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Abstract. An interesting property for curve length digital estimators is
the convergence toward the continuous length and the associate conver-
gence speed when the digitization step h tends to 0. On the one hand, it
has been proved that the local estimators do not verify this convergence.
On the other hand, DSS and MLP based estimators have been proved
to converge but only under some convexity and smoothness or polyg-
onal assumptions. In this frame, a new estimator class, the so called
semi-local estimators, has been introduced by Daurat et al. in [4]. For
this class, the pattern size depends on the resolution but not on the digi-
tized function. The semi-local estimator convergence has been proved for

functions of class C2 with an optimal convergence speed that is a O(h
1
2 )

without convexity assumption (here, optimal means with the best esti-
mation parameter setting). A semi-local estimator subclass, that we call
sparse estimators, is exhibited here. The sparse estimators are proved
to have the same convergence speed as the semi-local estimators under
the weaker assumptions. Besides, if the continuous function that is dig-
itized is concave, the sparse estimators are proved to have an optimal
convergence speed in h. Furthermore, assuming a sequence of functions
Gh : hZ → hZ discretizing a given Euclidean function as h tends to 0,
sparse length estimation computational complexity in the optimal setting

is a O(h− 1
2 ).

1 Introduction

The ability to perform the measurement of geometric features on digital repre-
sentations of continuous objects is an important goal in a world becoming more
and more digital. We focus in this paper on one classical digital problem: the
length estimation. The problem is to estimate the length of a continuous curve
S knowing a digitization of S. As information is lost during the digitization step,
there is no reliable estimation without a priori knowledge and it is di�cult to
evaluate the estimator performances. In order to re�ne the evaluation of the es-
timators, a property, so called convergence property is desirable: the estimation
convergence toward the true length of the curve S when the grid step h tends
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to 0. This property can be viewed as a robustness to digitization grid change.
The local estimators based on a �xed pattern size do not satisfy the convergence
property [13]. The adaptive estimators based on the Maximal Digital Straight
Segment (MDSS) or the Minimum Length Polygon (MLP) satisfy the conver-
gence property under assumptions of convexity, 4-connectivity for closed simple
curves (also called Jordan curves) [?]. The semi-local estimators, introduced by
Daurat et al [4] for function graphs, veri�es the convergence property under
smoothness assumption but without convexity hypothesis. We present here a
subclass of the semi-local estimators, the sparse estimators that only need infor-
mation on a small part of the function values and keep the convergence property.
Moreover they have a convergence speed in h for smooth concave function.

The paper is organized as follows. In Section 2, some necessary notations
and conventions are recalled, then existing estimators and their convergence
properties are detailed. In Section 3, the sparse estimators are de�ned, their
convergence properties are given in the general case and then in the concave
cases (we make a distinction between the concavity of the continuous function
and the concavity of the piecewise a�ne function related to the discretization).
An experiment exempli�es the results. Section 4 concludes the article and gives
directions for future works. Appendix A contains a few technical lemmas. In
Appendix B two counterexamples about the concavity are exhibited. Appendix C
presents a minimal error on the sparse estimation of the length of a segment of
parabola.

2 Background

2.1 Discretization models

In this work, we have restricted ourselves to the digitizations of function graphs.
So, let us consider a continuous function g : [a, b] → R (a < b), its graph
C(g) = {(x, g(x)) | x ∈ [a, b]} and a positive real number r, the resolution. We
assume to have an orthogonal grid in the Euclidean space R2 whose set of grid
points is hZ2 where h = 1/r is the grid spacing. We use the following notations:
bxch is the greatest multiple of h less than or equal to x, {x}h = x− bxch. For
i ≤ j two integers, [[i, j]] stands for [i, j] ∩ Z. Finally, for any function f de�ned
on an interval, L(f) denotes the length of C(f), the graph of f (L(f) ∈ [0,+∞]).

The common methods to model the digitization of the graph C(g) at the
resolution r are closely related to each others.

In this paper, we assume an object boundary quantization (OBQ). This method
associates to the graph C(g) the h-digitization set DO(g, h) = {(kh, bg(kh)ch) |
k ∈ Z}. The set DO(g, h) contains the uppermost grid points which lie in the
hypograph of g, hence it can be understood as a part of the boundary of a solid
object. Provided the slope of g is limited by 1 in modulus, DO(g, h) is an 8-
connected digital curve. Observe that if g is a function of class C1 such that the
set {x ∈ [a, b] | |g′(x)| = 1} is �nite, then by symmetries on the graph C(g),
it is possible to come down to the case where |g′| ≤ 1. So, we assume that g



is a Lipschitz function which Lipschitz constant 1. Hence, the set DO(g, h) is
8-connected for any h and the curve C(g) is recti�able (L(g) < +∞). Moreover,
the h-digitization set DO(g, h) can be described by its �rst point and its Free-
man code [9], F(g, h), with the alphabet {0, 1, 7}. For any word ω ∈ {0, 1, 7}k
(k ∈ N), we set ‖ω‖ =

√
k2 + j2 where j is the number of letters 1 minus the

number of letters 7 in the word ω.

2.2 Local estimators

Local length estimators (see [10] for a short review) are based on parallel com-
putations of the length of �xed size segments of a digital curve. For instance,
an 8-connected curve can be split into 1-step segments. For each segment, the
computation return 1 whenever the segment is parallel to the axes (Freeman's
code is even) and

√
2 when the segment is diagonal (Freeman's code is odd).

Then all the results are added to give the curve length estimation.
This kind of local computation is the oldest way to estimate the length of

a curve and has been widely used in image analysis. Nevertheless, it has not
the convergence property. In [13], the authors introduce a general de�nition of
local length estimation with sliding segments and prove that such computations
cannot give a convergent estimator for straight lines whose slope is small (less
than the inverse of the size of the sliding segment). In [16], a similar de�nition of
local length estimation is given with disjoint segments. Again, it is shown that
the estimator failed to converge for straight lines (with irrational slopes). This
behavior is experimentally con�rmed in [3] on a test set of �ve closed curves.
Moreover, the non-convergence is established in [5,17] for almost all parabolas.

2.3 Adaptative estimators: DSS and MLP

Adaptive length estimators gather estimators relying on a segmentation of the
discrete curve that depends on each point of the curve: a move on a point can
change the whole segmentation. Unlike local estimators, it is possible to prove
the convergence property of adaptive length estimators under some assumptions.
Adaptive length estimators include two families of length estimators, namely
the Maximal Digital Straight Segment (MDSS) based length estimators and the
Minimal Length Polygon (MLP) based length estimators.

De�nition and properties of MDSS can be found in [12,7,3]. E�cient algo-
rithms have been developed for segmenting curves or function graphs into MDSS
and to compute their characteristics in a linear time [12,8,7]. The decomposition
in MDSS is not unique and depends on the start-point of the segmentation and
on the curve travel direction. The convergence property of MDSS estimators has
been proved for convex polygons whose MDSS polygonal approximation1 is also
convex [11, Th. 13 and the proof]: given a convex polygon C and a grid spacing

1 Though the digitization of a convex set is digitally convex, it does not mean that
a polygonal curve related to a convex polygonal curve via a MDSS segmentation
process is also convex.



h (below some threshold), the error between the estimated length Lest(C, h) and
the true length of the polygon L(C) is such that

|L(S)− Lest(S, h)| ≤ (2 +
√
2)πh. (1)

Empirical MDSS multigrid convergence has also been tested in [3,6] on smooth
nonconvex planar curves. The obtained convergence speed is a O(h) as in the
convex polygonal case. Nevertheless it has not been proved under these assump-
tions. Another way to obtain an estimation of the length of a curve using MDSS
is to take the slopes of the MDSSs to estimate the tangent directions and then to
compute the length by numerical integration [2,3,14]. The estimation is unique
and has been proved to be multigrid convergent for smooth curves (of class C2

with bounded curvature in [3], of class C3 with strictly positive curvature in [14]).
The convergence speed is a O(h 1

3 ) [14] and thus, worse than (1).

