About multigrid convergence of some length estimators (extended version)
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Introduction

The ability to perform the measurement of geometric features on digital representations of continuous objects is an important goal in a world becoming more and more digital. We focus in this paper on one classical digital problem: the length estimation. The problem is to estimate the length of a continuous curve S knowing a digitization of S. As information is lost during the digitization step, there is no reliable estimation without a priori knowledge and it is dicult to evaluate the estimator performances. In order to rene the evaluation of the estimators, a property, so called convergence property is desirable: the estimation convergence toward the true length of the curve S when the grid step h tends his work ws supported y the egene xtionle de l eherhe through ontrt exEPHIHEfvexEHPHSEHIF to 0. This property can be viewed as a robustness to digitization grid change.

The local estimators based on a xed pattern size do not satisfy the convergence property [13]. The adaptive estimators based on the Maximal Digital Straight Segment (MDSS) or the Minimum Length Polygon (MLP) satisfy the convergence property under assumptions of convexity, 4-connectivity for closed simple curves (also called Jordan curves) [?]. The semi-local estimators, introduced by Daurat et al [4] for function graphs, veries the convergence property under smoothness assumption but without convexity hypothesis. We present here a subclass of the semi-local estimators, the sparse estimators that only need information on a small part of the function values and keep the convergence property. Moreover they have a convergence speed in h for smooth concave function.

The paper is organized as follows. In Section 2, some necessary notations and conventions are recalled, then existing estimators and their convergence properties are detailed. In Section 3, the sparse estimators are dened, their convergence properties are given in the general case and then in the concave cases (we make a distinction between the concavity of the continuous function and the concavity of the piecewise ane function related to the discretization). An experiment exemplies the results. Section 4 concludes the article and gives directions for future works. Appendix A contains a few technical lemmas. In Appendix B two counterexamples about the concavity are exhibited. Appendix C presents a minimal error on the sparse estimation of the length of a segment of parabola.

Background

Discretization models

In this work, we have restricted ourselves to the digitizations of function graphs. So, let us consider a continuous function g : [a, b] → R (a < b), its graph C(g) = {(x, g(x)) | x ∈ [a, b]} and a positive real number r, the resolution. We assume to have an orthogonal grid in the Euclidean space R 2 whose set of grid points is hZ 2 where h = 1/r is the grid spacing. We use the following notations:

x h is the greatest multiple of h less than or equal to x, {x} h = x -x h . For i ≤ j two integers, [[i, j]] stands for [i, j] ∩ Z. Finally, for any function f dened on an interval, L(f ) denotes the length of C(f ), the graph of f (L(f ) ∈ [0, +∞]).

The common methods to model the digitization of the graph C(g) at the resolution r are closely related to each others.

In this paper, we assume an object boundary quantization (OBQ). This method associates to the graph

C(g) the h-digitization set D O (g, h) = {(kh, g(kh) h ) | k ∈ Z}.
The set D O (g, h) contains the uppermost grid points which lie in the hypograph of g, hence it can be understood as a part of the boundary of a solid object. Provided the slope of g is limited by 1 in modulus,

D O (g, h) is an 8- connected digital curve. Observe that if g is a function of class C 1 such that the set {x ∈ [a, b] | |g (x)| = 1}
is nite, then by symmetries on the graph C(g), it is possible to come down to the case where |g | ≤ 1. So, we assume that g is a Lipschitz function which Lipschitz constant 1. Hence, the set D O (g, h) is 8-connected for any h and the curve C(g) is rectiable (L(g) < +∞). Moreover, the h-digitization set D O (g, h) can be described by its rst point and its Freeman code [9], F(g, h), with the alphabet {0, 1, 7}. For any word ω ∈ {0, 1, 7} k (k ∈ N), we set ω = k 2 + j 2 where j is the number of letters 1 minus the number of letters 7 in the word ω.

Local estimators

Local length estimators (see [10] for a short review) are based on parallel computations of the length of xed size segments of a digital curve. For instance, an 8-connected curve can be split into 1-step segments. For each segment, the computation return 1 whenever the segment is parallel to the axes (Freeman's code is even) and √ 2 when the segment is diagonal (Freeman's code is odd). Then all the results are added to give the curve length estimation.

This kind of local computation is the oldest way to estimate the length of a curve and has been widely used in image analysis. Nevertheless, it has not the convergence property. In [13], the authors introduce a general denition of local length estimation with sliding segments and prove that such computations cannot give a convergent estimator for straight lines whose slope is small (less than the inverse of the size of the sliding segment). In [16], a similar denition of local length estimation is given with disjoint segments. Again, it is shown that the estimator failed to converge for straight lines (with irrational slopes). This behavior is experimentally conrmed in [3] on a test set of ve closed curves. Moreover, the non-convergence is established in [5,17] for almost all parabolas.

Adaptative estimators: DSS and MLP

Adaptive length estimators gather estimators relying on a segmentation of the discrete curve that depends on each point of the curve: a move on a point can change the whole segmentation. Unlike local estimators, it is possible to prove the convergence property of adaptive length estimators under some assumptions. Adaptive length estimators include two families of length estimators, namely the Maximal Digital Straight Segment (MDSS) based length estimators and the Minimal Length Polygon (MLP) based length estimators.

Denition and properties of MDSS can be found in [12,7,3]. Ecient algorithms have been developed for segmenting curves or function graphs into MDSS and to compute their characteristics in a linear time [12,8,7]. The decomposition in MDSS is not unique and depends on the start-point of the segmentation and on the curve travel direction. The convergence property of MDSS estimators has been proved for convex polygons whose MDSS polygonal approximation 1 is also convex [11, Th. 13 and the proof]: given a convex polygon C and a grid spacing 1 hough the digitiztion of onvex set is digitlly onvexD it does not men tht polygonl urve relted to onvex polygonl urve vi wh segmenttion proess is lso onvexF h (below some threshold), the error between the estimated length L est (C, h) and the true length of the polygon L(C) is such that

|L(S) -L est (S, h)| ≤ (2 + √ 2)πh. (1) 
Empirical MDSS multigrid convergence has also been tested in [3,6] on smooth nonconvex planar curves. The obtained convergence speed is a O(h) as in the convex polygonal case. Nevertheless it has not been proved under these assumptions. Another way to obtain an estimation of the length of a curve using MDSS is to take the slopes of the MDSSs to estimate the tangent directions and then to compute the length by numerical integration [2,3,14]. The estimation is unique and has been proved to be multigrid convergent for smooth curves (of class C 2 with bounded curvature in [3], of class C 3 with strictly positive curvature in [14]).

