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UNIFORM EQUICONTINUITY FOR A FAMILY OF ZERO

ORDER OPERATORS APPROACHING THE FRACTIONAL

LAPLACIAN.

PATRICIO FELMER AND ERWIN TOPP

Abstract. In this paper we consider a smooth bounded domain Ω ⊂

R
N and a parametric family of radially symmetric kernelsKǫ : R

N
→ R+

such that, for each ǫ ∈ (0, 1), its L1
−norm is finite but it blows up as

ǫ → 0. Our aim is to establish an ǫ independent modulus of continuity
in Ω, for the solution uǫ of the homogeneous Dirichlet problem

{

−Iǫ[u] = f in Ω.
u = 0 in Ωc,

where f ∈ C(Ω̄) and the operator Iǫ has the form

Iǫ[u](x) =
1

2

∫

RN

[u(x+ z) + u(x− z)− 2u(x)]Kǫ(z)dz

and it approaches the fractional Laplacian as ǫ → 0. The modulus
of continuity is obtained combining the comparison principle with the
translation invariance of Iǫ, constructing suitable barriers that allow to
manage the discontinuities that the solution uǫ may have on ∂Ω. Ex-
tensions of this result to fully non-linear elliptic and parabolic operators
are also discussed.

1. Introduction.

Let Ω ⊂ R
N be a bounded open domain with C2 boundary, f ∈ C(Ω̄) and

ǫ ∈ (0, 1). In this paper we are concerned on study of the Dirichlet problem

−Iǫ[u] = f in Ω,(1.1)

u = 0 in Ωc,(1.2)

where Iǫ is a nonlocal operator approaching the fractional Laplacian as ǫ
approaches 0. We focus our attention on Iǫ with the form

Iǫ[u](x) :=

∫

RN

[u(x+ z)− u(x)]Kǫ(z)dz,(1.3)

where, for σ ∈ (0, 1) fixed, Kǫ is defined as

Kǫ(z) :=
1

ǫN+2σ + |z|N+2σ
= ǫ−(N+2σ)K1(z/ǫ).

Notice that for each ǫ ∈ (0, 1), Kǫ is integrable in R
N with L1 norm equal

to Cǫ−2σ, where C > 0 is a constant depending only on N and σ. We point
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out that operators with kernel in L1, like Iǫ, are known in the literature as
zero order nonlocal operators.

Operator Iǫ is a particular case of a broad class of nonlocal elliptic oper-
ators. In fact, given a positive measure µ satisfying the Lévy condition

∫

RN

min{1, |z|2}µ(dz) <∞,

and, for each x ∈ R
N and u : RN → R bounded and sufficiently smooth at

x, the operator Iµ[u](x) defined as

(1.4) Iµ[u](x) =

∫

RN

[u(x+ z)− u(x)− 1B1(0)(z)〈Du(x), z〉]µ(dz),

has been a subject of study in a huge variety of contexts such as potential
theory ([28]), probability ([13, 31]) and analysis ([32, 33, 3, 14, 15]). An
interesting point of view of our problem comes from probability, since (1.4)
represents the infinitesimal generator of a jump Lévy process, see Sato [31].
In our setting, the finiteness of the measure is associated with the so-called
Compound Poisson Process. Dirichlet problems with the form of (1.1)-(1.2)
arise in the context of exit time problems with trajectories driven by the
jump Lévy process defined by Kǫ(z)dz, and the solution uǫ represents the
expected value of the associated cost functional, see [29].

We may start our discussion with a natural notion of solution to our
problem (1.1)-(1.2): we say that a bounded function u : RN → R, continuous
in Ω, is a solution of (1.1)-(1.2) if it satisfies (1.1) pointwise in Ω and u = 0
on Ωc. As we see in Section §2, this problem has a unique solution, more
interestingly, through an example we will see that such a solution may not
be continuous in R

N , since a discontinuity may appear on the boundary of
Ω. See Remark 2.4.

This situation is in great contrast with the limit case ǫ = 0, where the
kernel becomes K(z)dz = |z|−(N+2σ)dz and the associated nonlocal operator
is the fractional Laplacian of order 2σ, denoted by −(−∆)σ, see [23]. In this
case, the corresponding Dirichlet problem becomes

{

CN,σ(−∆)σv = f in Ω,
v = 0 in Ωc,

(1.5)

where CN,σ > 0 is a normalizing constant. In the context of the viscosity the-
ory for nonlocal equations (see [3, 32, 33]), Barles, Chasseigne and Imbert [4]
addressed a large variety of nonlocal elliptic problems including (1.5). In
that paper, the authors proved the existence and uniqueness of a viscosity
solution v ∈ C(Ω̄) of (1.5) satisfying v = 0 on ∂Ω that is, consequently,
continuous when we regard it as a function on R

N . This result is accom-
plished by the use of a nonlocal version of the notion of viscosity solution
with generalized boundary conditions, see [21, 2, 8] for an introduction of
this notion in the context of second-order equations.

Additionally, fractional problems like (1.5) enjoy a regularizing effect as
in the classical second-order case. Roughly speaking, for a right-hand side
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which is merely bounded, the solution v of (1.5) is locally Hölder continuous
in Ω, see [34]. In fact, we should mention here that interior Hölder regularity
for more general fractional problems (for which (1.5) is a particular case) has
been addressed by many authors, see for instance [4, 5, 9, 14, 15, 16, 34] and
the classical book of Landkof [28], for a non-exhaustive list of references.
The interior Hölder regularity is accomplished by well established elliptic
techniques as the Harnack’s inequality ([14, 10]) and the Ishii-Lions method
([4, 27]). In both cases, the nonintegrability of the kernel plays a key role.
Hölder regularity for problems like (1.5) can be extended up to the boundary,
as it is proved by Ros-Oton and Serra in [30], where a boundary Harnack’s
inequality is the key ingredient (see also [12]). Naturally, as a byproduct
of these regularity results, compactness properties are available for certain
families of solutions of fractional equations. For instance, the family {vη} of
functions solving

{

CN,σ(−∆)σvη = fη in Ω
uη = 0, in Ωc,

satisfies compactness properties when {fη} is uniformly bounded in L∞(Ω̄).
For zero order problems, regularizing effects as arising in fractional prob-

lems are no longer available (see [18]). In fact, the finiteness of the kernel
of zero order operators turns into degenerate ellipticity for which Ishii-Lions
method cannot be applied. Thus, “regularity results” for zero order prob-
lems like (1.1)-(1.2) are circumscribed to the heritage of the modulus of
continuity of the right-hand side f to the solution uǫ as it can be seen
in [17]. However, the modulus of continuity found in [17] depends strongly
on the size of the L1 norm of Kǫ, which explodes as ǫ→ 0. A similar lack of
stability as ǫ→ 0 can be observed in the Harnack-type inequality results for
nonlocal problems found by Coville in [20]. Hence, none of the mentioned
tools are adequate for getting compactness for the family of solutions {uǫ}
of problem (1.1)-(1.2), which is a paradoxical situation since, in the limit
case, the solutions actually get higher regularity and stronger compactness
control on its behavior.

In view of the discussion given above, a natural mathematical question
is if there exists a uniform modulus of continuity in Ω, for the family of
solutions {uǫ} to (1.1)-(1.2), and consequently compactness properties for
it. In this direction, the main result of this paper is the following

Theorem 1.1. Let Ω ⊂ R
N a bounded domain with C2 boundary and f ∈

C(Ω̄). For ǫ ∈ (0, 1), let uǫ be a solution to problem (1.1)-(1.2). Then, there
is a modulus of continuity m depending only on f , such that

|uǫ(x)− uǫ(y)| ≤ m(|x− y|), for x, y ∈ Ω.