Let C be a simple closed curve lying in-between two polygonal curves γ1 and
γ2. Then there is a unique polygon, the MLP, whose length is minimal between
γ1 and γ2. The length of the MLP can be used to estimate the length of the curve
C. At least two MLP based length estimators have been described and proved to
be multigrid convergent for convex, smooth or polygonal, simple closed curves,
the SB-MLP proposed by Sloboda et al. [15] and the AS-MLP, introduced by
Asano et al. [1]. For both of them, and for a given grid spacing h, the error
between the estimated length Lest(C, h) and the true length of the curve L(C) is
a O(h):

|L(C)− Lest(C, h)| ≤ Ah

where A = 8 for SB-MLP and A ≈ 5.844 for AS-MLP.

On the one hand, as estimators described in this section are adaptive, the
convergence theorems are di�cult to establish and rely on strong hypotheses.
On the other hand, the study of the MDSS in [6] shows that the MDSS size
tends to 0 and their discrete length tends toward in�nity as the grid step tends
to 0. Thereby, one could ask whether combining a local estimation with an
increasing window size as the resolution grows would give a convergent estimator
under more general assumptions and/or with simpler proofs of convergence. The
following sections explore this question.

2.4 Semi-local length estimators

The notion of semi-local estimator appears in [4]. At a given resolution, a semi-
local estimator resembles a local estimator: it can be implemented via a parallel
computation, each processor handling a �xed size segment of the curve. Never-
theless, in the framework of semi-local estimation, the processors must be aware
of the resolution from which the size of the segments depends.



More formally, let g : [a, b] → R be a 1-Lipschitz function2. Hence, at any
resolution, the Freeman's code describing the discretization of g belongs to the
set P =

⋃
n∈N{0, 1, 7}n.

A semi-local estimator is a pair (H, p) where

� H : ]0,∞[→ N∗ gives the relative size of the segments given a grid spacing h
and

� p : P → [0,∞[ gives the estimated feature (here, the length) associated to a
(�nite) Freeman's code.

At a given grid spacing h, the Freeman's code describing the digitization of the
curve C(g) is segmented in Nh codes ωi of length H(h) and a rest ω∗ ∈ {0, 1, 7}j ,
j < H(h). Then, the length of the curve C(g) is estimated by

LSL(g, h) = h

Nh−1∑
i=0

p(ωi).

In [4], the authors give a proof of convergence for functions of class C2.

Theorem 1 ([4, Prop. 1]). Let (H, p) be a semi-local estimator such that:

1. limh→0 hH(h) = 0,
2. limh→0H(h) = +∞,
3. max

{
p(ω)− ‖ω‖ | ω ∈ {0, 1}k

}
= o(k) as k → +∞.

Then, for any function g ∈ C2([a, b]), the estimation LSL(g, h) converge toward
the length of the curve C(g). Furthermore, if the term o(k) in the third hypothesis

is a constant and H(h) = Θ(h−
1
2 ), then L(g)− LSL(g, h) = O(h 1

2 ).

H(h) stands for the size of a Freeman's code ω while hH(h) is the real length
of the computation step. In the above theorem, the �rst hypothesis states that
the real length hH(h) tends to 0. If instead of diminishing the grid spacing, we
keep it constant while doing a magni�cation of the curve with a factor 1/h, the
second hypothesis states that the size H(h) of a code tends to in�nity. Finally,
and informally speaking, the last hypothesis states that the function p applied
to a code ω must return a value close to the diameter3 of the subset of DO(g, h)
associated to ω.

3 Sparse estimators

In this section, we introduce a new notion, derived from semi-local estimators.
Yet, on the contrary to semi-local estimators, we discard the information given

2 In [4], the hypothesis on g is not clear. On the one hand, the code F(g, h) is supposed
to have {0, 1} as alphabet. On the other hand, [4, Prop 1] does not retain any
hypothesis on g but its class of di�erentiability. Indeed, in the proof, the derivative
of g needs not be positive nor limited by 1.

3 The maximal Euclidean distance between two points of the subset.



by the codes ωi but their extremities. It is as if we had two resolutions, one for
the space (the abscissas), one for the calculus (the ordinates).

We have noted earlier that the hypotheses about semi-local estimators in [4]
are ambiguous. May be for the same reasons than Daurat et al., we are tempted
to do so. Indeed, in all of our proofs, we do not need the "1" in the 1-Lipschitz
hypothesis. But from a practical point of view, k-Lipschitz function for k > 1
may give non 8-connected digitization and it does not make a lot of sense to
measure the length of a set of disconnected points (though we could de�ne a
discrete curve as the curve, in the usual mathematical sense, of a function from
Z to Z). Hence, in the following de�nition, as in the statement of our theorems,
we assume a 1-Lipschitz function while we intentionally forget the "1" in the
statements of the lemmas.

3.1 De�nition

De�nition 1. Let H : ]0,+∞[→ N∗ such that limh→0H(h) = +∞ and
limh→0 hH(h) = 0. We say that H is sparsity function. Let g : [a, b] → R be a
recti�able function. The H-sparse estimator of the length of the curve C(g) is
de�ned by

LSp(g, h) = h

Nh∑
i=0

‖ωi‖

where ωi ∈ {0, 1, 7}H(h) for i 6= Nh, ωNh ∈ {0, 1, 7}j with j ∈ (0, H(h)] and the
concatenation of the words ωi equals F(g, h).

An Illustration is given Figure 1.

Fig. 1: Sparse estimation at two resolutions

3.2 Convergence

In this section, we establish that the sparse length estimators are convergent
for Lipschitz functions. Moreover, Theorem 2 gives a bound on the error at grid
spacing h for di�erentiable functions whose derivative is Lipschitz continuous.



Notations In the remainder of the report, we use the following notations. Let
h > 0. We set m = hH(h). The integers A, B are resp. the minimum and the
maximum of the integer interval {k ∈ N | kh ∈ [a, b]}. The functions ga, gh,
gb are resp. the restrictions of the function g to the intervals [a,Ah], [Ah,Bh],
[Bh, b] and σh = (xi)

N
i=0 is the partition of [Ah,Bh] de�ned by xi = Ah+ im if

Ah+ im < Bh and xN = Bh. Note that A, B, N actually depend on h. We also
de�ne the function ϕ : R → R by ϕ(x) =

√
1 + x2. Thus, when g is of class C1,

one has L(g) =
∫ b
a
ϕ ◦ g′(t) dt.

The proof of Theorem 2 can be split in three parts. The �rst one gives a
bound on the error due to the ignorance of the exact abscissas of the curve
extremities. The second one evaluates the di�erence between the length of the
curve C(gh) and the length of the curve of the piecewise a�ne function gm
de�ned on [Ah,Bh] by gm(xk) = g(xk) (0 ≤ k ≤ N). The third part evaluates
the di�erence between L(gm) and the length of the piecewise a�ne function ghm
de�ned on [Ah,Bh] by ghm(xk) = bgm(xk)ch = bg(xk)ch (0 ≤ k ≤ N). Figure 2
shows the three functions g, gm, ghm on an interval [xk, xk+1].