The convergence speed is a O(h

3 ) [14] and thus, worse than (1). Let C be a simple closed curve lying in-between two polygonal curves γ 1 and γ 2 . Then there is a unique polygon, the MLP, whose length is minimal between γ 1 and γ 2 . The length of the MLP can be used to estimate the length of the curve C. At least two MLP based length estimators have been described and proved to be multigrid convergent for convex, smooth or polygonal, simple closed curves, the SB-MLP proposed by Sloboda et al. [15] and the AS-MLP, introduced by Asano et al. [1]. For both of them, and for a given grid spacing h, the error between the estimated length L est (C, h) and the true length of the curve

L(C) is a O(h): |L(C) -L est (C, h)| ≤ Ah
where A = 8 for SB-MLP and A ≈ 5.844 for AS-MLP.

On the one hand, as estimators described in this section are adaptive, the convergence theorems are dicult to establish and rely on strong hypotheses. On the other hand, the study of the MDSS in [6] shows that the MDSS size tends to 0 and their discrete length tends toward innity as the grid step tends to 0. Thereby, one could ask whether combining a local estimation with an increasing window size as the resolution grows would give a convergent estimator under more general assumptions and/or with simpler proofs of convergence. The following sections explore this question.

Semi-local length estimators

The notion of semi-local estimator appears in [4]. At a given resolution, a semilocal estimator resembles a local estimator: it can be implemented via a parallel computation, each processor handling a xed size segment of the curve. Nevertheless, in the framework of semi-local estimation, the processors must be aware of the resolution from which the size of the segments depends.

More formally, let g : [a, b] → R be a 1-Lipschitz function2 . Hence, at any resolution, the Freeman's code describing the discretization of g belongs to the set P = n∈N {0, 1, 7} n .

A semi-local estimator is a pair (H, p) where H : ]0, ∞[→ N * gives the relative size of the segments given a grid spacing h and p : P → [0, ∞[ gives the estimated feature (here, the length) associated to a (nite) Freeman's code.

At a given grid spacing h, the Freeman's code describing the digitization of the curve C(g) is segmented in N h codes ω i of length H(h) and a rest ω * ∈ {0, 1, 7} j , j < H(h). Then, the length of the curve C(g) is estimated by

L SL (g, h) = h N h -1 i=0 p(ω i ).
In [4], the authors give a proof of convergence for functions of class C 2 .

Theorem 1 ([4,Prop. 1]). Let (H, p) be a semi-local estimator such that:

1. lim h→0 hH(h) = 0, 2. lim h→0 H(h) = +∞, 3. max p(ω) -ω | ω ∈ {0, 1} k = o(k) as k → +∞.
Then, for any function g ∈ C 2 ([a, b]), the estimation L SL (g, h) converge toward the length of the curve C(g). Furthermore, if the term o(k) in the third hypothesis is a constant and

H(h) = Θ(h -1 2 ), then L(g) -L SL (g, h) = O(h 1 2 ).
H(h) stands for the size of a Freeman's code ω while hH(h) is the real length of the computation step. In the above theorem, the rst hypothesis states that the real length hH(h) tends to 0. If instead of diminishing the grid spacing, we keep it constant while doing a magnication of the curve with a factor 1/h, the second hypothesis states that the size H(h) of a code tends to innity. Finally, and informally speaking, the last hypothesis states that the function p applied to a code ω must return a value close to the diameter 3 of the subset of D O (g, h) associated to ω.

Sparse estimators

In this section, we introduce a new notion, derived from semi-local estimators. Yet, on the contrary to semi-local estimators, we discard the information given by the codes ω i but their extremities. It is as if we had two resolutions, one for the space (the abscissas), one for the calculus (the ordinates).

We have noted earlier that the hypotheses about semi-local estimators in [4] are ambiguous. May be for the same reasons than Daurat et al., we are tempted to do so. Indeed, in all of our proofs, we do not need the "1" in the 1-Lipschitz hypothesis. But from a practical point of view, k-Lipschitz function for k > 1 may give non 8-connected digitization and it does not make a lot of sense to measure the length of a set of disconnected points (though we could dene a discrete curve as the curve, in the usual mathematical sense, of a function from Z to Z). Hence, in the following denition, as in the statement of our theorems, we assume a 1-Lipschitz function while we intentionally forget the "1" in the statements of the lemmas.

Denition

Denition 1. Let H : ]0, +∞[→ N * such that lim h→0 H(h) = +∞ and lim h→0 hH(h) = 0. We say that H is sparsity function. Let g : [a, b] → R be a rectiable function. The H-sparse estimator of the length of the curve C(g) is dened by

L Sp (g, h) = h N h i=0 ω i
where

ω i ∈ {0, 1, 7} H(h) for i = N h , ω N h ∈ {0, 1, 7} j with j ∈ (0, H(h)]
and the concatenation of the words ω i equals F(g, h).

An Illustration is given Figure 1. 

(x) = √ 1 + x 2 . Thus, when g is of class C 1 , one has L(g) = b a ϕ • g (t) dt.
The proof of Theorem 2 can be split in three parts. The rst one gives a bound on the error due to the ignorance of the exact abscissas of the curve extremities. The second one evaluates the dierence between the length of the curve C(g h ) and the length of the curve of the piecewise ane function

g m dened on [Ah, Bh] by g m (x k ) = g(x k ) (0 ≤ k ≤ N ).
The third part evaluates the dierence between L(g m ) and the length of the piecewise ane function Lemma 1. For any sparsity function H and any Lipschitz function g, we have

g h m dened on [Ah, Bh] by g h m (x k ) = g m (x k ) h = g(x k ) h (0 ≤ k ≤ N ).
lim h→0 L(g m ) = L(g). Furthermore, L(g) ≤ ϕ(k)(b -a)
where k is a Lipschitz constant for g.