The proof of this theorem is obtained combining the translation invariance
of Iǫ and comparison principle, constructing suitable barriers to manage the
discontinuities that uǫ may have on ∂Ω and to understand how they evolve
as ǫ approaches zero, see Proposition 3.2.
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As a consequence of Theorem 1.1 we have the following corollary, that
actually was our original motivation to study the problem.

Corollary 1.2. Let uǫ be the solution to equation (1.1), with f and Ω as in
Theorem 4.1, and let u be the solution of the equation (1.5), then uǫ → u in
L∞(Ω̄) as ǫ→ 0.

We mention here that the application of the half-relaxed limits method

introduced by Barles and Perthame in [7] (see also [6, 11, 3]) allows to obtain
in a very direct way locally uniform convergence in Ω in the above corollary.
At this point we emphasize on the main contribution of this paper, which
is the analysis of the boundary behavior of the family {uǫ} of solutions
to (1.1)-(1.2) coming from Theorem 1.1 and the subsequent global uniform
convergence to the solution of (1.5).

There are many possible extensions of Theorem 1.1, for example, it can
be readily extended to problems with the form

{

−Iǫ[u] = fǫ in Ω
u = 0 in Ωc,

with {fǫ} ⊂ C(Ω̄) having a common modulus of continuity independent of
ǫ ∈ (0, 1). It can also be extended to fully nonlinear operators and to para-
bolic equations, as we discuss in Section §6. We could also consider different
families of approximating zero order operators, but we do not pursue this
direction. There are many other interesting lines of research that arises from
this work. From the discussion given before Theorem 1.1, questions arises
with respect to Harnack type inequalities and its relation with regularity
and compactness properties of solutions, when ǫ → 0. Regarding operators
Iµ, where µ might be singular with respect to the Lebesgue measure, an
interesting question that arises is if the main results of this article can be
extended to this case.

The paper is organized as follows: In Section §2 we establish the notion
of pointwise solution and the comparison principle. Important estimates for
the discontinuity of the solution at the boundary are given in Section §3, and
the boundary equicontinuity result is presented in Section §4. The interior
modulus of continuity is easily derived from the boundary equicontinuity,
and therefore the proof of Theorem 1.1 is given in Section §5. Further related
results are discussed in Section §6.

1.1. Notation. For x ∈ R
N and r > 0, we denote Br(x) the ball centered

at x with radius r and simply Br if x = 0. For a set U ⊂ R
N , we denote

by dU (x) the signed distance to the boundary, this is dU (x) = dist(x, ∂U),
with dU (x) ≤ 0 if x ∈ U c. Since many arguments in this paper concerns the
set Ω, we write dΩ = d. We also define

Ωr = {x ∈ Ω : d(x) < r}

Concerning the regularity of the boundary of Ω, we assume it is at least
C2, so the distance function d is a C2 function in a neighborhood of ∂Ω.
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More precisely, there exists δ0 > 0 such that x 7→ d(x) is of class C2 for
−δ0 < d(x) < δ0.

In our estimates we will denote by ci with i = 1, 2, ... positive constants
appearing in our proofs, depending only on N,σ and Ω. When necessary
we will make explicit the dependence on the parameters. The index will be
reinitiated in each proof.

2. Notion of Solution and Comparison Principle.

In the introduction we defined a notion of solution to problem (1.1)-(1.2),
which is very natural for zero order operators and allows us to understand the
main features of the mathematical problem that we have at hand. However,
this notion is not suitable for a neat statement of the comparison principle
and it is not adequate to understand the limit as ǫ → 0. For this reason,
from now on, we adopt another notion of solution which is more adequate,
that is the notion of viscosity solution with generalized boundary condition
defined by Barles, Chasseigne and Imbert in [4].

We remark that results provided in this section are adequate for prob-
lems slightly more general than our problem (1.1)-(1.2). We will consider
J ∈ L1(RN ) a nonnegative function, and we define the nonlocal operator
associated to J as

(2.1) IJ [u](x) =

∫

RN

[u(x+ z)− u(x)]J(z)dz,

for u ∈ L∞(RN ) and x ∈ R
N , and a Dirichlet problem of the form

−IJ [u] = f in Ω,(2.2)

u = 0 on Ωc,(2.3)

with f ∈ C(Ω̄). Since we are interested in a Dirichlet problem for which the
exterior data plays a role, we assume J and Ω satisfy the condition

(2.4) inf
x∈Ω̄

∫

Ωc−x
J(z)dz ≥ ν0 > 0.

Notice that problem (1.1)-(1.2) is a particular case of (2.2)-(2.3).
In this situation, a bounded function u : RN → R, continuous in Ω̄ is

a viscosity solution with generalized boundary condition to problem (2.2)-
(2.3) if and only if it satisfies

−IJ [u] = f on Ω̄,(2.5)

u = 0 in Ω̄c.(2.6)

The sufficient condition is direct from the definition and the necessary
condition follows from the lemma:

Lemma 2.1. Let f ∈ C(Ω̄) and let u : RN → R be a function satisfying

(2.7) −IJ [u](x) ≤ f(x) for all x ∈ Ω,
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where the above inequality is understood pointwise. Let x0 ∈ ∂Ω and assume
there exists a sequence {xk} ⊂ Ω such that

xk → x0, u(xk) → u(x0)(2.8)

and

(2.9) lim sup
k→+∞

u(xk + z) ≤ u(x0 + z), a.e.

Then, u satisfies (2.7) at x0.

Here and in what follows the considered measure is the Lebesgue measure.

Proof. Consider {xk} ⊂ Ω as in (2.8). Then, we can write
∫

RN

u(xk + z)J(z)dz − u(xk)

∫

RN

J(z)dz ≥ −f(xk).

Hence, taking limsup in both sides of the last inequality, by (2.8) and the
continuity of f , we arrive to

∫

RN

lim sup
k→∞

u(xk + z)J(z)dz − u(x0)

∫

RN

J(z)dz ≥ −f(x0),

where the exchange of the integral and the limit is justified by Fatou’s
Lemma. Then, using (2.9), we conclude the result. �

We continue with our analysis with an existence result for (2.2)-(2.3).

Proposition 2.2. Let f ∈ C(Ω̄). Then, there exists a unique bounded
function u : RN → R, continuous in Ω̄, which is a viscosity solution with
generalized boundary condition to problem (2.2)-(2.3).

Proof. According with our discussion above, we need to find a solution to
(2.5)-(2.6). Consider the map Ta : C(Ω̄) → C(Ω̄) defined as

Ta(u)(x) = u(x)− a
(

||J ||L1(RN )u(x)−

∫

Ω−x
u(x+ z)J(z)dz − f(x)

)

.

We observe that u ∈ C(Ω̄) is a fixed points of Ta if and only if u is a solution
to problem (2.5)-(2.6). Therefore, the aim is to prove that for certain a > 0
small enough, the map Ta is a contraction in C(Ω̄). By (2.4), there exists
̺0 > such that

||J ||L1(RN ) − ||J ||L1(Ω−x) ≥ ̺0, for each x ∈ Ω̄.