Fig. 2: The two main parts of the estimation error: the curve g (in green, solid)
to its chord gm (in magenta, dotted-dashed) then the curve chord to the chord
ghm (in blue, dashed) of the digitized curve DO(g, h) (black points).

Lemma 1. For any sparsity function H and any Lipschitz function g, we have

lim
h→0

L(gm) = L(g).

Furthermore, L(g) ≤ ϕ(k)(b− a) where k is a Lipschitz constant for g.

Proof. Since g is k-Lipschitz, the slope of any chord of C(g) is less than k in
modulus. It follows that the length of any polyline �tting C(g) is bounded by
ϕ(k)(b− a). Then, according to Jordan's de�nition of arc length, we get

L(g) ≤ ϕ(k)(b− a).



For any partition σ of an interval I, we note Lσ the length of the polyline
associated to the partition. Remember that, from the Jordan's de�nition of the
arc length and the triangle inequality, if σ and σ′ are two partitions of the
interval I such that σ ⊆ σ′ and f is a recti�able function de�ned on I, then
Lσ ≤ Lσ′ ≤ L(f).

Let ε > 0 and σ0 = (yi)
n
i=0 be a partition of [a, b] such that

L(g)− Lσ0 < ε/4.

Since H is a sparsity function, there exists h0 such that

0 < h0 <
ε

8ϕ(k)

and

∀u ∈ (0, h0), uH(u) < min

(
ε

2(n− 1)(ϕ(k)− 1)
,

min{yi+1 − yi | 0 ≤ i ≤ n− 1}
)

Let h ∈ (0, h0). We set

σ0,h = (σ0 ∪ σh) ∩ [Ah,Bh],

σa = (σ0 ∩ [a,Ah]) ∪ {Ah}

and

σb = (σ0 ∩ [Bh, b]) ∪ {Bh}.

Then we de�ne σ1 = σa ∪ σ0,h ∪ σb. Firstly, we observe that

L(g)− Lσ0,h
≤ (L(g)− Lσ1) + (Lσ1 − Lσ0,h

)

≤ (L(g)− Lσ0) + Lσa + Lσb

≤ ε

4
+ 2ϕ(k)h (for g is k-Lipschitz)

≤ ε

2
(for h < h0 <

ε

8ϕ(k)
)

(2)

Then we give an upper bound for Lσ0,h
−Lσh . For any i in [[1, N − 1]] such that

yi ∈ (Ah,Bh), there exists an integer that we note s(i) s.t. yi ∈ [xs(i), xs(i+1)).
Since m < yi+1 − yi for any yi, yi+1 ∈ (Ah,Bh), one has s(i) < s(i+ 1). Let Pi,
Qi and Ri be respectively the points of C(g) with abscissas xs(i), yi, xs(i)+1. We



have (remember that xs(i)+1 − xs(i) = m),

Lσ0,h
− Lσh =

∑
yi∈(Ah,Bh)

d(Pi, Qi) + d(Qi, Ri)− d(Pi, Ri)

≤
∑

yi∈(Ah,Bh)

(ϕ(k)− 1)m (for g is k-Lispschitz)

≤ (n− 1)× (ϕ(k)− 1)m

≤ (n− 1)× (ϕ(k)− 1)
ε

2(n− 1)(ϕ(k)− 1)

≤ ε

2
.

Then,

L(g)− Lσh ≤ (L(g)− Lσ0,h
) + (Lσ0,h

− Lσh)

≤ ε

2
+
ε

2
≤ ε.

We conclude the proof straightforwardly. ut

From Lemma 1 we derive immediately a bound on the errors due to the loss
of the true left and right extremities of the curve C(g).

Corollary 1. For any k-Lipschitz function g, we have

L(ga) + L(gb) ≤ 2ϕ(k)h.

When g is di�erentiable and its derivative is Lipschitz continuous, the next
lemma gives us a bound on the di�erence between the length of the curve C(gh)
and the length of the polyline C(gm).

Lemma 2. If g is di�erentiable and its derivative is Lipschitz continuous, we
have for any h > 0

L(gh)− L(gm) ≤ M(b− a)
2

m (3)

where M is a Lipschitz constant for g′.

Proof. Let M be a Lipschitz constant for g′. Since the function ϕ is 1-Lipschitz
continuous, the function ψ = ϕ ◦ g′ is M -Lipschitz continuous. Thanks to the
mean value theorem, we can �nd a sequence (tk)

N−1
k=0 such that

for any k ∈ [[0, N − 1]], g′(tk) =
g(xk+1)− g(xk)
xk+1 − xk

.



Then,

L(gh)− L(gm) =

∫ Bh

Ah

ψ(t) dt−
N−1∑
k=0

√
(g(xk+1)− g(xk))2 + (xk+1 − xk)2

=

N−1∑
k=0

∫ xk+1

xk

ψ(t)− ψ(tk) dt

≤
N−1∑
k=0

M
(xk+1 − xk)2

2

≤ M

2

N−1∑
k=0

(xk+1 − xk)m

≤ M(b− a)
2

m
ut

A trivial maximization shows that the absolute di�erence between L(gm)
and L(ghm) is bounded by 2Nh. The next lemma gives us a better bound and
provides a relation that will serve as a starting point when we will consider the
case of concave functions.

Lemma 3. Let f1 and f2 be two piecewise a�ne functions de�ned on [c, d] ⊂ R
(d > c) with a common partition having p steps. Suppose that f1 ≤ f2 and
‖f1 − f2‖∞ ≤ e for some e ∈ R. Then

|L(f1)− L(f2)| ≤ p e.

Proof. Let σ = (xi)
p
i=0 be the common partition for f1 and f2. We write mi for

xi+1−xi and s1,i, resp. s2,i, for the slope of f1, resp. f2, on the interval [xi, xi+1].

L(f1)− L(f2) =
p−1∑
i=0

mi(ϕ(s1,i)− ϕ(s2,i))

=

p−1∑
i=0

s1,i + s2,i
ϕ(s1,i) + ϕ(s2,i)

mi(s1,i − s2,i).

Note that, for any i < p,

mi(s1,i − s2,i) = f2(xi+1)− f1(xi+1)− (f2(xi)− f1(xi)).

Thus, as, by hypothesis, f1 ≤ f2 and ‖f1 − f2‖∞ ≤ e, we get

−e ≤ mi(s1,i − s2,i) ≤ e.

Let ρ : R→ R be the function de�ned by ρ(x) = x
ϕ(x) . We observe that, for any

i ∈ [[0, p− 1]],

min(ρ(s1,i), ρ(s2,i)) ≤
s1,i + s2,i

ϕ(s1,i) + ϕ(s2,i)
≤ max(ρ(s1,i), ρ(s2,i)).



Thus, as ρ is continuous, for any i ∈ [[0, p − 1]] there exists a real s0,i between
s1,i and s2,i such that

ρ(s0,i) =
s1,i + s2,i

ϕ(s1,i) + ϕ(s2,i)
.

Thereby, we have

L(f1)− L(f2) =
p−1∑
i=0

ρ(s0,i)mi(s1,i − s2,i). (4)

As ‖ρ‖∞ = 1 we conclude that

|L(f1)− L(f2)| ≤
p−1∑
i=0

|mi(s1,i − s2,i)| ≤ pe.
ut

Thanks to Lemma 1, Lemma 2, and Lemma 3, which is applied to the piece-
wise a�ne functions gm and ghm (taking e = h), we can state our �rst theorem
on the convergence of Sparse length estimators.