Proof. Since g is k-Lipschitz, the slope of any chord of C(g) is less than k in modulus. It follows that the length of any polyline tting C(g) is bounded by ϕ(k)(b -a). Then, according to Jordan's denition of arc length, we get

L(g) ≤ ϕ(k)(b -a).
For any partition σ of an interval I, we note L σ the length of the polyline associated to the partition. Remember that, from the Jordan's denition of the arc length and the triangle inequality, if σ and σ are two partitions of the interval I such that σ ⊆ σ and f is a rectiable function dened on I, then

L σ ≤ L σ ≤ L(f ). Let ε > 0 and σ 0 = (y i ) n i=0 be a partition of [a, b] such that L(g) -L σ0 < ε/4.
Since H is a sparsity function, there exists h 0 such that

0 < h 0 < ε 8ϕ(k) and ∀u ∈ (0, h 0 ), uH(u) < min ε 2(n -1)(ϕ(k) -1) , min{y i+1 -y i | 0 ≤ i ≤ n -1} Let h ∈ (0, h 0 ). We set σ 0,h = (σ 0 ∪ σ h ) ∩ [Ah, Bh], σ a = (σ 0 ∩ [a, Ah]) ∪ {Ah}
and

σ b = (σ 0 ∩ [Bh, b]) ∪ {Bh}.
Then we dene σ 1 = σ a ∪ σ 0,h ∪ σ b . Firstly, we observe that

L(g) -L σ 0,h ≤ (L(g) -L σ1 ) + (L σ1 -L σ 0,h ) ≤ (L(g) -L σ0 ) + L σa + L σ b ≤ ε 4 + 2ϕ(k)h (for g is k-Lipschitz) ≤ ε 2 (for h < h 0 < ε 8ϕ(k) ) (2)
Then we give an upper bound for Bh), there exists an integer that we note s(i) s.t.

L σ 0,h -L σ h . For any i in [[1, N -1]] such that y i ∈ (Ah,
y i ∈ [x s(i) , x s(i+1) ).
Since m < y i+1 -y i for any y i , y i+1 ∈ (Ah, Bh), one has s(i) < s(i + 1). Let P i , Q i and R i be respectively the points of C(g) with abscissas x s(i) , y i , x s(i)+1 . We have (remember that

x s(i)+1 -x s(i) = m), L σ 0,h -L σ h = yi∈(Ah,Bh) d(P i , Q i ) + d(Q i , R i ) -d(P i , R i ) ≤ yi∈(Ah,Bh) (ϕ(k) -1)m (for g is k-Lispschitz) ≤ (n -1) × (ϕ(k) -1)m ≤ (n -1) × (ϕ(k) -1) ε 2(n -1)(ϕ(k) -1) ≤ ε 2 .
Then,

L(g) -L σ h ≤ (L(g) -L σ 0,h ) + (L σ 0,h -L σ h ) ≤ ε 2 + ε 2 ≤ ε.
We conclude the proof straightforwardly.

From Lemma 1 we derive immediately a bound on the errors due to the loss of the true left and right extremities of the curve C(g).

Corollary 1. For any k-Lipschitz function g, we have

L(g a ) + L(g b ) ≤ 2ϕ(k)h.
When g is dierentiable and its derivative is Lipschitz continuous, the next lemma gives us a bound on the dierence between the length of the curve C(g h ) and the length of the polyline C(g m ).

Lemma 2. If g is dierentiable and its derivative is Lipschitz continuous, we have for any h > 0

L(g h ) -L(g m ) ≤ M (b -a) 2 m (3)
where M is a Lipschitz constant for g .

Proof. Let M be a Lipschitz constant for g . Since the function ϕ is 1-Lipschitz continuous, the function ψ = ϕ • g is M -Lipschitz continuous. Thanks to the mean value theorem, we can nd a sequence

(t k ) N -1 k=0 such that for any k ∈ [[0, N -1]], g (t k ) = g(x k+1 ) -g(x k ) x k+1 -x k .
Then,

L(g h ) -L(g m ) = Bh Ah ψ(t) dt - N -1 k=0 (g(x k+1 ) -g(x k )) 2 + (x k+1 -x k ) 2 = N -1 k=0 x k+1 x k ψ(t) -ψ(t k ) dt ≤ N -1 k=0 M (x k+1 -x k ) 2 2 ≤ M 2 N -1 k=0 (x k+1 -x k )m ≤ M (b -a) 2 m
A trivial maximization shows that the absolute dierence between L(g m ) and L(g h m ) is bounded by 2N h. The next lemma gives us a better bound and provides a relation that will serve as a starting point when we will consider the case of concave functions.

Lemma 3. Let f 1 and f 2 be two piecewise ane functions dened on

[c, d] ⊂ R (d > c) with a common partition having p steps. Suppose that f 1 ≤ f 2 and f 1 -f 2 ∞ ≤ e for some e ∈ R. Then |L(f 1 ) -L(f 2 )| ≤ p e.
Proof. Let σ = (x i ) p i=0 be the common partition for f 1 and f 2 . We write m i for x i+1 -x i and s 1,i , resp. s 2,i , for the slope of f 1 , resp. f 2 , on the interval

[x i , x i+1 ]. L(f 1 ) -L(f 2 ) = p-1 i=0 m i (ϕ(s 1,i ) -ϕ(s 2,i )) = p-1 i=0 s 1,i + s 2,i ϕ(s 1,i ) + ϕ(s 2,i ) m i (s 1,i -s 2,i ).
Note that, for any i < p,

m i (s 1,i -s 2,i ) = f 2 (x i+1 ) -f 1 (x i+1 ) -(f 2 (x i ) -f 1 (x i )).
Thus, as, by hypothesis,

f 1 ≤ f 2 and f 1 -f 2 ∞ ≤ e, we get -e ≤ m i (s 1,i -s 2,i ) ≤ e.
Let ρ : R → R be the function dened by ρ(x) = x ϕ(x) . We observe that, for any

i ∈ [[0, p -1]], min(ρ(s 1,i ), ρ(s 2,i )) ≤ s 1,i + s 2,i ϕ(s 1,i ) + ϕ(s 2,i ) ≤ max(ρ(s 1,i ), ρ(s 2,i )).
Thus, as ρ is continuous, for any i ∈ [[0, p -1]] there exists a real s 0,i between s 1,i and s 2,i such that

ρ(s 0,i ) = s 1,i + s 2,i ϕ(s 1,i ) + ϕ(s 2,i )
.