Let 0 < a < min{̺−1
0 , ||J ||−1

L1(RN )
} and consider u1, u2 ∈ C(Ω̄). Then, for all

x ∈ Ω̄ we have

Ta(u1)(x)− Ta(u2)(x) ≤
(

1− a||J ||L1(RN ) + a

∫

Ω−x

J(z)dz
)

||u1 − u2||∞

≤
(

1− a̺0

)

||u1 − u2||∞,
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concluding that

||Ta(u1)− Ta(u2)||∞ ≤ (1− a̺0)||u1 − u2||∞,

that is, Ta is a contraction in C(Ω̄). From here existence and uniqueness
follow. �

Remark 2.3. We observe that u : RN → R, a viscosity solution with gen-
eralized boundary condition to problem (2.2)-(2.3), may be redefined on the
boundary ∂Ω as u = 0, to obtain a solution to (2.2)-(2.3) in the sense defined
in the introduction.

Remark 2.4. Let u be a solution of (2.2)-(2.3) in the sense defined in
the introduction, with f ≥ ̺0 > 0. Our purpose is to show that u has a
discontinuity on the boundary of Ω. Let us assume, for contradiction, that
u : RN → R is a continuous function.

Then u ≥ 0 in Ω, otherwise there exists x0 ∈ Ω such that u(x0) =
minΩ̄{u} < 0 and evaluating the equation at x0 we arrive to

u(x0)

∫

Ωc−x0

J(z)dz ≥ −IJ [u](x0) = f(x0),

which is a contradiction to (2.4). Then, from the equation, we have for each
x ∈ Ω the inequality

−IJ [u](x) = f(x) > ̺0.

Since u and f are continuous and u = 0 on ∂Ω and using that u ≥ 0 in Ω,
we obtain that, for each x ∈ ∂Ω

0 ≥ −

∫

Ω−x
(u(x+ z)− u(x))J(z)dz = −IJ [u](x) = f(x) > ̺0,

which is a contradiction. Thus, u > 0 on ∂Ω which implies that u is discon-
tinuous on ∂Ω.

In what follows we prove that a solution to (2.2)-(2.3), in the sense defined
in the introduction, can be extended continuously to Ω̄.

Proposition 2.5. Let f ∈ C(Ω̄). Let v : RN → R in L∞(RN ) ∩ C(Ω) be
a solution to (2.2)-(2.3), and u : RN → R in C(Ω̄) be the viscosity solution
to (2.2)-(2.3) given by Proposition 2.2. Then, u = v in Ω.

Proof: By contradiction, assume the existence of a point in Ω where u is
different from v. Defining w = u− v, we will assume that

(2.10) M := sup
Ω

{w} > 0,

since the case infΩ{w} < 0 follows the same lines. Moreover, we assume that
the supremum defining M is not attained, since this is the most difficult
scenario. Let η > 0 and let xη ∈ Ω \ Ωη such that

w(xη) = max
Ω\Ωη

{w},
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where Ωη was defined at the end of the introduction. We clearly have
w(xη) →M as η → 0 and since we assumeM is not attained, then xη → ∂Ω
as η → 0. Now, using the equations for u and v at xη ∈ Ω, we can write

−

∫

Ω−xη

[w(xη + z)− w(xη)]J(z)dz + w(xη)

∫

Ωc−xη

J(z)dz ≤ 0,

and by (2.4) and the fact that w(xη) →M as η → 0, we have

(2.11) −

∫

Ω−xη

[w(xη + z)− w(xη)]J(z)dz + ν0M − oη(1) ≤ 0,

where oη(1) → 0 as η → 0. But writing
∫

Ω−xη

[w(xη + z)− w(xη)]J(z)dz =

∫

Ω\Ωη−xη

[w(xη + z)− w(xη)]J(z)dz

+

∫

Ωη−xη

[w(xη + z)− w(xη)]J(z)dz,

by the boundedness of w and the integrability of J , the second integral term
in the right-hand side of the last equality is oη(1), meanwhile, using the
definition of xη we have the first integral is nonpositive. Thus, we conclude

∫

Ω−xη

[w(xη + z)− w(xη)]J(z)dz ≤ oη(1),

and replacing this into (2.11), we arrive to

ν0M − oη(1) ≤ 0.

By making η → 0, we see that this contradicts (2.10), since ν0 > 0. �

As a consequence of the last proposition, we have the following

Corollary 2.6. Let f ∈ C(Ω̄). Then, there exists a unique solution v ∈
L∞(RN ) ∩C(Ω) to problem (2.2)-(2.3) in the sense defined in the introduc-
tion. Moreover, v is uniformly continuous in Ω and its unique continuous
extension to Ω̄ coincides with the unique viscosity solution to (2.2)-(2.3).

The main tool in this paper is the comparison principle, and here the
so-called strong comparison principle is the appropriate version to deal with
discontinuities at the boundary.

Proposition 2.7. (Comparison Principle) Assume f ∈ L∞(Ω̄). Let
u, v ∈ R

N → R be bounded, upper and lower semicontinuous functions on
Ω̄, respectively. Assume u and v satisfy

(2.12) −IJ [u] ≤ f and − IJ [v] ≥ f, on Ω̄.

If u ≤ v in Ω̄c, then u ≤ v in Ω̄.

Proof: Assume by contradiction that there exists x0 ∈ Ω̄ such that

(u− v)(x0) = max
x∈Ω̄

{u− v} > 0.
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Evaluating inequalities in (2.12) at x0 and substracting them, denoting w =
u− v, we arrive to

−

∫

Ω−x0

[w(x0 + z)− w(x0)]J(z)dz −

∫

Ωc−x0

[w(x0 + z)− w(x0)]J(z)dz ≤ 0,

and therefore, using that x0 is a maximum point for w in Ω and that w ≤ 0
in Ωc, we can write

w(x0)

∫

Ωc−x0

J(z)dz ≤ 0,

and using (2.4) we arrive to a contradiction with the fact that w(x0) > 0. �

As a first consequence of this comparison principle, we obtain an a priori
L∞(Ω̄) estimate for the solutions uǫ of (1.1)-(1.2), independent of ǫ.

Proposition 2.8. Let ǫ ∈ (0, 1), f ∈ C(Ω̄) and uǫ be the viscosity solution
of (1.1)-(1.2). Then, there exists a constant C > 0 such that

||uǫ||L∞(Ω̄) ≤ C||f ||∞

and this constant depends only on Ω, N and σ, but not on ǫ, for ǫ ∈ (0, 1).

Proof. Consider the bounded function χ(x) = 1Ω̄(x). We clearly have that
χ ∈ C(Ω̄) and χ = 0 in Ω̄c. Denote R = diam(Ω) > 0 and use the definition
of the operator Iǫ to see that for each x ∈ Ω̄ we have

−Iǫ[χ](x) =

∫

Ωc−x
Kǫ(z)dz ≥

∫

Bc
R+1

dz

2|z|N+2σ
=

Vol(B1)(R+ 1)−2σ

2σ
.

Hence, denoting C = (2σ)−1Vol(B1)(R + 1)−2σ and χ̃ = C−1||f ||∞χ, we
may use the comparison principle to conclude uǫ ≤ C||f ||∞ in Ω̄. A lower
bound can be found in a similar way, concluding the result. �

3. Estimates of the Boundary Discontinuity.

The aim of this section is to estimate the discontinuity jump on ∂Ω of the
solution uǫ of (1.1)-(1.2). For this purpose, a flattening procedure on the
boundary is required.