Theorem 2. Let H be a sparsity function and g : [a, b]→ R a 1-Lipschitz func-
tion. Then, the estimator LSp converges toward the length of the curve C(g).
Furthermore, if g is di�erentiable and its derivative is Lipschitz continuous , we
have

L(g)− LSp(g, h) ≤ 2‖ψ‖∞h+
b− a
2

M hH(h) + (b− a) 1

H(h)
(5)

where ψ = ϕ ◦ g′ and M is a Lipschitz constant for g′.

The �rst term in the right side of Formula 5 is due to the error on the bounds
of the curve. Indeed, the two bounds of the curve domain cannot be on the grid
at any resolution when h tends to 0. Hence, we have an unavoidable error in
O(h). Note that this error does not exist when one computes the length of the
boundary of a solid object (for, in this case, the curve is closed). Formula 5 shows
two opposite trends for the determination of the sparsity step H(h): the term in
O(hH(h)) � the discretization error � corresponds to the curve sampling error

and tends to reduce the stepH(h) while the term in O
(

1
H(h)

)
� the quantization

error � corresponds to the error due to the quantization of the sample points and
tends to extend the step. The optimal convergence speed in h

1
2 is then obtained

taking H(h) = Θ(h−
1
2 ). Thus, only one in about h−

1
2 value is needed to make

a sparse estimation (which justi�es the adjective sparse). Then, the complexity
in the optimal case is a O(r 1

2 ).

3.3 Concave functions

In this section, we assume that the function g is concave on [a, b]. This implies
in particular that g admits left and right derivatives, noted g′l and g′r, at any



point of (a, b) and is Lipschitz continuous on any closed subinterval of (a, b).
Under this new hypothesis, we can improve the bound on the convergence speed
of the estimated length toward the true length of the curve C(g). The functions
gm and ghm are those de�ned in Section 3.2. Lemmas 4 and 5 are improvements
of Lemmas 2 and 3 for concave curves. Figure 3 shows some experiments that
illustrate the convergence rate obtained with Theorem 3.

Lemma 4. If g admits a right derivative in Ah and a left derivative in Bh and
if there exists a real k > 0 such that g′r(x) − g′l(y) ≤ k(y − x) for any x, y such
that Ah ≤ x < y ≤ Bh then

L(gh)− L(gm) ≤ k(b− a)
4

m2. (6)

Proof. We de�ne the piecewise a�ne function g+m : [Ah,Bh]→ R by

g+m(x) = min
(
g(xi) + g′r(xi)(x− xi), g(xi+1) + g′l(xi+1)(x− xi+1)

)
where [xi, xi+1] is the subinterval of the partition σh that contains x. Note
that gm+(xi) (resp. gm+(xi+1)) is uniquely de�ned and is equal to g(xi) (resp.
g(xi+1)). Since g is concave, gm ≤ gh ≤ g+m so we can apply Lemma 7 on each
subinterval of the partition σh. Together with the hypothesis on the derivatives
of g, this leads to the following inequalities.

L(gh)− L(gm) ≤
N−1∑
i=0

(xi+1 − xi)
(g′r(xi)− g′l(xi+1))

2

4

≤
N−1∑
i=0

k

4
(xi+1 − xi)3

≤ k(b− a)
4

m2.

Hence, the result holds. ut

Observe that Inequality (6) corresponds to Inequality (3) that have been
improved with m becoming m2 under concavity assumption.

Lemma 5. Let f1 and f2 be two piecewise a�ne functions de�ned on [c, d] ⊂
R, (c < d), with a common partition σ having p steps and such that f1 ≤ f2 ≤
f1 + e for some constant e > 0. If furthermore f2 is concave, then

|L(f1)− L(f2)| ≤
p

Mσ
h

e2 + Ue.

where Mσ
h is the harmonic mean of the lengths of σ subintervals and U =

max(ϕ′(s2,0), ϕ
′(s2,0) − 2ϕ′(s2,p−1))) is a constant which depends on the slopes

s2,0 and s2,p−1 of the �rst and the last segments of f2.



Proof. Let σ = (xi)
p
i=0 be the common partition for f1 and f2. We write mi for

xi+1−xi and s1,i, resp. s2,i, for the slope of f1, resp. f2, on the interval [xi, xi+1].
Also, we recall that in Lemma 3 we proved (with weaker hypotheses) that

L(f1)− L(f2) =
p−1∑
i=0

ρ(s0,i)mi(s1,i − s2,i)

=

p−1∑
i=0

ρ(s2,i)mi(s1,i − s2,i) +
p−1∑
i=0

(ρ(s0,i)− ρ(s2,i))mi(s1,i − s2,i)

where s0,i is between s1,i and s2,i and ρ(x) = x
ϕ(x) =

x√
1+x2

= ϕ′(x).

On the one hand, since the function f2 is concave, the sequence (s2,i)
p−1
i=0

is decreasing as is the sequence (ρ(s2,i))
p−1
i=0 (for the function ρ is increasing).

Hence, we can apply Lemma 8 with the settings

ci = mi(s1,i − s2,i)
= (f1(xi+1)− f2(xi+1))− (f1(xi)− f2(xi)),

ui = ρ(s2,i)− ρ(s2,p−1),
I = [−e, e].

Then, we get∣∣∣∣∣
p−1∑
i=0

ρ(s2,i)mi(s1,i − s2,i)

∣∣∣∣∣ ≤
∣∣∣∣∣
p−1∑
i=0

ρ(s2,i)− ρ(s2,p−1)mi(s1,i − s2,i)

∣∣∣∣∣
+

∣∣∣∣∣
p−1∑
i=0

ρ(s2,p−1)mi(s1,i − s2,i)

∣∣∣∣∣
≤ (ρ(s2,0)− ρ(s2,p−1))e+ |ρ(s2,p−1)| e
≤ Ue.

where U = max(ρ(s2,0), ρ(s2,0)− 2ρ(s2,p−1)).
On the other hand, the function ρ is 1-Lipschitz, so we have

|ρ(s0,i)− ρ(s2,i)| ≤ |s0,i − s2,i| ≤ |s1,i − s2,i|

.
Then

p−1∑
i=0

(ρ(s0,i)− ρ(s2,i))mi(s1,i − s2,i) ≤
p−1∑
i=0

mi(s1,i − s2,i)2

≤
p−1∑
i=0

(mi(s1,i − s2,i))2

mi

≤ pe2

Mσ
h

.



Eventually, we get

|L(f1)− L(f2)| ≤ Ue+
p

Mσ
h

e2. (7)

ut

From Lemma 5 and Lemma 4, we derive the following bound on the speed
of convergence when the function g is concave.

Theorem 3. Let H be a sparsity function and g : [a, b] → R a concave 1-
Lipschitz function of class C2. Then, we have

L(g)− LSp(g, h) = O(h2H(h)2) +O
(

1

H(h)2

)
.