Thereby, we have

L(f 1 ) -L(f 2 ) = p-1 i=0 ρ(s 0,i ) m i (s 1,i -s 2,i ). (4) 
As ρ ∞ = 1 we conclude that

|L(f 1 ) -L(f 2 )| ≤ p-1 i=0 |m i (s 1,i -s 2,i )| ≤ pe.
Thanks to Lemma 1, Lemma 2, and Lemma 3, which is applied to the piecewise ane functions g m and g h m (taking e = h), we can state our rst theorem on the convergence of Sparse length estimators.

Theorem 2. Let H be a sparsity function and g : [a, b] → R a 1-Lipschitz function. Then, the estimator L Sp converges toward the length of the curve C(g). Furthermore, if g is dierentiable and its derivative is Lipschitz continuous , we have

L(g) -L Sp (g, h) ≤ 2 ψ ∞ h + b -a 2 M hH(h) + (b -a) 1 H(h) (5) 
where ψ = ϕ • g and M is a Lipschitz constant for g .

The rst term in the right side of Formula 5 is due to the error on the bounds of the curve. Indeed, the two bounds of the curve domain cannot be on the grid at any resolution when h tends to 0. Hence, we have an unavoidable error in O(h). Note that this error does not exist when one computes the length of the boundary of a solid object (for, in this case, the curve is closed). Formula 5 shows two opposite trends for the determination of the sparsity step H(h): the term in O(hH(h)) the discretization error corresponds to the curve sampling error and tends to reduce the step H(h) while the term in O 1 H(h) the quantization error corresponds to the error due to the quantization of the sample points and tends to extend the step. The optimal convergence speed in h

1 2 is then obtained taking H(h) = Θ(h -1
2 ). Thus, only one in about h -1 2 value is needed to make a sparse estimation (which justies the adjective sparse). Then, the complexity in the optimal case is a O(r 1 2 ).

Concave functions

In this section, we assume that the function g is concave on [a, b]. This implies in particular that g admits left and right derivatives, noted g l and g r , at any point of (a, b) and is Lipschitz continuous on any closed subinterval of (a, b). Under this new hypothesis, we can improve the bound on the convergence speed of the estimated length toward the true length of the curve C(g). The functions g m and g h m are those dened in Section 3.2. Lemmas 4 and 5 are improvements of Lemmas 2 and 3 for concave curves. Figure 3 shows some experiments that illustrate the convergence rate obtained with Theorem 3. Lemma 4. If g admits a right derivative in Ah and a left derivative in Bh and if there exists a real k > 0 such that g r (x) -g l (y) ≤ k(y -x) for any x, y such that Ah ≤ x < y ≤ Bh then

L(g h ) -L(g m ) ≤ k(b -a) 4 m 2 . ( 6 
)
Proof. We dene the piecewise ane function g

+ m : [Ah, Bh] → R by g + m (x) = min g(x i ) + g r (x i )(x -x i ), g(x i+1 ) + g l (x i+1 )(x -x i+1 )
where [x i , x i+1 ] is the subinterval of the partition σ h that contains x. Note that gm + (x i ) (resp. gm + (x i+1 )) is uniquely dened and is equal to g(x i ) (resp. g(x i+1 )). Since g is concave, g m ≤ g h ≤ g + m so we can apply Lemma 7 on each subinterval of the partition σ h . Together with the hypothesis on the derivatives of g, this leads to the following inequalities.

L(g h ) -L(g m ) ≤ N -1 i=0 (x i+1 -x i ) (g r (x i ) -g l (x i+1 )) 2 4 ≤ N -1 i=0 k 4 (x i+1 -x i ) 3 ≤ k(b -a) 4 m 2 .
Hence, the result holds.

Observe that Inequality (6) corresponds to Inequality (3) that have been improved with m becoming m 2 under concavity assumption.

Lemma 5. Let f 1 and f 2 be two piecewise ane functions dened on [c, d] ⊂ R, (c < d), with a common partition σ having p steps and such that

f 1 ≤ f 2 ≤ f 1 + e for some constant e > 0. If furthermore f 2 is concave, then |L(f 1 ) -L(f 2 )| ≤ p M σ h e 2 + U e.
where M σ h is the harmonic mean of the lengths of σ subintervals and U = max(ϕ (s 2,0 ), ϕ (s 2,0 ) -2ϕ (s 2,p-1 ))) is a constant which depends on the slopes s 2,0 and s 2,p-1 of the rst and the last segments of f 2 .

Proof. Let σ = (x i ) p i=0 be the common partition for f 1 and f 2 . We write m i for x i+1 -x i and s 1,i , resp. s 2,i , for the slope of f 1 , resp. f 2 , on the interval [x i , x i+1 ]. Also, we recall that in Lemma 3 we proved (with weaker hypotheses) that

L(f 1 ) -L(f 2 ) = p-1 i=0 ρ(s 0,i ) m i (s 1,i -s 2,i ) = p-1 i=0 ρ(s 2,i ) m i (s 1,i -s 2,i ) + p-1 i=0 (ρ(s 0,i ) -ρ(s 2,i )) m i (s 1,i -s 2,i )
where s 0,i is between s 1,i and s 2,i and ρ

(x) = x ϕ(x) = x √ 1+x 2 = ϕ (x).
On the one hand, since the function f 2 is concave, the sequence (s 2,i ) p-1 i=0 is decreasing as is the sequence (ρ(s 2,i )) p-1 i=0 (for the function ρ is increasing). Hence, we can apply Lemma 8 with the settings

c i = m i (s 1,i -s 2,i ) = (f 1 (x i+1 ) -f 2 (x i+1 )) -(f 1 (x i ) -f 2 (x i )), u i = ρ(s 2,i ) -ρ(s 2,p-1 ), I = [-e, e].
Then, we get

p-1 i=0 ρ(s 2,i ) m i (s 1,i -s 2,i ) ≤ p-1 i=0 ρ(s 2,i ) -ρ(s 2,p-1 ) m i (s 1,i -s 2,i ) + p-1 i=0 ρ(s 2,p-1 ) m i (s 1,i -s 2,i ) ≤ (ρ(s 2,0 ) -ρ(s 2,p-1 ))e + |ρ(s 2,p-1 )| e ≤ U e.
where U = max(ρ(s 2,0 ), ρ(s 2,0 ) -2ρ(s 2,p-1 )).