Recall that δ0 > 0 is such that the distance function to ∂Ω is smooth
in Ωδ0 , and for x ∈ Ωδ0 we denote x̂ the unique point on ∂Ω such that
dΩ(x) = |x− x̂|. We can fix δ0 small in order to have the existence of three
constants R0, r0, r

′
0 > 0 depending only on the regularity of the boundary,

satisfying the following properties:

(i) For each x ∈ Ωδ0 , there exists Nx ⊂ ∂(Ω− x), a ∂(Ω− x)-neighborhood
of x̂− x, which is the graph of a C2 function ϕx : BR0 ⊂ R

N−1 → R
N , that

is,
(ξ′, ϕx(ξ

′)) ∈ Nx, for all ξ′ ∈ BR0 .

(ii) If we define the function Φx as

(3.1) Φx(ξ
′, s) = (ξ′, ϕ(ξ′)) + (d(x) + s)νξ′ , (ξ′, s) ∈ BR0 × (−R0, R0),
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where νξ′ is the unit inward normal to ∂(Ω− x) at (ξ′, ϕx(ξ
′)) and denoting

Rx = Φx(BR0 × (−R0, R0)), then Φx : BR0 × (−R0, R0) → Rx is a C1-
diffeomorphism. Notice that Φx(0

′, 0) is the origin and therefore Rx is an
R
N -neighborhood of the origin.

(iii) The constant r0 > 0 is such that Br0 ⊂ Rx for all x ∈ Ωδ0 .

(iv) The constant r′0 > 0 is such that Φx(Br′0
× (−r′0, r

′
0)) ⊂ Br0 .

We may assume 0 < r′0 ≤ r0 ≤ δ0. In addition, by the smoothness of the
boundary there exists a constant CΩ > 1 such that

(3.2) C−1
Ω Kǫ(ξ) ≤ K̃ǫ(ξ) ≤ CΩKǫ(ξ), ξ ∈ R

N ,

where K̃ǫ(ξ) = |Det(DΦx(ξ))|Kǫ(Φx(ξ))|.
The following Lemma is the key technical result of this paper

Lemma 3.1. Let Ω ⊂ R
N be a bounded smooth domain and ǫ ∈ (0, 1). For

β ∈ (0, 1), consider the function

(3.3) ψ(x) = ψβ(x) := (ǫ+ d(x))β1Ω̄(x),

where d = dΩ is the distance function to ∂Ω. Then, there exists δ̄ ∈ (0, δ0),
β0 ∈ (0,min{1, 2σ}) and a constant c∗ > 0, depending only on Ω, N and σ,
such that, for all β ≤ β0 we have

(3.4) −Iǫ[ψ](x) ≥ c∗(ǫ+ d(x))β−2σ , for all x ∈ Ω̄δ̄, ǫ ∈ (0, δ̄).

Proof: We start considering δ̄ < r′0 and x ∈ Ωδ̄. We split the integral

Iǫ[ψ](x) = I0(x) + I1(x) + I2(x) + I3(x),

where

I0(x) :=

∫

Bc
r0

[ψ(x + z)− ψ(x)]Kǫ(z)dz,

I1(x) :=

∫

Bd(x)/2

[ψ(x+ z)− ψ(x)]Kǫ(z)dz,

I2(x) := − (ǫ+ d(x))β−2σ

∫

(Ωc−x)∩Br0

Kǫ(z)dz and

I3(x) :=

∫

(Ω−x)∩Br0\Bd(x)/2

[(ǫ+ d(x+ z))β − (ǫ+ d(x))β ]Kǫ(z)dz.

In what follows we estimate each Ii(x), i = 0, 1, 2, 3. Since ψ is bounded in
R
N independent of ǫ, β when ǫ, β ∈ (0, 1), we have

(3.5) I0(x) ≤ c1r
−2σ
0 ,

where c1 > 0 depends only on Ω and N . For I1(x), by the symmetry of Kǫ

we have

I1(x) =
1

2

∫

Bd(x)/2

[ψ(x + z) + ψ(x− z)− 2ψ(x)]Kǫ(z)dz.
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Then we consider the function θ(z) = ψ(x+ z) +ψ(x− z)− 2ψ(x), which is
smooth in B̄d(x)/2 and therefore, we can write by Taylor expansion

θ(z) =
β

2

[

(ǫ+ d(x+ z̃))β−1〈D2d(x+ z̃)z, z〉

+ (ǫ+ d(x− z̄))β−1〈D2d(x− z̄)z, z〉

+ (β − 1)(ǫ+ d(x+ z̃))β−2|〈Dd(x+ z̃), z〉|2

+ (β − 1)(ǫ+ d(x− z̄))β−2|〈Dd(x− z̄), z〉|2
]

,

where z̃, z̄ ∈ Bd(x)/2. With this, since we assume β < 1, by the smoothness
of the distance function d inherited by the smoothness of ∂Ω we have

θ(z) ≤ c2(ǫ+ d(x))β−1|z|2, for all z ∈ Bd(x)/2,

where c2 = CΩβ > 0 depends on the domain, but not on ǫ or d(x). From
this, we get

I1(x) ≤ c2(ǫ+ d(x))β−1

∫

Bd(x)/2

|z|2Kǫ(z)dz,

and since Kǫ(z) ≤ K0(z), we conclude that, for a constant c3 > 0, we have

(3.6) I1(x) ≤ c3β(ǫ+ d(x))β−2σ+1.

Now we address the estimates of I2(x) and I3(x). For I2(x), recalling the
change of variables Φx, we have

Φx(Br′0
× (−r′0,−d(x))) ⊂ (Ωc − x) ∩Br0 .

With this, using the change of variables Φx and applying (3.2), we have

I2(x) ≤ −C−1
Ω (ǫ+ d(x))β

∫

Br′
0
×(−r′0,−d(x))

Kǫ(ξ
′, s)dξ′ds.

But there exists a constant c4 > 0, depending only on N and σ, such that

ǫN+2σ + |s|N+2σ ≤ c4(ǫ
1+2σ + |s|1+2σ)(N+2σ)/(1+2σ) ,

and with this, defining ρ(ǫ, s) = (ǫ1+2σ + |s|1+2σ)1/(1+2σ), we can write

I2(x) ≤ − c5(ǫ+ d(x))β
−d(x)
∫

−r′0

ds

ρ(ǫ, s)N+2σ

∫

Br′0

dξ′

1 + |ξ′/ρ(ǫ, s)|N+2σ

= − c5(ǫ+ d(x))β
−d(x)
∫

−r′0

ds

ρ(ǫ, s)1+2σ

∫

Br′
0
/ρ(ǫ,s)

dy

1 + |y|N+2σ

≤ − c6(ǫ+ d(x))β
−d(x)
∫

−r′0

ds

ǫ1+2σ + |s|1+2σ
.
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Finally, making the change t = −s/(ǫ+ d(x)), we conclude

(3.7) I2(x) ≤ −c6(ǫ+ d(x))β−2σ

r′0/(ǫ+d(x))
∫

1−τ

dt

τ1+2σ + |t|1+2σ
,

where τ = ǫ/(ǫ + d(x)) ∈ (0, 1). At this point, taking δ̄ small in order to
have ǫ+ d(x) < 2/r′0, we find that the interval

(1− τ, r′0/(ǫ+ d(x)))

has at least lenght 1. Hence, we conclude the existence of c7 > 0, depending
only on Ω, N and σ, such that

(3.8) I2(x) ≤ −c7(ǫ+ d(x))β−2σ .