Proof. On the one hand, since g is of class C2, it satis�es the hypothesis of
Lemma 4. So we have

L(gh)− L(gm) ≤ k(b− a)
4

(hH(h))2

where k = ‖g′′‖∞.
On the other hand, Lemma 5 applied with f1 = ghm, f2 = gm, p = N and

e = h gives ∣∣L(gm)− L(ghm)
∣∣ ≤ N

Mσ
h

h2 + Uh

where Mσ
h is the harmonic mean of the lengths of σh subintervals and the con-

stant U can be taken as max(ϕ′(a), ϕ′(a) − 2ϕ′(b))). From N ≤ b−a
hH(h) + 1 and

N
Mσ
h
= (N − 1) 1

hH(h) +
1

Bh−xN−1
we get

∣∣L(gm)− L(ghm)
∣∣ ≤ b− a

H(h)2
+ h2 + Uh.

Thus,

∣∣L(g)− L(ghm)
∣∣ ≤ T h+

k(b− a)
4

(hH(h))2 +
b− a
H(h)2

+ h2 + Uh

where T = 2‖ϕ ◦ g′‖∞.
Observing that either (hH(h))2 ≥ h or 1

H(h)2 ≥ h, the result holds. ut

The result given by Theorem 3 is illustrated on Fig. 3 with the natural
logarithmic. Compared to Theorem 2, concavity allows squarring each term of
the right hand side of the inequality, which does not change the optimal size for
H(h) but improves the optimal convergence speed up to h.
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Fig. 3: An illustration of the various convergence rates. We have computed the
length of the curve y = ln(x), x ∈ [1, 2], using the sparse estimators de�ned by
H(h) = bh−αc where α ∈ { 14 ,

1
3 ,

1
2 ,

2
3}, for the resolutions de�ned by r = b1.5nc,

n ∈ [1, 40]. (a) Discretization error (the errors on the left and the right bounds
of the interval have been withdrew). We observe the convergence in O(h2H(h)2)
which appears in Theorem 3. (b) Quantization error. For α ∈ { 14 ,

1
3 ,

1
2}, we

observe the convergence is a O(1/H(h)2), which appears in Theorem 3. For
α = 2

3 , the condition (iii) of Prop. 1 is satis�ed and thus the piecewise a�ne
function ghm is concave. Hence, we can observe that the convergence is a O(h)
as deduced from Lemma 6.

3.4 Strong concavity

When the function g is concave, the piecewise a�ne function gm is clearly also
concave. Nevertheless, the second piecewise function ghm is not necessary concave.
Indeed, we exhibit in Appendix B a function g that is concave and for which the
function ghm is nonconcave for any h below some threshold. This section gives
some su�cient conditions for ghm to be also concave and studies the consequences
on the convergence speed of such an assumption.

Proposition 1. Let H be a sparsity function and g : [a, b] → R a concave
function of class C2. If one of the following condition holds, then there exists
h0 > 0 such that, for any h < h0, the piecewise a�ne function ghm is concave on

[Ah, (A+N0H(h))h] where A =
⌈
a
h

⌉
and N0 =

⌊
b−a
hH(h)

⌋
.

(i) H(h) = h−
1
2 and max(g′′) < −1.

(ii) H(h) = h−
1
2 and g(x) = ax2 + bx+ c where |a| ≥ 1

2 .
(iii) hH(h)2 → +∞ as h→ 0 and max(g′′) < 0.

Proof. The piecewise a�ne function ghm is concave on [Ah, (A + N0H(h))h] i�
ghm(xi +m) + ghm(xi −m)− 2ghm(xi) ≤ 0 for any i ∈ [[1, N0 − 1]].

Let n be an integer in [[1, N0 − 1]]. We make Taylor expansions of g at xn to
the second order.

g(xn +m) + g(xn −m) = 2g(xn) +m2g′′(xn) + o(m2)



Then,

ghm(xn +m) + ghm(xn −m)− 2ghm(xn)

= g(xn +m) + g(xn −m)− 2g(xn) + Eh where |E| < 2

= m2g′′(xn) + Eh+ o(m2).

Thus, setting M = max(g′′),

ghm(xn +m) + ghm(xn −m)− 2ghm(xn)

h
< −hH(h)2M + 2 + o(hH(h)2). (8)

Thanks to Inequality (8), noting that its left hand side is an integer (also that
when g is a 2-th order polynomial the term o(hH(h)2) vanishes), the reader can
easily check the three parts of the proposition. ut

The following lemma is an improvement of Lemma 5 for two concave piece-
wise a�ne functions.

Lemma 6. Let f1 and f2 be two concave piecewise a�ne functions de�ned on
[c, d] ⊂ R such that f1 ≤ f2 ≤ f1 + e for some e > 0 and f1, f2 have the same
monotonicity on each subinterval on which they are a�ne. Then

|L(f1)− L(f2)| ≤ Ue.

where U is a constant de�ned as follows. Given a common partition σ = (xi)
p
i=0

of the interval [c, d] related to the piecewise a�ne functions f1 and f2, let s1,0,
s1,p−1, resp. s2,0, s2,p−1, be the slopes of the �rst and last segments of C(f1),
resp. C(f2). Now, let α =

s1,0+s2,0
ϕ(s1,0)+ϕ(s2,0)

and β =
s1,p−1+s2,p−1

ϕ(s1,p−1)+ϕ(s2,p−1)
. Then,

U = max(α, α− 2β).

Proof. Let σ = (xi)
p
i=0 be a common partition for f1 and f2. We write mi for

xi+1−xi and s1,i, resp. s2,i, for the slope of f1, resp. f2, on the interval [xi, xi+1].
Since f1 and f2 are concave, the sequences (s1,i) and (s2,j) are monotonically
non-increasing. Furthermore, since f1 and f2 have the same monotonicity, s1,i
and s2,i have the same sign for any i ∈ [[0, p− 1]]. In Lemma 3 we proved (with
weaker hypotheses) that

L(f1)− L(f2) =
p−1∑
i=0

ρ(s0,i)mi(s1,i − s2,i) (9)

where ρ(x) = x
ϕ(x) =

x√
1+x2

and ρ(s0,i) =
s1,i+s2,i

ϕ(s1,i)+ϕ(s2,i)
.



Firstly, we prove that the sequence (ρ(s0,i)) is also monotonically non-increasing.
Let i < j be two integers in [[0, p− 1]].

ρ(s0,i) ≥ ρ(s0,j) ⇐⇒
s1,i + s2,i

ϕ(s1,i) + ϕ(s2,i)
≥ s1,j + s2,j
ϕ(s1,j) + ϕ(s2,j)

⇐⇒
(
s1,iϕ(s1,j)− s1,jϕ(s1,i)

)
+
(
s2,iϕ(s2,j)− s2,jϕ(s2,i)

)
+
(
s1,iϕ(s2,j) + s2,iϕ(s1,j)

)
≥
(
s1,jϕ(s2,i) + s2,jϕ(s1,i)

)
⇐⇒ ϕ(s1,i)ϕ(s1,j)

(
ρ(s1,i)− ρ(s1,j)

)
+ ϕ(s2,i)ϕ(s2,j)

(
ρ(s2,i)− ρ(s2,j)

)
+
(
s1,iϕ(s2,j) + s2,iϕ(s1,j)

)
≥
(
s1,jϕ(s2,i) + s2,jϕ(s1,i)

)
The terms ρ(s1,i) − ρ(s1,j) and ρ(s2,i) − ρ(s2,j) are non-negative because (s1,i)
and (s2,j) are monotonically non-increasing (and the function ρ is increasing).
Hence,

ρ(s0,i) ≥ ρ(s0,j)⇐ s1,iϕ(s2,j) + s2,iϕ(s1,j) ≥ s1,jϕ(s2,i) + s2,jϕ(s1,i) (10)

If s1,j ≥ 0, and thus s2,j , s1,i, s2,i ≥ 0, we can square the two terms of the
inequality in the right hand side of (10)

ρ(s0,i) ≥ ρ(s0,j)⇐ s21,i(1 + s22,j) + s22,i(1 + s21,j) + 2s1,is2,iϕ(s1,j)ϕ(s2,j) ≥
s21,j(1 + s22,i) + s22,j(1 + s21,i) + 2s1,js2,jϕ(s1,i)ϕ(s2,i)

⇐ s21,i + s22,i + 2s1,is2,iϕ(s1,j)ϕ(s2,j) ≥
s21,j + s22,j + 2s1,js2,jϕ(s1,i)ϕ(s2,i)

⇐ s21,i + s22,i +Aρ(s1,i)ρ(s2,i) ≥ s21,j + s22,j +Aρ(s1,j)ρ(s2,j)

where A = 2ϕ(s1,i)ϕ(s2,i)ϕ(s1,j)ϕ(s2,j) is clearly non-negative.
Since the function ρ is monotonically non-decreasing and odd, it is plain that
the last inequality is true under all our assumptions.