On the other hand, the function ρ is 1-Lipschitz, so we have

|ρ(s 0,i ) -ρ(s 2,i )| ≤ |s 0,i -s 2,i | ≤ |s 1,i -s 2,i | . Then p-1 i=0 (ρ(s 0,i ) -ρ(s 2,i )) m i (s 1,i -s 2,i ) ≤ p-1 i=0 m i (s 1,i -s 2,i ) 2 ≤ p-1 i=0 (m i (s 1,i -s 2,i )) 2 m i ≤ pe 2 M σ h .
Eventually, we get

|L(f 1 ) -L(f 2 )| ≤ U e + p M σ h e 2 . ( 7 
)
From Lemma 5 and Lemma 4, we derive the following bound on the speed of convergence when the function g is concave.

Theorem 3. Let H be a sparsity function and g : [a, b] → R a concave 1-Lipschitz function of class C 2 . Then, we have

L(g) -L Sp (g, h) = O(h 2 H(h) 2 ) + O 1 H(h) 2 .
Proof. On the one hand, since g is of class C 2 , it satises the hypothesis of Lemma 4. So we have

L(g h ) -L(g m ) ≤ k(b -a) 4 (hH(h)) 2
where k = g ∞ .

On the other hand, Lemma 5 applied with

f 1 = g h m , f 2 = g m , p = N and e = h gives L(g m ) -L(g h m ) ≤ N M σ h h 2 + U h
where M σ h is the harmonic mean of the lengths of σ h subintervals and the constant U can be taken as max(ϕ (a), ϕ (a) -2ϕ (b))). From N ≤ b-a hH(h) + 1 and

N M σ h = (N -1) 1 hH(h) + 1 B h-x N -1 we get L(g m ) -L(g h m ) ≤ b -a H(h) 2 + h 2 + U h.
Thus,

L(g) -L(g h m ) ≤ T h + k(b -a) 4 (hH(h)) 2 + b -a H(h) 2 + h 2 + U h where T = 2 ϕ • g ∞ . Observing that either (hH(h)) 2 ≥ h or 1 H(h) 2 ≥ h, the result holds.
The result given by Theorem 3 is illustrated on Fig. 3 with the natural logarithmic. Compared to Theorem 2, concavity allows squarring each term of the right hand side of the inequality, which does not change the optimal size for H(h) but improves the optimal convergence speed up to h. 

H(h)=h^{-1/4} H(h)=h^{-1/3} H(h)=h^{-1/2} H(h)=h^{-2/3} @A L(gm) -L(g h m )
Fig. 3: An illustration of the various convergence rates. We have computed the length of the curve y = ln(x), x ∈ [1, 2], using the sparse estimators dened by

H(h) = h -α where α ∈ { 1 4 , 1 3 , 1 2 , 2
3 }, for the resolutions dened by r = 1.5 n , n ∈ [1, 40]. (a) Discretization error (the errors on the left and the right bounds of the interval have been withdrew). We observe the convergence in O(h 2 H(h) 2 ) which appears in Theorem 3. (b) Quantization error. For α ∈ { 1 4 , 1 3 , 1 2 }, we observe the convergence is a O(1/H(h) 2 ), which appears in Theorem 3. For α = 2 3 , the condition (iii) of Prop. 1 is satised and thus the piecewise ane function g h m is concave. Hence, we can observe that the convergence is a O(h) as deduced from Lemma 6.

Strong concavity

When the function g is concave, the piecewise ane function g m is clearly also concave. Nevertheless, the second piecewise function g h m is not necessary concave. Indeed, we exhibit in Appendix B a function g that is concave and for which the function g h m is nonconcave for any h below some threshold. This section gives some sucient conditions for g h m to be also concave and studies the consequences on the convergence speed of such an assumption. Proposition 1. Let H be a sparsity function and g : [a, b] → R a concave function of class C 2 . If one of the following condition holds, then there exists h 0 > 0 such that, for any h < h 0 , the piecewise ane function

g h m is concave on [Ah, (A + N 0 H(h))h] where A = a h and N 0 = b-a hH(h) . (i) H(h) = h -1 2 and max(g ) < -1. (ii) H(h) = h -1 2 and g(x) = ax 2 + bx + c where |a| ≥ 1 2 . (iii) hH(h) 2 → +∞ as h → 0 and max(g ) < 0.
Proof. The piecewise ane function

g h m is concave on [Ah, (A + N 0 H(h))h] i g h m (x i + m) + g h m (x i -m) -2g h m (x i ) ≤ 0 for any i ∈ [[1, N 0 -1]]. Let n be an integer in [[1, N 0 -1]].
We make Taylor expansions of g at x n to the second order.

g(x n + m) + g(x n -m) = 2g(x n ) + m 2 g (x n ) + o(m 2 ) Then, g h m (x n + m) + g h m (x n -m) -2g h m (x n ) = g(x n + m) + g(x n -m) -2g(x n ) + E h where |E| < 2 = m 2 g (x n ) + E h + o(m 2 ).
Thus, setting M = max(g ),

g h m (x n + m) + g h m (x n -m) -2g h m (x n ) h < -hH(h) 2 M + 2 + o(hH(h) 2 ). (8)
Thanks to Inequality (8), noting that its left hand side is an integer (also that when g is a 2-th order polynomial the term o(hH(h) 2 ) vanishes), the reader can easily check the three parts of the proposition.