It remains to estimate I3(x). Defining D+(x) = {z : d(x+ z) ≥ d(x)}, we
clearly have

I3(x) ≤

∫

(Ω−x)∩D+(x)∩Br0\Bd(x)/2

[(ǫ+ d(x+ z))β − (ǫ+ d(x))β ]Kǫ(z)dz,

and since

(Ω− x) ∩Br0 ∩D+ ⊂ Φx(Br0 × (0, r0)),

we have

I3(x) ≤

∫

Φx(Br0×(0,r0))\Bd(x)/2

[(ǫ+ d(x+ z))β − (ǫ+ d(x))β ]Kǫ(z)dz

= CΩ(ǫ+ d(x))β
∫

Φx(Br0×(0,r0))\Bd(x)/2

[(ǫ+ d(x+ z)

ǫ+ d(x)

)β
− 1

]

Kǫ(z)dz,

Thus, making a change of variables we have

I3(x) ≤ CΩ(ǫ+d(x))
β

∫

Br0×(0,r0)\Φ
−1
x (Bd(x)/2)

[(ǫ+ d(x+Φx(ξ))

ǫ+ d(x)

)β
−1

]

K̃ǫ(ξ)dξ.

Since Φx is a diffeomorphism, there exists a constant c8 > 0 such that

d(x+Φx(ξ
′, s)) ≤ d(x+Φx(0, s)) + c8|ξ

′| = d(x) + s+ c8|ξ
′|
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and a constant λ ∈ (0, 1) small, depending only on the smoothness of ∂Ω,
such that Bλd(x) ⊂ Φ−1

x (Bd(x)/2). Using this and (3.2) we arrive to

I3(x) ≤ CΩ(ǫ+ d(x))β
∫

Br0×(0,r0)\Bλd(x)

[(1 + c8|ξ/(ǫ+ d(x))|)β − 1]Kǫ(ξ)dξ

= CΩ(ǫ+ d(x))β−2σ

∫

(ǫ+d(x))−1Br0\Bλd(x)

[(1 + c8|y|)
β − 1]Kτ (y)dy

≤ CΩ(ǫ+ d(x))β−2σ

∫ +∞

λ(1−τ)

[(1 + c8t)
β − 1]tN−1dt

τ1+2σ + tN+2σ
.

At this point, we remark that for each M > 2, we have
∫ +∞

M

[(1 + c8t)
β − 1]tN−1dt

τ1+2σ + tN+2σ
≤ c9M

β−2σ,

where c9 > 0 depends only on N,σ and Ω. On the other hand, for each
M > 2 there exists β = β(M) > 0 small such that

∫ M

λ(1−τ)

[(1 + c8t)
β − 1]tN−1dt

τ1+2σ + tN+2σ
≤ C−1

Ω c7/2,

where c7 > 0 is the constant arising in (3.8). From the last two estimates,
we conclude that for each M > 2, there exists β small such that

(3.9) I3(x) ≤ c7(ǫ+ d(x))β−2σ/2 + c10M
β−2σ,

where c10 > 0 depends only onN,σ and Ω. Putting together (3.5), (3.6), (3.8)
and (3.9), and fixing M = max{2, r0}, we have

Iǫ[ψ](x) ≤ (ǫ+ d(x))β−2σ(−c7/2 + c2β(ǫ+ d(x))) + c11r
−2σ
0 ,

where c11 > 0 depends only on N,σ and Ω. Hence, fixing β > 0 smaller if
it is necessary, we can write

Iǫ[ψ](x) ≤ −c7(ǫ+ d(x))β−2σ/4 + c11r
−2σ
0 .

Finally, taking ǫ+d(x) small in terms of c7, c11, r0, β and σ (and therefore,
depending only on N,σ and Ω), we conclude (3.4), where c∗ = c7/8. �

The last lemma allows us to provide the following control of the discon-
tinuity at the boundary.

Proposition 3.2. Let ǫ ∈ (0, 1) and uǫ the solution of (1.1)-(1.2). Let
δ̄ > 0 and β0 ∈ (0,min{1, 2σ}) as in Lemma 3.1. Then, for each d0 ∈ (0, δ̄),
there exists C0 > 0 satisfying

|uǫ(x)| ≤ C0(ǫ+ d(x))β0 for all x ∈ Ω̄d0 .

The constant C0 depends on β0, d0, σ and Ω.
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Proof: Let β0 as in Lemma 3.1, ψ = ψβ0 as in (3.3) and consider the
function

ζ(x) = min{ψ(x), (ǫ + d0)
β0}, x ∈ R

N .

Observing that ζ = ψ in Ωd0 ∪Ωc and ψ ≥ ζ in R
N , we easily conclude that

Iǫ[ζ](x) ≤ Iǫ[ζ̃](x), for all x ∈ Ω̄d0 ,

and using Lemma 3.1 we get

−Iǫ[ζ](x) ≥ c∗(ǫ+ d(x))β−2σ for all x ∈ Ω̄d0 .

Let C > 0 be the constant in Proposition 2.8 and define the function

z̃+ = (Cd−β
0 + 2σc∗−1)||f ||∞ζ. By construction of z̃+, we have

−Iǫ[z̃+] ≥ ||f ||∞ in Ω̄d0 ; and z̃+ ≥ uǫ in Ω̄c
d0 ,

and therefore, applying the comparison principle, we conclude uǫ ≤ z̃+ in
Ω̄d0 . Similarly, we can conclude the function z̃− = −z̃+ satisfies z̃− ≤ uǫ in
Ω̄d0 , from which we get the result. �

4. Boundary Equicontinuity.

In this section we establish the boundary equicontinuity of the family of
solutions {uǫ}ǫ∈(0,1) of problem (1.1)-(1.2). The main result of this section
is the following

Theorem 4.1. Let ǫ ∈ (0, 1) and uǫ be the solution to (1.1)-(1.2). There
exists a modulus of continuity m0 depending only on N,σ, f and Ω, such
that

|uǫ(x)− uǫ(y)| ≤ m0(|x− y|) for all x, y ∈ Ω̄δ̄,

with δ̄ > 0 given in Lemma 3.1.

The idea of the proof is based on the fact w(x) = u(x+y)−u(x), where y
is fixed, satisfies an equation (near the boundary) for which the comparison
principle holds. Using this, we get the result constructing a barrier to this
problem, independent of ǫ and associated to m in Theorem 4.1.

In what follows we discuss the precise elements on the proof. We consider
y ∈ R

N with 0 < |y| < δ̄/2, with δ̄ as in Lemma 3.1. Define the sets

O = O(y) := Ω \ Ω̄|y|, U = U(y) := {x ∈ R
N : −|y| ≤ dΩ(x) < |y|}.

and the function

(4.1) w(x) = wy,ǫ(x) := uǫ(x+ y)− uǫ(x), x ∈ R
N .

Notice that w ≡ 0 in R
N \ (Ō ∪ U) and, by Proposition 3.2, there exists

C0, β0 > 0 such that |w(x)| ≤ C0(ǫ+ |y|)β0 for all x ∈ U . Since we have that
w satisfies

−Iǫ[w](x) = f(x+ y)− f(x) for all x ∈ Ō,
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denoting by mf the modulus of continuity of f , we conclude that w ∈ C(Ō)
satisfies the inequality

(4.2) −Iǫ[w](x) ≤ mf (|y|) in Ō,

and the exterior inequality

(4.3) w(x) ≤ C0(ǫ+ |y|)β01U (x) in Ōc.