The case where s1,i ≤ 0, and thus s2,i, s1,j , s2,j ≤ 0 is similar. The last case,
where s1,i ≥ 0 ≥ s1,j , and thus s2,i ≥ 0 ≥ s2,j , is obvious. Thereby, we have
proved that the sequence (ρ(s0,i)) is monotonically non-decreasing.

Now, from Lemma 8, taking

ci = mi(s1,i − s2,i)
= (f1(xi+1)− f2(xi+1))− (f1(xi)− f2(xi)),

ui = ρ(s0,i)− ρ(s0,p−1) and
I = [−e, e],

we derive from (9) that

|L(f1)− L(f2)| ≤ (ρ(s0,0)− ρ(s0,p−1))e+ |ρ(s0,p−1)|

∣∣∣∣∣
p−1∑
i=0

mi(s1,i − s2,i)

∣∣∣∣∣
≤ (ρ(s0,0)− ρ(s0,p−1))e+ |ρ(s0,p−1)| e
≤ Ue



where U = max(ρ(s0,0), ρ(s0,0)− 2ρ(s0,p−1)). ut

Corollary 2. Let H be a sparsity function and g : [a, b] → R a concave 1-
Lipschitz function of class C2. If, for some h0 > 0, the function ghm is concave

on [Ah, (A + N0H(h))h] where A =
⌈
a
h

⌉
and N0 =

⌊
b−a
hH(h)

⌋
for any h < h0,

then we have

L(g)− LSp(g, h) = O(h2H(h)2) +O(h).

Proof. From Corollary 1, we have

L(ga) + L(gb) ≤ 2‖ϕ ◦ g′‖∞h. (11)

From Lemma 4, we get

L(gh)− L(gm) ≤ (b− a)‖g′′‖∞
4

(hH(h))2. (12)

Let N0 =
⌊

b−a
hH(h)

⌋
. We write gm|1 and gm|2, resp. g

h
m|1 and ghm|2 for the re-

strictions of the function gm, resp. ghm, to the intervals [A, (A+N0H(h))h] and
[(A + N0H(h))h,Bh]. The functions gm|1 and ghm|1 are piecewise a�ne with

subintervals of width m = hH(h) while, if N0 6= N , the functions gm|2 and g
h
m|2

are a�ne on an interval of width αh where α is an integer in [1,m). It follows
from Lemma 6 that ∣∣∣L(gm|1)− L(ghm|1)∣∣∣ ≤ Uh (13)

where U is bounded by max(ϕ′(g′(a) + 1), ϕ′(g′(a) + 1)− 2ϕ′(g′(b)− 1)) which
does not depend on h. Indeed, with the notations of Lemma 6, U = max(α, α−
2β) where α =

s1,0+s2,0
ϕ(s1,0)+ϕ(s2,0)

lies between s1,0
ϕ(s1,0)

and s2,0
ϕ(s2,0)

, that is between
ϕ′(s1,0) and ϕ′(s2,0). On the one hand ϕ′(s1,0) is lower than ϕ′(g′(a)) for ϕ′ is
monotonically increasing and gm is concave. On the other hand, it can easily be
proved that s2,0 ≤ s1,0 + 1

H(h) ≤ g
′(a) + 1. Hence,

α ≤ ϕ′(g′(a) + 1).

Alike, we have
β ≥ ϕ′(g′(b)− 1)

and thus

U ≤ max(ϕ′(g′(a) + 1), ϕ′(g′(a) + 1)− 2ϕ′(g′(b)− 1)).

Finally, we derive immediately from Lemma 3 that∣∣∣L(gm|2)− L(ghm|2)∣∣∣ ≤ h. (14)



As

L(g) = L(ga) + L(gh) + L(gb),

L(gm) = L(gm|1) + L(gm|2) and

LSp(g, h) = L(ghm)

= L(ghm|1) + L(ghm|2),

the result follows readily from eqs. (11) to (14). ut

From Corollary 2, it follows that, to speed up the convergence, we shall take
the smallest sparsity step H(h) provided the hypothesis about the concavity is
satis�ed. According to Proposition 1, this should lead us to choose the functionH
such that H dominates h−

1
2 as h→ 0. For instance, we can take H(h) = h−

1
2−ε

where ε > 0 and ε ≈ 0. Then, the convergence speed is h1−2ε. Note that h is
a minimal error bound that cannot be improved in the general case since for
the function g de�ned by g(x) = ( 1948 )

2 − x2, x ∈ [ 1
16 ,

19
48 ], we have shown that

L(g)− LSp(g, h) ≥ 0.06h (see Appendix C).

4 Conclusion

In this article, we have studied some convergence properties of a class of semi-
local length estimators in the concave and the general cases. These estimators
need few information about the curve: the proportion of points of the curve used
for the computation tends to 0 as the resolution tends toward in�nity. That is
why we propose to call them sparse estimators. In a future work, we plan to
extend our estimators to the nD Euclidean space to compute k-volumes, k < n.
We have also to study how the material presented in this article behave with Jor-
dan curves obtained as boundary of solid objects through various discretization
schemes. Furthermore, the de�nition of the sparse estimators relies on Jordan's
de�nition for curve length. It would be interesting to keep the main idea from
these estimators while relying on the more general de�nition of Minkowski (as
in [2]). This could be more realistic in the framework of multigrid convergence,
since physic objects cannot be considered as smooth (nor convex, etc. ) at any
resolution. Another extension of this work is to check whether the proofs of con-
vergence obtained for sparse estimators can help to obtain new proofs for the
convergence of adaptative length estimators as the MDSS. This could lead to
the de�nition of a larger class of geometric feature estimators including sparse
estimators and MDSS. Eventually, there is a need to �nd how to estimate the
resolution of a given curve.

A Technical lemmas

Lemma 7. Let ABC be a triangle in R2 (A 6= C) and Γ ⊂ R2 be a recti�able
curve from A to C included in the triangle ABC such that the set between the



segment AC and the curve Γ is convex. Let B be an orthonormal basis of R2

such that, in the coordinate system (A,B), the abscissa of C, noted m, is positive
and the abscissa of B strictly lies between 0 and m. Let α, β, γ be the slopes, in
the basis B, of the line from B to C, resp. from C to A, resp. from A to B.
Then, the length of Γ , LΓ , is such that

AC ≤ LΓ ≤ AC +m
(γ − α)2

4
.

