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ABSTRACT

In recent years, marked point processes have received a great deal

of attention. They were applied with success to extract objects in

large data sets as those obtained in remote sensing frameworks or

biological studies. We propose in this paper a method based on

marked point processes to reconstruct volumes of 3D particles from

images of 2D particles provided by the Tomographic Particle Im-

age Velocimetry (Tomo-PIV) technique. Unlike other reconstruc-

tion methods, our approach allows us to solve the problem in a par-

simonious way. It facilitates the introduction of prior knowledge

and naturally solves the memory problem which is inherent to pixel

based approach used by classical tomographic reconstruction meth-

ods. The best reconstruction is found by minimizing an energy func-

tion which defines the marked point process. In order to avoid local

minima, we use a simulated annealing algorithm. Results are pre-

sented on simulated data.

Index Terms— Marked Point Processes, Tomography Recon-

struction, Simulated Annealing, Tomo-PIV, Fluid Mechanics.

1. INTRODUCTION

The growth in size and complexity of experimental data provided

by the Tomo-PIV technique in fluid mechanics research, and the

need of better data reconstruction requires the development of new

approaches to warrant optimal scientific exploitation of the instru-

ments. This paper focuses on the reconstruction of volumes of

3D particles, formulated in a marked point process reconstruction

framework.

The Tomo-PIV technique was proposed by Elsinga et al [1].

Based on PIV and a multi-sensor recording, this approach allows in-

stantaneous measurement of the three velocity components in a vol-

ume. The size of the measurement volume is completely flexible and

can be adapted to measure small volumes of a few mm3 as well as

large volumes. However, the depth of focus remains a limiting fac-

tor. The principle of the Tomo-PIV is based on the computation of

the velocity vector field of a flow from the displacement of the tracer

particles recorded on several images. It consists on adding tracer

particles in the stream of interest and to illuminate a portion of the

flow volume by a laser source. The light scattered by the particles is

captured by several high-resolution digital cameras (approximately

3 to 6, usually 4) from different viewing angles. The information

The current work has been conducted as part of the AFDAR project, Ad-
vanced Flow Diagnostics for Aeronautical research, funded by the European
Commission program FP7, grant n◦265695 and the FEDER project n◦34754

on the line of sight of each pixel in a camera, through the examined

volume, is described by an approximation (polynomial) made from

3D calibration procedure. Thus, the projection set of each camera

is supplied to a 3D reconstruction algorithm (Fig.1). Finally, the
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Fig. 1. Tomo-PIV principle.

sequences of 3D particle volumes are used to estimate the sequences

of velocity fields using advanced cross-correlations techniques.

Due to the very small number of views, the 3D reconstruction

step is an inverse ill-posed problem. Most solutions rely on the use of

tomographic algebraic reconstruction methods (ART for Algebraic

Reconstruction Technique, MART for Multiplicative ART, SMART

for Simultaneous MART, ...) [2, 3, 4, 5]. Another solution based

on a hybrid algorithm was proposed recently. The algorithm is sim-

ilar to MART but it iteratively reconstructs 3D particle locations by

comparing the recorded images with the projections calculated from

the particle distribution in the volume [6]. Nevertheless, already pro-

posed Tomographic reconstruction techniques don’t sufficiently take

into account the particular shape of objects to be reconstructed. In

addition to the high density of particles in images, noise is an unfa-

vorable element to a high reconstruction quality. Given the size of

data, the processing time of the methods and the memory usage are

very high. To solve these problems, a solution based on the parsi-

mony of the volume of particles can be considered. Thus, a method



to reconstruct volumes of 3D particles based on “object” processes,

as marked point processes, seems particularly well suited.

This paper is organized as follows: in section 2, after some re-

calls on marked point processes, we provide the new model that can

be used for the reconstruction of 3D particles. Experimental results

are given in section 3. In section 4, we conclude the paper and give

some prospects for the work.

2. A MARKED POINT PROCESS FOR 3D PARTICLE

VOLUME RECONSTRUCTION

2.1. Basics of marked point processes

In this section, we recall the basic ideas of point processes (PP) and

marked point processes (MPP). For further details we recommend

[7, 8, 9, 10].

Let K ⊂ R
3 an observation domain with volume 0 < ν(K) <

∞. A PP on K is a finite configuration of points {ki ∈ K, i =
1, ..., N} as ki 6= kj for i 6= j. To form more complex objects, we

can attach characteristics or marks to the points. Let (M,M, νM )
be the probability space which describes the marks. A finite random

configuration of marked points (or objects) is a sample of a MPP if

only the position process of objects is a PP. Based on this definition,

volume or image features are viewed as a set of objects identified

jointly by their positions in the image and their geometrical charac-

teristics.