Let ζ and η the functions defined as

ζ(x) =min{(ǫ+ δ̄ − |y|)ǫ, (ǫ+ dΩ(x)− |y|)ǫ}1Ō(x) and

η(x) =C0(ǫ+ |y|)β01U (x),

and consider the function

W (x) = η(x) +Am(|y|)ζ(x),(4.4)

where A > 0 and m is a modulus of continuity satisfying m(|y|) ≥ mf (|y|).
We have the following

Proposition 4.2. There exists A > 0 large, depending on Ω, N and σ, such
that

−Iǫ[W ](x) ≥ mf (|y|), for all x ∈ Ō,

for all ǫ ∈ (0, δ̄), with δ̄ given in Lemma 3.1.

Proof: Without loss of generality we may assume the existence of a number
0 < α < min{1, β0} and a constant c1 such that

m(t) ≥ c1t
α, for all t ≥ 0.(4.5)

By linearity of Iǫ, we have

Iǫ[W ](x) = Iǫ[η](x) +Am(|y|)Iǫ[ζ](x).

Thus, we may estimate each term in the right-hand side separately.

1.- Estimate for Iǫ[ζ](x): We first notice that for x ∈ Ω with |y| ≤ dΩ(x) ≤ δ̄
we can write

ζ(x) = (ǫ+ dΩ(x)− |y|)ǫ1Ō = (ǫ+ dO(x))
ǫ1Ō(x).

Then, applying Lemma 3.1, for all ǫ small we have

−Iǫ[ζ](x) ≥ c∗(ǫ+ d(x)− |y|)ǫ−2σ, for all x ∈ Ω̄δ̄ ∩ Ō,

for some c∗ > 0 not depending on d(x), |y| or ǫ. In fact, for all ǫ ∈ (0, 1)
the term (ǫ+ d(x)− |y|)−ǫ is bounded below by a strictly positive constant,
independent of ǫ, driving us to

(4.6) −Iǫ[ζ](x) ≥ c∗(ǫ+ d(x)− |y|)−2σ , for all x ∈ Ω̄δ̄ ∩ Ō.

On the other hand, when x ∈ Ω \ Ω̄δ̄, for all ǫ ∈ (0, 1) we have

Iǫ[ζ](x) ≤ −(ǫ+ δ̄ − |y|)ǫ
∫

(Ω\Ω|y|)c−x

Kǫ(z)dz ≤ −ǫǫ
∫

Ωc−x

K1(z)dz,
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and therefore, there exists c2 > 0, not depending on ǫ, d(x) or |y|, such that

Iǫ[ζ](x) ≤ −c2, for all x ∈ Ω \ Ω̄δ̄.

Since |y| ≤ δ̄/2, making c∗ smaller if necessary, the last inequality and (4.6)
drives us to

(4.7) −Iǫ[ζ](x) ≥ c∗(ǫ+ d(x)− |y|)−2σ , for all x ∈ Ō,

2.- Estimate for Iǫ[η](x): By its very definition, for x ∈ Ō we have

(4.8) Iǫ[η](x) = C0(ǫ+ |y|)β0

∫

U−x

Kǫ(z)dz.

We start considering the case x ∈ Ω \ Ωδ̄, where we have dist(x,U) ≥ δ̄/2
and then, there exists a constant c3 > 0 depending only on δ̄ (which in turn
depends only on the smoothness of the domain), such that Kǫ(z)1U−x ≤ c3.
Using this, we have

Iǫ[η](x) ≤ c3(ǫ+ |y|)β0

∫

U−x

dz.

By the boundedness of Ω, there exists c4 > 0 depending only on N such
that Vol(U − x) ≤ c4|y|. Using this and (4.5), we conclude that

(4.9) Iǫ[η](x) ≤ c5m(|y|),

where c5 > 0 depends only on N,σ and Ω.
Now we deal with the case x ∈ O ∩ Ωδ̄ (notice that in this case we are

assuming dΩ(x) > |y|). Using (4.8) and recalling the change of variables Φx

introduced in (3.1), we can write

Iǫ[η](x) ≤ C0(ǫ+ |y|)β0

(

∫

(U−x)\Br0

Kǫ(z)dz +

∫

(U−x)∩Rx

Kǫ(z)dz
)

,

whereRx was defined at the beginning of Section §3. Using a similar analysis
as the one leading to (4.9), there exists a universal constant c6 > 0 such that

Iǫ[η](x) ≤ c6(ǫ+ |y|)β0

(

|y|+

∫

(U−x)∩Rx

Kǫ(z)dz
)

.

Now, we have that (U − x) ∩ Rx = Φx(BR0 × (−d(x) − |y|, |y| − d(x))),
and therefore, applying the change of variables Φx and the estimate (3.2),
we arrive to

Iǫ[η](x) ≤ c7(ǫ+ |y|)β0

(

|y|+

∫

BR0
×(−d(x)−|y|,|y|−d(x))

dξ′ds

ǫN+2σ + |(ξ′, s)|N+2σ

)

,
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and from this, using a similar argument as the one leading to (3.7) to treat
the last integral term, and applying (4.5), we conclude that

(4.10) Iǫ[η](x) ≤ c8(ǫ+ |y|)β0

(

m(|y|) +

d(x)+|y|
∫

d(x)−|y|

ds

ǫ1+2σ + |s|1+2σ

)

.

Now, the core of this estimate is the computation of the last integral.
Denoting

I(x) := (ǫ+ |y|)β0

d(x)+|y|
∫

d(x)−|y|

ds

ǫ1+2σ + |s|1+2σ
,

we claim the existence of a constant c9 > 0 not depending on ǫ, d(x) or |y|
such that

(4.11) I(x) ≤ c9m(|y|)(ǫ + d(x) − |y|)−2σ.

We get this estimate considering various cases. When |y| ≤ ǫ and d(x)−|y| ≤
2ǫ we write

I(x) = (ǫ+ |y|)β0ǫ−2σ

(d(x)+|y|)/ǫ
∫

(d(x)−|y|)/ǫ

K1(z)dz ≤ 2β0+1ǫβ0−2σ−1|y|,

and using that m(|y|) ≥ |y|α for some α ∈ (0, β0), we have

I(x) ≤ 2β0+1m(|y|)ǫβ0−1ǫ−2σ|y|1−α

≤ 2β0+132σm(|y|)ǫβ0−α(ǫ+ d(x)− |y|)−2σ ,

and from this, we conclude

(4.12) I(x) ≤ c10ǫ
β0−αm(|y|)(ǫ+ d(x)− |y|)−2σ ,

for some constant c10 > 0.
When |y| ≤ ǫ and d(x)− |y| > 2ǫ, we have

I(x) ≤ 2β0ǫβ0

∫ d(x)+|y|

d(x)−|y|
|z|−(1+2σ)dz ≤ 2β0ǫβ0(d(x) − |y|)−(1+2σ)|y|,

and using that m(|y|) ≥ |y|α, we arrive to

I(x) ≤ 2β0−1m(|y|)ǫβ0−α(d(x)−|y|)−2σ ≤ 2β0−1+2σm(|y|)ǫβ0−α(ǫ+d(x)−|y|)−2σ ,

concluding the same estimate (4.12).
In the case |y| > ǫ and d(x) − |y| ≤ 2ǫ, performing the change ξ = z/ǫ in

the integral defining I(x), we have

I(x) ≤ (ǫ+|y|)β0ǫ−2σ||K1||L1 ≤ ||K1||L132σ2β0 |y|β0−αm(|y|)(ǫ+d(x)−|y|)−2σ ,

and therefore we conclude

(4.13) I(x) ≤ C|y|β0−αm(|y|)(ǫ+ d(x)− |y|)−2σ .
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Finally, in the case |y| > ǫ and d(x)− |y| > 2ǫ we have

I(x) ≤ (ǫ+ |y|)β0ǫ−2σ

(d(x)+|y|)/ǫ
∫

(d(x)−|y|)/ǫ

K1(z)dz ≤ 2β0−1σ−1|y|β0(d(x)− |y|)−2σ ,

from which we arrive to (4.13). From (4.12) and (4.13) we arrive to (4.11).
Hence, there exists c11 > 0 depending only on N,Ω and σ such that

−Iǫ[η](x) ≥ −c11m(|y|)
(

(ǫ+ |y|)β0 + (ǫ+ d(x)− |y|)−2σ
)

,

for x ∈ O∩Ωδ̄. Taking this inequality and (4.9), since |y| ≤ δ̄/2 there exists
a constant c12 > 0 such that

(4.14) −Iǫ[η](x) ≥ −c12m(|y|)
(

(ǫ+ |y|)β0 + (ǫ+ d(x)− |y|)−2σ
)

,

for all x ∈ Ō, where the estimate for x ∈ ∂O is valid by Lemma 2.1.

