its speed on this 
circle of radius /c  is the distance 
2 ( / )c  , travelled in one period divided by

2 /T   . This trembling motion of the 
graviton reduces the mass of a particle to the 
frequency of this motion. 
 
 
The longitudinal component of the velocity 
associated with a constant energy E pc  is 
constant. This longitudinal component is 
given by: 
 

2 2
||(0) [ (0)]U p p pU i pHE    . (40) 

 
Equation (40) is the corresponding graviton 
operator in the direction of the momentum, 

i.e. 2 1 2 2
g g gc pH c pH E  , corresponding to 

the gravitons  Dirac energy 

   1
2 22

g gE pc m c
     .

  (41) 

 
 
 
4. Conclusion 
 
Adopting a De Broglie-Bohm approach in 
Quantum Gauge Theory of Gravity QGTG, 
and based on the Schrödinger-Dirac equation 
for gravitons, we find that gravitons are 
effectively massive due to their localized 
circulatory motion which reduces the mass of 
the particle to the frequency of this motion. 
This motion is analogous to the ZB motion of 
electrons. 
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