The following lemma is an improvement of Lemma 5 for two concave piecewise ane functions. Lemma 6. Let f 1 and f 2 be two concave piecewise ane functions dened on

[c, d] ⊂ R such that f 1 ≤ f 2 ≤ f 1 + e
for some e > 0 and f 1 , f 2 have the same monotonicity on each subinterval on which they are ane. Then

|L(f 1 ) -L(f 2 )| ≤ U e.
where U is a constant dened as follows. Given a common partition σ = (x i ) p i=0 of the interval [c, d] related to the piecewise ane functions f 1 and f 2 , let s 1,0 , s 1,p-1 , resp. s 2,0 , s 2,p-1 , be the slopes of the rst and last segments of C(f 1 ), resp. C(f 2 ). Now, let α = s1,0+s2,0 ϕ(s1,0)+ϕ(s2,0) and β = s1,p-1+s2,p-1 ϕ(s1,p-1)+ϕ(s2,p-1) . Then,

U = max(α, α -2β).
Proof. Let σ = (x i ) p i=0 be a common partition for f 1 and f 2 . We write m i for x i+1 -x i and s 1,i , resp. s 2,i , for the slope of f 1 , resp. f 2 , on the interval [x i , x i+1 ]. Since f 1 and f 2 are concave, the sequences (s 1,i ) and (s 2,j ) are monotonically non-increasing. Furthermore, since f 1 and f 2 have the same monotonicity, s 1,i and s 2,i have the same sign for any i ∈ [[0, p -1]]. In Lemma 3 we proved (with weaker hypotheses) that

L(f 1 ) -L(f 2 ) = p-1 i=0 ρ(s 0,i ) m i (s 1,i -s 2,i ) (9) where ρ(x) = x ϕ(x) = x √ 1+x 2 and ρ(s 0,i ) = s1,i+s2,i ϕ(s1,i)+ϕ(s2,i) .
Firstly, we prove that the sequence (ρ(s 0,i )) is also monotonically non-increasing. Let i < j be two integers in [[0, p -1]].

ρ(s 0,i ) ≥ ρ(s 0,j ) ⇐⇒ s 1,i + s 2,i ϕ(s 1,i ) + ϕ(s 2,i ) ≥ s 1,j + s 2,j ϕ(s 1,j ) + ϕ(s 2,j ) ⇐⇒ s 1,i ϕ(s 1,j ) -s 1,j ϕ(s 1,i ) + s 2,i ϕ(s 2,j ) -s 2,j ϕ(s 2,i ) + s 1,i ϕ(s 2,j ) + s 2,i ϕ(s 1,j ) ≥ s 1,j ϕ(s 2,i ) + s 2,j ϕ(s 1,i ) ⇐⇒ ϕ(s 1,i )ϕ(s 1,j ) ρ(s 1,i ) -ρ(s 1,j ) + ϕ(s 2,i )ϕ(s 2,j ) ρ(s 2,i ) -ρ(s 2,j ) + s 1,i ϕ(s 2,j ) + s 2,i ϕ(s 1,j ) ≥ s 1,j ϕ(s 2,i ) + s 2,j ϕ(s 1,i )
The terms ρ(s 1,i ) -ρ(s 1,j ) and ρ(s 2,i ) -ρ(s 2,j ) are non-negative because (s 1,i ) and (s 2,j ) are monotonically non-increasing (and the function ρ is increasing). Hence,

ρ(s 0,i ) ≥ ρ(s 0,j ) ⇐ s 1,i ϕ(s 2,j ) + s 2,i ϕ(s 1,j ) ≥ s 1,j ϕ(s 2,i ) + s 2,j ϕ(s 1,i ) (10) 
If s 1,j ≥ 0, and thus s 2,j , s 1,i , s 2,i ≥ 0, we can square the two terms of the inequality in the right hand side of ( 10)

ρ(s 0,i ) ≥ ρ(s 0,j ) ⇐ s 2 1,i (1 + s 2 2,j ) + s 2 2,i (1 + s 2 1,j ) + 2s 1,i s 2,i ϕ(s 1,j )ϕ(s 2,j ) ≥ s 2 1,j (1 + s 2 2,i ) + s 2 2,j (1 + s 2 1,i ) + 2s 1,j s 2,j ϕ(s 1,i )ϕ(s 2,i ) ⇐ s 2 1,i + s 2 2,i + 2s 1,i s 2,i ϕ(s 1,j )ϕ(s 2,j ) ≥ s 2 1,j + s 2 2,j + 2s 1,j s 2,j ϕ(s 1,i )ϕ(s 2,i ) ⇐ s 2 1,i + s 2 2,i + A ρ(s 1,i )ρ(s 2,i ) ≥ s 2 1,j + s 2 2,j + A ρ(s 1,j )ρ(s 2,j ) where A = 2ϕ(s 1,i )ϕ(s 2,i )ϕ(s 1,j )ϕ(s 2,j ) is clearly non-negative.
Since the function ρ is monotonically non-decreasing and odd, it is plain that the last inequality is true under all our assumptions.

The case where s 1,i ≤ 0, and thus s 2,i , s 1,j , s 2,j ≤ 0 is similar. The last case, where s 1,i ≥ 0 ≥ s 1,j , and thus s 2,i ≥ 0 ≥ s 2,j , is obvious. Thereby, we have proved that the sequence (ρ(s 0,i )) is monotonically non-decreasing. Now, from Lemma 8, taking

c i = m i (s 1,i -s 2,i ) = (f 1 (x i+1 ) -f 2 (x i+1 )) -(f 1 (x i ) -f 2 (x i )), u i = ρ(s 0,i ) -ρ(s 0,p-1 ) and I = [-e, e],
we derive from (9) that

|L(f 1 ) -L(f 2 )| ≤ (ρ(s 0,0 ) -ρ(s 0,p-1 ))e + |ρ(s 0,p-1 )| p-1 i=0 m i (s 1,i -s 2,i ) ≤ (ρ(s 0,0 ) -ρ(s 0,p-1 ))e + |ρ(s 0,p-1 )| e ≤ U e
where U = max(ρ(s 0,0 ), ρ(s 0,0 ) -2ρ(s 0,p-1 )).

Corollary 2. Let H be a sparsity function and g :

[a, b] → R a concave 1- Lipschitz function of class C 2 . If, for some h 0 > 0, the function g h m is concave on [Ah, (A + N 0 H(h))h] where A = a h and N 0 = b-a hH(h)
for any h < h 0 , then we have

L(g) -L Sp (g, h) = O(h 2 H(h) 2 ) + O(h).
Proof. From Corollary 1, we have

L(g a ) + L(g b ) ≤ 2 ϕ • g ∞ h. ( 11 
)
From Lemma 4, we get

L(g h ) -L(g m ) ≤ (b -a) g ∞ 4 (hH(h)) 2 . ( 12 
)
Let N 0 = b-a hH(h) . We write g m|1 and g m|2 , resp. g h m|1 and g h m|2 for the restrictions of the function g m , resp. g h m , to the intervals [A, (A + N 0 H(h))h] and

[(A + N 0 H(h))h, B h].
The functions g m|1 and g h m|1 are piecewise ane with subintervals of width m = hH(h) while, if N 0 = N , the functions g m|2 and g h m|2 are ane on an interval of width αh where α is an integer in