3.- Conclusion: For each x ∈ Ō, by (4.7) and (4.14) we have

−Iǫ[W ](x) ≥
[

(Ac∗ − c12)(ǫ+ d(x)− |y|)−2σ − c12(ǫ+ |y|)β0

]

m(|y|),

and therefore, by taking A large in terms of N,σ, c12, c
∗ and diam(Ω), we

conclude by the choice of m that

−Iǫ[W ](x) ≥ m(|y|) ≥ mf (|y|), for all x ∈ Ō,

and the proof follows. �

This proposition allows us to give the
Proof of Theorem 4.1: Since w defined in (4.1) satisfies problem (4.2)-
(4.3) and recalling W defined in (4.4), by Proposition 4.2 and the form of
W in Ōc, we can use the comparison principle to conclude that w ≤ W in
Ō. This means that

uǫ(x+ y)− uǫ(x) = w(x) ≤W (x) ≤ c1Am(y), x ∈ Ω̄y,

for some constant c1 > 0. Since a similar lower bound can be stated, by the
arbitrariness of y we conclude the result with m0 = c1Am. �

5. Proof of Theorem 1.1.

Consider δ̄ as in Lemma 3.1, let y ∈ R
N such that |y| ≤ δ̄/8 and consider

the sets

Σ1 = (Ω− y) ∪ Ω, Σ2 = Ω ∩ (Ω− y),

Σ3 = Σ1 \Σ2 and Σ4 = (Ω \ Ω̄δ̄/2) ∪ ((Ω \ Ω̄δ̄/2)− y).

Notice that Σ4 ⊂ Σ2 ⊂ Σ1. In addition, notice that if z ∈ Σ3, then z + y
and z cannot be simultaneously in Ω. We also have

|dist(z, ∂Ω)|, |dist(z + y, ∂Ω)| ≤ |y|
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for each z ∈ Σ3. Finally, observe that if x ∈ Σ2\Σ4, then x, x+y ∈ Ωδ̄. Thus,
considering w as in (4.1), by Proposition 3.2 we can assure the existence of
C0, β0 > 0 such that

w ≤ C0(ǫ+ |y|)β0 in Σ3,

and by Theorem 4.1 we have

w ≤ m0(|y|) in Σ2 \ Σ̄4.

Now, consider the funtion

Z(x) = Am0(|y|)1Σ2(x) +C0(ǫ+ |y|)β01Σ3(x),

where A > 0 is a constant to be fixed later. Notice that for each x ∈ Σ̄3, we
have

(5.1) Iǫ[Z](x) = C0(ǫ+ |y|)β0

∫

Σ3−x

Kǫ(z)dz −Am0(|y|)

∫

Σc
2−z

Kǫ(z)dz.

At this point, we remark that there exists a constant c1 > 0, independent
of ǫ, y or x, such that

∫

Σc
2−z

Kǫ(z)dz ≥ c1.

On the other hand, since dist(x,Σ3) ≥ δ̄/2 we have Kǫ(z)1Σ3−x ≤ c2 for
some constant c2 > 0, and by the boundedness of Ω, Vol(Σ3 −x) ≤ c3|y| for
some c3 > 0. Using these facts on (5.1) and applying (4.5), we arrive to

Iǫ[Z](x) ≤ (c4(ǫ+ |y|)β0 − c1A)m0(|y|).

Thus, taking A large in terms of c1, c4, we conclude that −Iǫ[Z] ≥ mf (|y|)
in Σ̄4.

By the very definition of w, we have

−Iǫ[w] = f(x+ y)− f(x), for x ∈ Σ̄4.

Then we have that −Iǫ[Z] ≥ −Iǫ[w] in Σ̄4 and by definition of W and the
bounds of w in Σ̄c

4 stated above, we conclude that w ≤W in Σ̄c
4. Using the

comparison principle, we conclude w ≤W in Σ̄4. A similar argument states
the inequality −W ≤ w and the result follows. �

6. Further Results.

6.1. Fully Nonlinear Equations. The result obtained in Theorem 4.1
can be readily extended to a certain class of fully nonlinear equations. For
example, consider two sets of indices A,B and a two parameter family of
radial continuous functions aαβ : RN → R satisfying the uniform ellipticity

condition

λ1 ≤ aαβ(z) ≤ λ2, ∀α ∈ A, β ∈ B, z ∈ R
N(6.1)
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for certain constants λ1, λ2 such that 0 < λ1 < λ2 < +∞. Let us denote

Kαβ,ǫ(z) :=
aαβ(z)

ǫn+2σ + |z|n+2σ

and with this, for a suitable function u and x ∈ R
N , define the linear

operators

Lαβ,ǫ[u](x) :=

∫

RN

δ(u, x, z)Kαβ,ǫ(z)dz

and the corresponding Isaacs Operator

Iǫ[u](x) = inf
α∈A

sup
β∈B

Lαβ,ǫ[u](x).

Under these definitions, we may consider the corresponding nonlinear
equation

{

−Iǫ[u] = f in Ω
u = 0 in Ωc.

(6.2)

Existence and uniqueness of a pointwise solution uǫ to (6.2), which is con-
tinuous in Ω̄ can be obtained in a very similar way as in the linear case, and
Proposition 2.1 can be adapted to this nonlinear setting. This allows us to
use the comparison principle stated in Proposition 2.7 as well.

The lack of linearity can be handled with the positive homogeneity of
these operators and the so called extremal operators

M+
ǫ [u](x) = sup

α∈A,β∈B
Lαβ,ǫ[u](x), M−

ǫ [u](x) = inf
α∈A,β∈B

Lαβ,ǫ[u](x),

since, for two functions u1, u2 and x ∈ R
N , these operators satisfy the fun-

damental inequality

M−
ǫ [u1 − u2](x) ≤ Iǫ[u1](x)− Iǫ[u2](x) ≤ M+

ǫ [u1 − u2](x).

A priori estimates for the solution as it is stated in Proposition 3.2 can
be found using the same barriers given in the proof of that proposition, as
the following useful estimates hold: For each α ∈ A, β ∈ B, D ⊂ R

N

∫

D
hKαβ,ǫ(z)dz ≤ λ1

∫

D
hKǫ(z)dz,

for all h : D → R bounded nonnegative function, and
∫

D
hKαβ,ǫ(z)dz ≤ λ2

∫

D
hKǫ(z)dz

for all h : D → R bounded nonpositive function.
Using these inequalities and (6.1), we can use the same barriers appearing

in the proof of Theorem 1.1 (Theorem 4.1 included) and get similar result.
Moreover, the same modulus of continuity for the linear case can be obtained
in this nonlinear framework, up to a factor depending on λ1 and λ2.
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6.2. Parabolic Equations. Let T > 0, f : Ω̄× [0, T ] → R be a continuous
function. A result similar to Theorem 4.1 can be readily obtained for the
parabolic nonlocal equation







ut − Iǫ[u] = f in Ω× [0, T ),
u(x, t) = 0 in Ωc × [0, T ),
u(x, 0) = 0 in Ω̄.