Fig. 4 illustrates the con�guration studied in Lemma 7.

m

β

γ

α

A

B

C

Fig. 4: α, β, γ are the slopes of the segments BC, CA, AB.

Proof. Since the set bounded by the segment AC and the curve Γ is convex
and included in the triangle ABC, its perimeter is less than, or equal to, the
perimeter of the triangle ABC (see [18, Part XII]). Thus, AC ≤ LΓ ≤ AB+BC.

Since xB , the abscissa of the point B in the coordinate system (A,B) veri�es
0 < xB < m, β lies between α and γ. Then there exists a real k ∈ [0, 1] such
that β = kγ + (1− k)α. It can be seen that the vectors AB, BC and AC have
coordinates (km, kmγ), ((1− k)m, (1− k)mα) and (m,mβ). Thus,

AB +BC −AC = m
(
kϕ(γ) + (1− k)ϕ(α)− ϕ(β)

)
= m

(
k
(
ϕ(γ)− ϕ(kγ + (1− k)α)

)
+

(1− k)
(
ϕ(α)− ϕ(kγ + (1− k)α)

))
= mk(1− k)(γ − α)

(
ϕ′(ξ1)− ϕ′(ξ2)

)
= mk(1− k)(γ − α)(ξ1 − ξ2)ϕ′′(ξ).

where ξ1, ξ2, ξ lie between α and γ.
Hence,

AB +BC −AC ≤ m(γ − α)2

4
(15)

for ‖ϕ′′‖∞ = 1. So, the result holds.
ut



Remark 1. We could improve the previous result by a factor 2 since it appears
from the above calculus that AB+BC−AC

m is the 'vertical distance' between the
function ϕ and one of its chord (see Fig. 5) and is thus maximal when the chord
is 'horizontal'.

ℓ

α β γ

ϕ

Fig. 5: ` = AB +BC −AC.

Lemma 8. Let (un)n∈N a monotonically non-increasing sequence of real non
negative numbers and (cn)n∈N a sequence of reals in an interval I such that∑j
i=0 ci ∈ I for any integer j. Then,

∑j
i=0 ci ui ∈ u0 I for any integer j.

Proof. If u0 = 0, then un = 0 for any n and the result is obvious. From now,
we assume u0 > 0. Let n ∈ N and S =

∑n
i=0 ci ui. We set Cj =

∑j
i=0 ci for

any j ≤ n, pi =
ui−ui+1

u0
for any i ≤ n − 1 and pn = un

u0
. The reals pi are all

non-negative and their sum equals 1. We can easily check that

S =

n−1∑
i=0

( i∑
j=0

cj

)
(ui − ui+1) +

( n∑
j=0

cj

)
un

= u0

( n∑
i=0

pi Ci

)
The last equality above shows that the real 1

u0
S is the barycenter �with non-

negative weights� of numbers in the interval I. Thus, the result holds.

B Strong concavity: counterexamples

In this appendix, we show that a piecewise a�ne function can be concave and its
digitization, beyond some resolution, never concave (that is, the piecewise a�ne
function ghm de�ned in Sec. 3.2 is not concave for grid spacing h below some
threshold). The �rst counterexample uses a local estimator and the second one
uses a sparse estimator. Both counterexamples rely on the following theorem



proved in [17] (in fact, an extended version of the theorem is needed for the
second counterexample). This theorem asserts that, given a function x 7→ ax2 +
bx+ c, the distribution in [0, h] of the values of the expression {a(kh)2+ b(kh)+
c}h, k ∈ N, which are the errors resulting from the quantization, tends toward
the equidistribution.

Theorem 4 ([17, Lemma 2 and Prop. 3]). Let a, b ∈ R, a < b. Let g :
[a, b]→ R be a polynomial function of degree 2. Then, for all interval I ⊆ [0, 1],

lim
h→0

card{x ∈ hN ∩ [a, b] | g(x) mod h ∈ hI}
card(hN ∩ [a, b])

= µ(I)

where µ(I) is the classical length of I.

B.1 Counterexample #1: local estimation

We digitize the parabola associated to the function g(x) = 2x−x2, x ∈ [0, 1] and
we split this parabola into segments of size 5h. Thanks to Theorem 4, we prove
that, for each grid spacing h below some threshold, we can choose an integer p
such that the �nite di�erence ghm((p+5)h)− ghm(ph) is less than or equal to the
grid spacing h while the �nite di�erence ghm((p+10)h)− ghm((p+5)h) is greater
than or equal to twice the grid spacing h. Thus, the function ghm is not concave
on [0, 1].

Detailed calculus
According to Theorem 4, it exists a real h0 > 0 such that, for any h ∈ (0, h0),
one has

card
{
n ∈ [[ 103

120h ,
104
120h ]] | g(nh)− g

h
m(nh) ∈ [ 4h12 ,

7h
12 )
}
≥ 1

5
card[[ 103

120h ,
104
120h ]].

It follows that there exists h1 > 0 such that for any h < h1, one can �nd n0 ∈
[[ 103
120h ,

104
120h ]] such that n0 + 10 still lies in [[ 103

120h ,
104
120h ]] and g(n0h) − g

h
m(n0h) ∈

[ 4h12 ,
7h
12 ). Then, noting that 16

60 ≤ g
′(x) ≤ 17

60 on [ 103120 ,
104
120 ], we obtain

ghm((n0 + 5)h)− ghm(n0h) < g((n0 + 5)h)− (g(n0h)−
7

12
h)

<
17

60
× 5h+

7

12
h

< 2h.

As the term in the left hand side of the above inequalities is a multiple of h, we
get

ghm((n0 + 5)h)− ghm(n0h) ≤ h.
In the same way, we obtain

ghm((n0 + 10)h)− ghm(n0h) > g((n0 + 10)h)− h− (g(n0h)−
4

12
)

>
16

60
× 10h− 2

3
h

> 2h.



Thus,
ghm((n0 + 10)h)− ghm(n0h) ≥ 3h.

Finally, we have

ghm((n0 + 10)h)− ghm(n0h) > 2
(
ghm((n0 + 5)h)− ghm(n0h)

)
.

That is, the function ghm is strictly convex on [n0h, (n0 + 10)h].

B.2 Counterexample #2 : sparse estimation

For the second counterexample, we discretize the parabola y = g(x) = 1
50 (2x−

x2), x ∈ [0, 1] and we use segments of size H(h) =
⌊
h−

1
2

⌋
. Substantially, this

second counterexample is similar to the previous one though it requires the
following extended version of Theorem 4.

Proposition 2. Let a, b ∈ R, a < b, and g : [a, b] → R a quadratic polynomial
function. Let (Jh)h>0 a family of integer intervals such that hJh ⊆ [a, b] for any
h > 0 and limh→0 card Jh = +∞. Then, for any interval I ⊆ [0, 1], one has:

lim
h→0

card{n ∈ Jh | g(nh) mod h ∈ hI}
card Jh

= µ(I)

Below, we present the sketch of the proof of Proposition 2. The formal proof will
be given in a future work.

Sketch of the proof

1. In [17, Lemma 2], we take k = 0 (we does not need other values) and we
change the de�nition of Ar and Br to [[Ar, Br]] = Jr (thus, Nr = cardJr).
From rJr ⊆ [a, b], the inequalities obtained under the hypothesis cα > 0
(instead of c > 0) become :
- 2cαrNr ≤ 2cα(b− a+ r) ;
- |θ| = |2cαr(Ar + k) + cβ| ≤ 2cα |b|+ 2cαr |k|+ |cβ|.