[1, m). It follows from Lemma 6 that L(g m|1 ) -L(g h m|1 ) ≤ U h (13) 
where U is bounded by max(ϕ (g (a) + 1), ϕ (g (a) + 1) -2ϕ (g (b) -1)) which does not depend on h. Indeed, with the notations of Lemma 6, U = max(α, α -2β) where α = s1,0+s2,0 ϕ(s1,0)+ϕ(s2,0) lies between s1,0 ϕ(s1,0) and s2,0 ϕ(s2,0) , that is between ϕ (s 1,0 ) and ϕ (s 2,0 ). On the one hand ϕ (s 1,0 ) is lower than ϕ (g (a)) for ϕ is monotonically increasing and g m is concave. On the other hand, it can easily be proved that s 2,0 ≤ s 1,0 + 1 H(h) ≤ g (a) + 1. Hence, α ≤ ϕ (g (a) + 1).

Alike, we have

β ≥ ϕ (g (b) -1)
and thus

U ≤ max(ϕ (g (a) + 1), ϕ (g (a) + 1) -2ϕ (g (b) -1)).
Finally, we derive immediately from Lemma 3 that

L(g m|2 ) -L(g h m|2 ) ≤ h. (14) 
As

L(g) = L(g a ) + L(g h ) + L(g b ),
L(g m ) = L(g m|1 ) + L(g m|2 ) and

L Sp (g, h) = L(g h m ) = L(g h m|1 ) + L(g h m|2 ),
the result follows readily from eqs. ( 11) to ( 14).

From Corollary 2, it follows that, to speed up the convergence, we shall take the smallest sparsity step H(h) provided the hypothesis about the concavity is satised. According to Proposition 1, this should lead us to choose the function H such that H dominates h -1 2 as h → 0. For instance, we can take

H(h) = h -1 2 -ε
where ε > 0 and ε ≈ 0. Then, the convergence speed is h 1-2ε . Note that h is a minimal error bound that cannot be improved in the general case since for the function g dened by g

(x) = ( 19 48 ) 2 -x 2 , x ∈ [ 1 16 , 19 48 ], we have shown that L(g) -L Sp (g, h) ≥ 0.06h (see Appendix C).

Conclusion

In this article, we have studied some convergence properties of a class of semilocal length estimators in the concave and the general cases. These estimators need few information about the curve: the proportion of points of the curve used for the computation tends to 0 as the resolution tends toward innity. That is why we propose to call them sparse estimators. In a future work, we plan to extend our estimators to the nD Euclidean space to compute k-volumes, k < n.

We have also to study how the material presented in this article behave with Jordan curves obtained as boundary of solid objects through various discretization schemes. Furthermore, the denition of the sparse estimators relies on Jordan's denition for curve length. It would be interesting to keep the main idea from these estimators while relying on the more general denition of Minkowski (as in [2]). This could be more realistic in the framework of multigrid convergence, since physic objects cannot be considered as smooth (nor convex, etc. ) at any resolution. Another extension of this work is to check whether the proofs of convergence obtained for sparse estimators can help to obtain new proofs for the convergence of adaptative length estimators as the MDSS. This could lead to the denition of a larger class of geometric feature estimators including sparse estimators and MDSS. Eventually, there is a need to nd how to estimate the resolution of a given curve.

A Technical lemmas Lemma 7. Let ABC be a triangle in R 2 (A = C) and Γ ⊂ R 2 be a rectiable curve from A to C included in the triangle ABC such that the set between the segment AC and the curve Γ is convex. Let B be an orthonormal basis of R 2 such that, in the coordinate system (A, B), the abscissa of C, noted m, is positive and the abscissa of B strictly lies between 0 and m. Let α, β, γ be the slopes, in the basis B, of the line from B to C, resp. from C to A, resp. from A to B. Then, the length of Γ , L Γ , is such that Proof. Since the set bounded by the segment AC and the curve Γ is convex and included in the triangle ABC, its perimeter is less than, or equal to, the perimeter of the triangle ABC (see [18,Part XII]). Thus, AC ≤ L Γ ≤ AB +BC. Since x B , the abscissa of the point B in the coordinate system (A, B) veries 0 x B < m, β lies between α and γ. Then there exists a real k ∈ [0, 1] such that β = kγ + (1 -k)α. It can be seen that the vectors AB, BC and AC have coordinates (km, kmγ), ((1 -k)m, (1 -k)mα) and (m, mβ). Thus,

AC ≤ L Γ ≤ AC + m (γ -α) 2 4 .
AB + BC -AC = m kϕ(γ) + (1 -k)ϕ(α) -ϕ(β) = m k ϕ(γ) -ϕ(kγ + (1 -k)α) + (1 -k) ϕ(α) -ϕ(kγ + (1 -k)α) = mk(1 -k)(γ -α) ϕ (ξ 1 ) -ϕ (ξ 2 ) = mk(1 -k)(γ -α)(ξ 1 -ξ 2 )ϕ (ξ).
where ξ 1 , ξ 2 , ξ lie between α and γ.

Hence,

AB + BC -AC ≤ m(γ -α) 2 4 ( 15 
)
for ϕ ∞ = 1. So, the result holds.

Remark 1. We could improve the previous result by a factor 2 since it appears from the above calculus that AB+BC-AC m is the 'vertical distance' between the function ϕ and one of its chord (see Fig. 5) and is thus maximal when the chord is 'horizontal'. Lemma 8. Let (u n ) n∈N a monotonically non-increasing sequence of real non negative numbers and (c n ) n∈N a sequence of reals in an interval I such that j i=0 c i ∈ I for any integer j. Then, j i=0 c i u i ∈ u 0 I for any integer j. Proof. If u 0 = 0, then u n = 0 for any n and the result is obvious. From now, we assume u 0 > 0. Let n ∈ N and S = n i=0 c i u i . We set C j = j i=0 c i for any j ≤ n, p i = ui-ui+1 u0 for any i ≤ n -1 and p n = un u0 . The reals p i are all non-negative and their sum equals 1. We can easily check that

S = n-1 i=0 i j=0 c j (u i -u i+1 ) + n j=0 c j u n = u 0 n i=0 p i C i
The last equality above shows that the real 1 u0 S is the barycenter with nonnegative weights of numbers in the interval I. Thus, the result holds.