The simplest MPP in K is the Poisson MPP. Thus, the num-

ber of objects is chosen from a Poisson distribution, and the points

representing the positions of the objects are uniformly distributed in

K. The marks are chosen independently for each point. For a more

complete presentation of MPP, the reader is referred to [11, 12]).

2.2. Proposed model

Our aim is to reconstruct a volume of 3D particles based on the light

energy acquired in the projections (images). Unlike classic tomo-

graphic reconstruction methods, the objective is to obtain 3D parti-

cles that belong to a continuous 3D space (i.e. a position of a 3D

particle belongs to R
3). Following the elements recalled in section

2, points are center positions of 3D particles and marks provide cen-

ter intensities, forms and radiuses. Thus, such configuration of 3D

particles is given by y = {(k1,m1), ..., (kN ,mN )}, with ki ∈ K

and mi ∈ M , the 3D particle positions and the 3D particle marks,

respectively, ∀ 1 ≤ i ≤ N . This process provides a naturally sparse

representation of configurations of objects of interest which are in-

side a volume. They allow a detachment from the numerical model

induced by the volume constituted of voxels, to better approximate

the physical model.

A configuration of a MPP is classically viewed as a sample is-

sued from an unnormalized probability density f which is a Gibbs

distribution:
f(y|θ) ∝ exp(−U(y|θ)) (1)

with y is a finite configuration of 3D particles and θ a set of fixed

parameters. The energy U(y|θ) allows the modeling of interactions

between particles and is composed of the sum of two terms: 1) a

data driven energy denoted Ud(y|θd) that reflects the adequacy be-

tween configurations of 3D particles and the observed data and 2)

an internal energy denoted Ui(y|θi) that reflects an a priori on such

configurations. This leads to the following expression:

U(y|θ) = Ud(y|θd) + Ui(y|θi) (2)

and θ = θd ∪ θi. Thus, for a given value of θ parameters, the most

likely configuration which allows the volume reconstruction corre-

sponds to the global minimum of the total energy:

ŷ = argmin
y

U(y|θ) (3)

The computation of the minimum of the energy is performed by

a simulated annealing which is a stochastic method of optimiza-

tion [13, 14]. This technique is based on the simulation of a non-

homogeneous Markov Chain (see [9, 15] for example and section 3

for implementation details).

An appropriate definition of the data energy allows to obtain

consistent marked points (particles) compared to a given observa-

tion. In our case, this energy will enable the process to converge

to an appropriate configuration of 3D particles given the acquired

images.

2.2.1. Data driven energy

This section provides the main contribution of the paper: the propo-

sition of a data driven energy. This has been obtained from the mean

square error (MSE) between the projection of the population of 3D

particles y and the acquired images:

MSE(y) =
1∑n

i=1 |Ii|

n∑

i=1

∑

s∈Ii

(oi,s − ri,s)
2

(4)

where n is the number of projections. {s} is the set of the sites

(pixels) of the projections (images) and oi,s corresponds to the ob-

served value at the site s of the projection Ii whose cardinal is |Ii|,
i = 1, . . . , n. {ri,s} is the set of projected values computed from

the population y. The computation of the set of values implies a

procedure of discretization of each 3D particle in n discrete 2D par-

ticles, each one associated to a projection. Thus, ri,s is the sum of

the contributions of each 3D particle yj ∈ y which has a non zero

intensity at site s of its projected discrete 2D particle in Ii. We will

denote this property yj → s. Then, ri,s =
∑

yj ,yj→s
ryj→s with

ryj→s is the intensity projected by yj at site s of Ii.

Following the previous definitions, we develop MSE(y) and

the deletion of constant terms allows us to obtain the expression of a

data driven energy in the form of a sum of two energies Ud,1(y|θd)+
Ud,2(y|θd) defined as follows:

Ud,1(y|θd) =
∑

yj∈y

φd,1(yj) (5)

where φd,1(yj) =
n∑

i=1

∑
s∈Ii,yj→s

ryj→s

(
ryj→s − 2oi,s

)
and

Ud,2(y|θd) =
n∑

i=1

∑

yj
i
∼yk,j<k

φ
i
d,2(yj , yk) (6)

where φi
d,2(yj , yk) =

∑
s∈Ii

2ryj→sryk→s. Note that
i
∼ defines a

neighboring property between two 3D particles (yj
i
∼ yk if yj → s

and yk → s) that models their interactions based on the correlation

between their projected values on a given image.