The remainder of the proof of [17, Lemma 2] is unchanged. Thus, we get a
new version of the lemma (restricted to the case k = 0).

Lemma 9. For any quadratic polynomial function g : [a, b]→ R, for any real
c 6= 0 and for any integer interval family (Jr)r>0 such that ∀r > 0, rJr ⊆
[a, b] and limr→0 card Jr = +∞, one has

lim
r→0

1

card Jr

∑
X∈Jr

exp

(
2c iπ

g(rX)

r

)
= 0.

2. [17, Property 3] does not depend upon the de�nition of Ar and Br. So, we
can state the following new version of the property.



Lemma 10. Let g : [a, b]→ R be a quadratic polynomial function and (Jr)r>0

be an integer interval family such that ∀r > 0, rJr ⊆ [a, b] and limr→0 card Jr =
+∞. If for any real c 6= 0 is is true that limr→0 Lr,k = 0, then

lim
r→0

card{n ∈ Jr | g(nr) mod r ∈ rI}
card Jr

= µ(I)

The result follows immediatly. ut

Counterexample

We take g(x) = 1
50 (2x− x

2), x ∈ [0, 1] and H(h) =
⌈
h−

1
2

⌉
.

We set

Jh =

[[⌈
1

h
− c√

h

⌉
,

⌊
1

h
− d√

h

⌋ ]]
where c = 35, d = c− 1

2 .
The family of integer intervals (Jh) satis�es the hypotheses of Proposition 2:
hJh ⊂ [0, 1] (for small enough h) and card Jr →∞ as r → 0.
Hence, there exists h0 such that

∀h < h0,∃nh ∈ {n ∈ Jh | {g(nh)}h ∈ [αh, βh) }

where α = 2
5 and β = 1

2 .

Let h < h0 and nh ∈ Jh such that {g(nh)}h ∈ [αh, βh).
The constants c and d are such that

� [nhh, nhh+ 2m] ⊆ [1− c
√
h, 1− (d− 2)

√
h],

� (d− 2)
√
h ≤ 25g′(x) ≤ c

√
h on [1− c

√
h, 1− (d− 2)

√
h].

We can now compare the growth of ghm on [nhh, nhh+m] and [nhh, nhh+2m].

ghm(nhh+m)− ghm(nhh) ≤ g(nhh+m)− g(nhh) + {g(nhh)}h
< c

25

√
h×m+ βh

<

(
7

5

⌈
h−

1
2

⌉
h−

1
2

+
1

2

)
h

< 2h (if h ≤ 1).

Thus,
ghm(nhh+m)− ghm(nhh) ≤ h.

Alike, we have

ghm(nhh+ 2m)− ghm(nhh) ≥ g(nhh+ 2m)− g(nhh) + {g(nhh)}h − {g(nhh+ 2m)}h
> d−2

25

√
h× 2m+ αh− h

>

(
2(d−2)

25

⌈
h−

1
2

⌉
h−

1
2
− 3

5

)
h

> 2h.



Thus,
ghm(nhh+ 2m)− ghm(nhh) ≥ 3h.

Finally, we have proved that

ghm(nhh+ 2m)− ghm(nhh) > 2
(
ghm(nhh+m)− ghm(nhh)

)
.

This last inequality shows that the function ghm is convex on [nhh, nhh + 2α].
Thereby, for any h < h0, there exists an interval [nh, nh+2m] ⊂ [0, 1] on which
the function ghm is convex.

C Inferior bound for the method error in the concave

case

We give an inferior bound on the di�erence between the true length L(g) of the
parabola y = g(x) = (1948 )

2−x2 for x ∈ [ 1
16 ,

19
48 ] and the length L

Sp(g, h), obtained

with the sparse estimator de�ned by the sparsity functionH(h) =
⌊
h−

1
2

⌋
. Let gm

and ghm be the piecewise a�ne functions de�ned in Section 3.2. Then the lengths
of their curves satisfy L(ghm)+0.05h ≤ L(gm) ≤ L(g) for any h = (12(8p+ 1))−2

where p ∈ N. Moreover, the bounds of the interval [ 1
16 ,

19
48 ] are multiple of h.

Hence, there is no error due to the bounds. Eventually, for any p ∈ N and
h = (12(8p+ 1))−2, we get L(g)− LSp(g, h) ≥ 0.06h.

Detailed calculus
Let h = 1

144(8p+1)2 (p ∈ N) and H(h) =
⌊
h−

1
2

⌋
= 12(8p+ 1).

Thereby, here we have

� m = hH(h) = 1
12(8p+1) ,

� Ah = 1
16 (A = 9(8p+ 1)2), Bh = 19

48 (B = 57(8p+ 1)2),

� N =
⌈

19
48−

1
16

m

⌉
=
⌈
1
3 Hr

⌉
= 1

3 Hr = 4(8p+ 1),

� For any i ∈ [[0, N ]], xi = 1
16 + im = x0 + im (in particular, the last interval

of the sparse estimation have size m).

Furthermore, we have

g(x0) ≡ 0 (mod h)

and g(xi) ≡
1

2
ih (mod h)

(16)

We set c = h
2 = m2

2 , zi = 1
2 (xi + xi+1) and yi = g(xi+1)− g(xi) = −2mzi.

Then, from (16), we derive

L(gm)− L(ghm) =

16p+1∑
i=0

(√
m2 + y2i2 +

√
m2 + y2i+1

2
)

−
(√

m2 + (y2i − c)2 +
√
m2 + (y2i+1 + c)2

)



On the one hand√
m2 + y2i2 −

√
m2 + (y2i − c)2 = −m

2

4

8z2i +m√
1 + 4z2i2 +

√
1 + 4(z2i +

m
4 )

2

≥ −m
2

8

8z2i +m√
1 + 4z2i2

On the other hand√
m2 + y2i+1

2 −
√
m2 + (y2i+1 + c)2 =

m2

4

8z2i+1 −m√
1 + 4z2i+1

2 +
√
1 + 4(z2i+1 − m

4 )
2

≥ m2

8

8z2i+1 −m√
1 + 4z2i+1

2

By summing,

L(gm)−L(ghm) ≥ m2

16p+1∑
i=0

(
z2i+1√

1 + 4z2i+1
2
− z2i√

1 + 4z2i2

)
−m

3

8

32p+3∑
i=0

1√
1 + 4zi2

.

Since the function f1(x) = x√
1+4x2

is monotonically increasing and concave, one
has

16p+1∑
i=0

(f1(z2i+1)− f1(z2i)) ≥
1

2

32p+3∑
i=0

(f1(zi+1)− f1(zi))

≥ 1

2
(f1(z32p+4)− f1(z0))

Moreover, the function f2(x) = 1√
1+4x2

is monotonically decreasing and convex.

Thus the Riemann sum
∑32p+3
i=0

m√
1+4zi2

is bounded by the integral
∫ 19

48
1
16

f2(x) dx.

It follows that

L(gm)− L(ghm) ≥ m2

2

(
f1(

19

48
+
m

2
)− f1(

1

16
+
m

2
)

−1

8
arg sinh(

19

24
) +

1

8
arg sinh(

1

8
)

)
.

Since m ≤ 1
12 for any p ∈ N, we obtain

L(gm)− L(ghm) > 0.066m2.

Eventually, for any h = 1
(12(8p+3))2 , we have shown that

L(g) ≥ L(gm) ≥ L(ghm) + 0.06h.
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