(6.3)

Similar problem is adressed by the authors in [24] for the Cauchy prob-
lem in all RN . Inspired by techniques used by Ishii in [26], a modulus of
continuity in time can be derived once a modulus of continuity in space is
found. So, the key fact is the modulus in x and this can be obtained in
the parabolic setting noting that Theorem 4.1 readily applies considering
equations with the form

λu− Iǫ[u] = f in Ω

for λ > 0 and that each time Z(x) is a suitable barrier for this problem,
then the function (x, t) 7→ etZ(x) plays the role of a barrier for the evolution
problem (6.3).

6.3. Convergence Issues. The proof of Corollary 1.2 is standard in the
viscosity sense, once the uniform convergence is stated. However, following
the ideas of Cortázar, Elgueta and Rossi in [19], and also in [24], under
stronger assumptions over the regularity of u in Corollary 1.2, we can find
a rate of convergence.

Theorem 6.1. Let f , uǫ and u as in Corollary 1.2 and assume u ∈ C2σ+γ(Ω̄)
for some γ > 0. Then,

||uǫ − u||L∞(Ω̄) ≤ Cǫγ0

for some 0 < γ0 ≤ min{2σ, γ} and with C depending only on n and σ.

Proof. For simplicity, we will see the case 2σ < 1 and 2σ+ γ < 1. Defining
w = uǫ − u, for x ∈ Ω we have

−Iǫ[w](x) = Iǫ[u](x) + (−∆)σ[u](x)

= −ǫn+2σ

∫

Ω−x

u(x+ z)− u(x)

|z|n+2σ(ǫn+2σ + |z|n+2σ)
dz

−ǫn+2σu(x)

∫

(Ω−x)c

dz

|z|n+2σ(ǫn+2σ + |z|n+2σ)

= I1 + I2.

By the regularity of u we have

|I1| ≤ C‖u‖C2σ+γ(Ω̄)ǫ
γ ,

where C does not depend on ǫ. On the other hand, for I2 we split the
analysis. First, if ǫ ≤ d(x), then

|I2| ≤ C‖u‖C2σ+γ(Ω̄)ǫ
n+2σd(x)−(n+2σ)+γ ,
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where we have used that there is no loss of boundary condition for u, hence
u = 0 on ∂Ω and then |u(x)| ≤ [u]C2σ+γ(Ω̄)d(x)

2σ+γ . Hence, we conclude

|I2| ≤ Cǫγ.

Second, when d(x) < ǫ we have

|I2| ≤ Cd(x)2σ+γǫ−2σ(d(x)/ǫ)−2σ ≤ Cǫγ.

Since we know that |w| ≤ Cǫβ0 on ∂Ω, by Proposition 3.2, we can get the
result proceeding exactly as in the proof of Proposition 2.8. �

6.4. An example of a scheme without boundary equicontinuity. In
this subsection we consider the reverse scheme, that is approximating zero
order equations by fractional ones and we prove the absence of uniform
modulus of continuity in Ω̄. For this, we recall some facts of Section §2. Let
f ∈ C(Ω̄) with f ≥ ̺0 > 0, J : RN → R+ integrable and IJ as in (2.1).
Consider the associated problem (2.2)-(1.2), that is

{

−IJ [u] = f in Ω
u = 0. in Ωc(6.4)

As we saw in Remark 2.4, the unique solution u ∈ C(Ω̄) for this problem
is such that u > 0 in ∂Ω.

Consider J, f as above, with J such that J ≥ m in Br, for some r,m > 0.
For ǫ ∈ (0, 1) and α > 1 consider the family of kernels

Jǫ(z) = min{1, |z/ǫ|α}−1J(z),

which are not integrable at the origin. If we define

Jǫ[u](x) =

∫

RN

[u(x+ z)− u(x)]Jǫ(z)dz

and consider the problems
{

−Jǫ[u] = f in Ω
u = 0, in Ωc(6.5)

it is known that the unique viscosity solution uǫ of (6.5) agrees the prescribed
value of the equation on the boundary, and then uǫ = 0 on ∂Ω for all
ǫ ∈ (0, 1), see for example [4]. We have {uǫ} is uniformly bounded in L∞(Ω̄)
and therefore, the application of half-relaxed limits together with viscosity
stability results in [3], imply uǫ → u locally uniform in Ω as ǫ → 0, where
u is the unique solution to (6.4). Since u is strictly positive in ∂Ω, the
convergence of uǫ to u cannot be uniform in Ω̄, and therefore the family
{uǫ} is not equicontinuous in this case.

This example resembles the behavior of the viscosity solutions uǫ of the
equation

−ǫu′′ + u′ = 1 in (0, 1), with u(0) = u(1) = 0,

which approximate the solution of the equation

u′ = 1 in (0, 1), with u(0) = u(1) = 0.
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In this case, the family (uǫ) is not equicontinuous too, see [1].
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[19] Cortázar, C., Elgueta, M. and Rossi, J. D. Nonlocal diffusion problems that approx-

imate the heat equation with Dirichlet boundary conditions. Israel J. Math. Vol. 170
(2009), 5360

[20] Coville, J. Harnack type Inequality for Positive Solutions of Some Integral Equation.

Ann. Mat. Pura Appl. (4) 191 (2012), no. 3, 503528.
[21] M.G. Crandall, H. Ishii and P.-L. Lions. User’s Guide to Viscosity Solutions of Second

Order Partial Differential Equations. Bull. Amer. Math. Soc. (N.S.), Vol. 27 (1992),
no. 1, 1-67.

[22] Da Lio, F. Remarks on the Strong Maximum Principle for Viscosity Solutions to Fully

Nonlinear Parabolic Equations. Comm. on Pure and Appl. Aanal., Vol 3, No 3 (2004)
pp. 395-415.

[23] Di Neza, E., Palatucci, G. and Valdinoci, E. Hitchhiker’s Guide to the Fractional

Sobolev Spaces Bull. Sci. Math., 136, (2012), no. 5, 521–573.
[24] Felmer, P. and Topp, E. Convergence Results for a Class of Nonlinear Fractional Heat

Equations Israel J.
[25] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order,

Springer-Verlag, Berlin 2001.
[26] Ishii, H. Existence and Uniqueness of Solutions of Hamilton-Jacobi Equations. Funk-

cialaj Ekvacioj, Vol. 29 (1986) 167-188.
[27] Ishii, H. and Lions, P.L. Viscosity Solutions of Fully Nonlinear Second-Order Elliptic

Partial Differential Equations J. Differential Equations, 83(1) 26-78, 1990.
[28] Landkof, N. S. Foundations of Modern Potential Theory. Springer, New York, 1972.
[29] Oksendal, B. and Agnès, S. Applied Stochastic Control of Jump Diffusions. Springer-

Verlag, 2007.
[30] Ros-Oton, X. and Serra, J. The Dirichlet Problem for the Fractional Laplacian: Reg-

ularity up to the Boundary. Preprint.
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