For a given particle yj , φd,1(yj) is high when the values in the

observed images are low, thus increasing the value of U . Conversely,

when the values in the observed images are high, φd,1(yj) is neg-

ative and then favors the corresponding position of the associated

3D particle. φd,2(yj , yk) penalizes two particles which have same

projections in an image. The data driven energy will be at a min-

imum for a set of correctly positioned 3D particles which have not

too many similar projections, a desired configuration of 3D particles.



2.2.2. Internal energy

In the proposed model, the energy function is divided on a sum of

two terms and can be written as follows:

Ui(y|θi) = Ue(y|θe) + Us(y|θs) (7)

The first term Ue(y|θe) = −n(y) log(β) is an energy associated

with the intensity of the process in terms of number of particles

n(y) in a configuration. It is defined by the parameter β, which

represents the mean number of points by unity of volume. The sec-

ond term Us(y|θs) = −na(y) log(γa) allows the definition of a

Strauss point process which belongs to the family of Markov point

processes [7, 15]. When 0 ≤ γa < 1, this component penalizes ag-

gregation of 3D particles. na(y) represents the number of neighbor

relationships between 3D particles in the following sense: yi
S
∼ yj if

||ki − kj ||2 ≤ ri + rj where ri and rj are the radiuses of yi and yj
respectively. The value of the hyper-parameter γa ∈ [0, 1] controls

the outcome of the potential function. If γa = 1, the process defined

by Ui behaves as an homogeneous Poisson PP with intensity β. If

γa ∈]0; 1[, pairs of 3D particles with distance less than ri + rj are

penalized. If γa = 0, the process forbids that two points exist within

distance ri + rj of each other. The process is then said to be hard

core.

The proposed model is then parameterized by θ = θd ∪ θi with

θi = {β, γa}. θd is mainly defined by the model of the 3D particles

(minimum and maximum values for their intensities and radiuses)

and the way they are projected on images.

2.3. Simulation of Point Processes

PP and MPP are classically simulated using Reversible Jump

Markov Chain Monte Carlo method (RJMCMC) exploiting a

Metropolis-Hasting-Green (MHG) dynamic [8, 16, 17, 18]. This

dynamic allows the simulation of a process with varying sampling

spaces. In our case, these sampling spaces are associated with con-

figurations with different numbers of particles. The basic moves of

RJMCMC for MPP are the birth and death moves [7, 19, 20]: at

each iteration, one object is either added to or removed from the

current configuration.

Let us denote fb the probability to select the birth move, and

fd the probability to choose a death move. In the birth move case,

the position of the new particle ξ is chosen randomly following a

uniform distribution on the volume K. Therefore, the proposed state

is y′ = y ∪ {ξ} and the following Metropolis-Hastings-Green ratio

is obtained:

τB =
fd

fb

f(y′|θ)

f(y|θ)

ν(K)

n(y) + 1
(8)

In the death move case, the point to be removed is chosen with a uni-

form probability on the existing points in the configuration. the pro-

posed state is y′ = y \ {ξ} and the following Metropolis-Hastings-

Green ratio is obtained:

τD =
fb

fd

f(y′|θ)

f(y|θ)

n(y)

ν(K)
(9)

(see Sec. 2.1 for ν(K) and Eq.(1) for f(y|θ)). The different propo-

sitions are accepted with probability min {1, τi}, i = B or D. In

each case, the ratio
f(y′|θ)
f(y|θ)

= exp {−∆U}, with ∆U = U(y′|θ)−

U(y|θ), only depends on the terms associated to the added or deleted

particle. For example, in the case of a birth:

∆U = φd,1(ξ) +
∑

i∈Ii

∑

yj
i
∼ξ

φ
i
d,2(yj , ξ)− log

(
βγ

nξ
a

)
(10)

where nξ is the number of neighbors of ξ following the
S
∼ neighbor

relationship (see Sec. 2.2.2).

The initial configuration of 3D particles can be chosen in order

to speed up the convergence of the simulated annealing. This pa-

per does not deal with the problem of initialization and the initial

configuration is the one with no particle.

3. RESULTS

In this section, we present results of 3D particles volume reconstruc-

tion. The method described above was applied on simulated data.

These data were created by an image generator developed during the

previous project on Tomography using SLIP library [21].

The size of the simulated volume was 200 × 200 × 50 voxels

and it contained 50 particles. Four projections of size 200 × 200
pixels, each one containing 50 particles were then computed. 2D

and 3D particles are characterized by marks as described in 2.2. In

this simulation, we fixed the intensity center of all particles. The

size was 5 × 5 × 5 voxels for 3D particles and 3 × 3 pixels for 2D

particles. The intensity shape of all particles was modeled as a mul-

tivariate isotropic Gaussian density and the particles had a spherical

form. The 3D particles were projected with angle of 30◦ and a Pin-

hole camera model is used.To be closer to the real case, we added a

Poisson noise to the four projections with a percentage value equal to

0.1%. These noisy projections provide the simulated observed data

(see left column of Fig. 3).

The parameters of the proposed model must be chosen carefully

in order to get a good reconstruction of 3D particle volume. The

intensity parameter β was fixed to 25 .10−6 while the γa parameter

was fixed to γa = 0.05. fb and fd denote the probability to select

“Birth” and “Death” moves respectively (fd = 1 − fb). The birth

probability fb was fixed to 0.3 and the death probability fd was fixed

to 0.7.

The simulated annealing algorithm is configured with an initial

temperature T0 equal to 2 and with a fixed final temperature Tf equal

to 0.1. We chose a classical cooling scheme: Tt = T0 qt with t

the current iteration and q the parameter of the cooling scheme with

q =
(

Tf

T0

) 1

Nit and Nit the number of iterations.

The RJMCMC dynamics was run for Nit = 2.5 .106 iterations.

One iteration corresponds to one proposed birth/death move, which

may be accepted or not. These choices of parameters were adopted

after several simulations, compromising between the quality of the

reconstruction and presence of ghost particles.

Therefore, for an empirical evaluation of our method, some

graphical tests have been derived. In figure 2, the sum of MSE

between the simulated projections and the generated projections are

plotted. This figure shows that the MSE decreases with the itera-

tions. The minimal value of the MSE is equal to 7.4 .10−4 and it is

obtained for t = 1.5 .106.

The right column of the figure 3 presents the four projections

that have been generated from the process. Each projection contains

50 particles. Indeed, the obtained configuration contains 50 3D par-

ticles with zero false positive alert. However, some errors on the

particles’ position were observed.

To compare the position of the generated 3D particles with the

reference, we reconstruct 10 samples (volumes) with 50 particles and

compute the mean error on the 3D position. Global mean error was

0.56 voxels. In table 1, we present the mean error and the variance of

the error on X, Y and Z axes. These first results have been obtained

after 5 minutes on a 2.9 GHz (dual core) CPU and they are very

encouraging.
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Fig. 2. Evolution of MSE during simulated annealing

X Y Z

Error (voxel) 0.23 0.16 0.40

Variance (voxel) 0.18 0.23 0.09

Table 1. Mean error and variance on X, Y and Z

To compare with an existing method, we use the minLOS -

MART (minimum Line Of Sight - MART) [22], an improved version

of MART algorithm, to reconstruct the 3D particle volume using the

simulated projections. This version, developed in Pprime institute

using SLIP library [21], removes voxels and pixels which have zero

energy. The MART method reconstructed the 50 particles of the

simulated volume. It was observed that the 3D particles’s sizes var-

ied from one particle to another and there were some 3D particles

with no gaussian form. To evaluate the quality of the reconstruction,

we computed the MSE between the reconstructed volume and the

original one. The MSE was equal to 2.09 .10−5 with the proposed

method against 2.20 .10−5 with the MART method. The reconstruc-

tion of one 3D particle volume, using the simulated data, required

disk space equal to 0.07 MB for our method against 15 MB for the

minLOS - MART method.

4. CONCLUSION AND PERSPECTIVE

In this paper, we presented a method for 3D particle volume re-

construction using marked point process framework. Rather than

pixel-oriented, our work uses object-oriented approach based on a

RJMCMC method. Optimization is done with a simulated annealing

method. We showed, on a simulated case, the relevance of the pro-

posed data driven energy for the reconstruction of a volume of 3D

particles. On the given example, the proposed method gives better

results than the MART algorithm.

Future work will include the definition of new moves in the

RJMCMC method in order to improve the positions of 3D particles

and to change the radius and the center intensity of each particle. A

better initialization of the population of 3D particles should be also

integrated in order to speed up the convergence of the simulated an-

nealing. The method will also be tested on real images in order to

see its capacity to reconstruct a 3D velocity field. We notice that the

proposed approach is in a prototype phase and the optimization of

the computation time is among the first next goals of this work.

(a) Projection 1

(b) Projection 2

(c) Projection 3

(d) Projection 4

Fig. 3. Simulated images (left column) and generated images from

projected 3D particles (right column)
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