B Strong concavity: counterexamples

In this appendix, we show that a piecewise ane function can be concave and its digitization, beyond some resolution, never concave (that is, the piecewise ane function g h m dened in Sec. 3.2 is not concave for grid spacing h below some threshold). The rst counterexample uses a local estimator and the second one uses a sparse estimator. Both counterexamples rely on the following theorem proved in [17] (in fact, an extended version of the theorem is needed for the second counterexample). This theorem asserts that, given a function x → ax 2 + bx + c, the distribution in [0, h] of the values of the expression {a(kh) 2 + b(kh) + c} h , k ∈ N, which are the errors resulting from the quantization, tends toward the equidistribution. Theorem 4 ([17,Lemma 2 and Prop. 3]). Let a, b ∈ R, a < b. Let g : [a, b] → R be a polynomial function of degree 2. Then, for all interval I ⊆ [0, 1],

lim h→0 card{x ∈ hN ∩ [a, b] | g(x) mod h ∈ hI} card(hN ∩ [a, b]) = µ(I)
where µ(I) is the classical length of I.

B.1 Counterexample #1: local estimation

We digitize the parabola associated to the function g(x) = 2x -x 2 , x ∈ [0, 1] and we split this parabola into segments of size 5h. Thanks to Theorem 4, we prove that, for each grid spacing h below some threshold, we can choose an integer p such that the nite dierence g h m ((p + 5)h) -g h m (ph) is less than or equal to the grid spacing h while the nite dierence g h m ((p + 10)h) -g h m ((p + 5)h) is greater than or equal to twice the grid spacing h. Thus, the function g h m is not concave on [0, 1].

Detailed calculus

According to Theorem 4, it exists a real h 0 > 0 such that, for any h ∈ (0, h 0 ), one has 

card n ∈ [[
g h m ((n 0 + 5)h) -g h m (n 0 h) < g((n 0 + 5)h) -(g(n 0 h) - 7 12 h) < 17 60 × 5h + 7 12 h < 2h.
As the term in the left hand side of the above inequalities is a multiple of h, we get g h m ((n 0 + 5)h) -g h m (n 0 h) ≤ h. In the same way, we obtain

g h m ((n 0 + 10)h) -g h m (n 0 h) > g((n 0 + 10)h) -h -(g(n 0 h) - 4 12 ) > 16 60 × 10h - 2 3 h > 2h.
Thus, g h m ((n 0 + 10)h) -g h m (n 0 h) ≥ 3h. Finally, we have

g h m ((n 0 + 10)h) -g h m (n 0 h) > 2 g h m ((n 0 + 5)h) -g h m (n 0 h) .
That is, the function g h m is strictly convex on [n 0 h, (n 0 + 10)h].

B.2 Counterexample #2 : sparse estimation

For the second counterexample, we discretize the parabola y = g(x) = 1 50 (2xx2 ), x ∈ [0, 1] and we use segments of size H(h) = h -1 2 . Substantially, this second counterexample is similar to the previous one though it requires the following extended version of Theorem 4.

Proposition 2. Let a, b ∈ R, a < b, and g : [a, b] → R a quadratic polynomial function. Let (J h ) h>0 a family of integer intervals such that hJ h ⊆ [a, b] for any h > 0 and lim h→0 card J h = +∞. Then, for any interval I ⊆ [0, 1], one has:

lim h→0 card{n ∈ J h | g(nh) mod h ∈ hI} card J h = µ(I)
Below, we present the sketch of the proof of Proposition 2. The formal proof will be given in a future work. Lemma 10. Let g : [a, b] → R be a quadratic polynomial function and (J r ) r>0 be an integer interval family such that ∀r > 0, rJ r ⊆ [a, b] and lim r→0 card J r = +∞. If for any real c = 0 is is true that lim r→0 L r,k = 0, then

Sketch of the proof

lim r→0 card{n ∈ J r | g(nr) mod r ∈ rI} card J r = µ(I)
The result follows immediatly.

Counterexample

We take g

(x) = 1 50 (2x -x 2 ), x ∈ [0, 1] and H(h) = h -1 2 . We set J h = 1 h - c √ h , 1 h - d √ h where c = 35, d = c -1
2 . The family of integer intervals (J h ) satises the hypotheses of Proposition 2: hJ h ⊂ [0, 1] (for small enough h) and card J r → ∞ as r → 0. Hence, there exists h 0 such that

∀h < h 0 , ∃n h ∈ {n ∈ J h | {g(nh)} h ∈ [αh, β h) } where α = 2 5 and β = 1 2 . Let h < h 0 and n h ∈ J h such that {g(nh)} h ∈ [αh, β h). The constants c and d are such that [n h h, n h h + 2m] ⊆ [1 -c √ h, 1 -(d -2) √ h], (d -2) √ h ≤ 25g (x) ≤ c √ h on [1 -c √ h, 1 -(d -2) √ h].
We can now compare the growth of g h m on [n h h, n h h+m] and

[n h h, n h h+2m]. g h m (n h h + m) -g h m (n h h) ≤ g(n h h + m) -g(n h h) + {g(n h h)} h < c 25 √ h × m + β h < 7 5 h -1 2 h -1 2 + 1 2 h < 2h (if h ≤ 1). Thus, g h m (n h h + m) -g h m (n h h) ≤ h. Alike, we have g h m (n h h + 2m) -g h m (n h h) ≥ g(n h h + 2m) -g(n h h) + {g(n h h)} h -{g(n h h + 2m)} h > d-2 25 √ h × 2m + αh -h > 2(d-2) 25 h -1 2 h -1 2 - 3 5 h > 2h.
Thus,

g h m (n h h + 2m) -g h m (n h h) ≥ 3h. Finally, we have proved that g h m (n h h + 2m) -g h m (n h h) > 2 g h m (n h h + m) -g h m (n h h) .
This last inequality shows that the function g h m is convex on [n h h, n h h + 2α]. Thereby, for any h < h 0 , there exists an interval [nh, nh + 2m] ⊂ [0, 1] on which the function g h m is convex.

C Inferior bound for the method error in the concave case

We give an inferior bound on the dierence between the true length L(g) of the parabola y = g(x) = ( 19 48 ) 2 -x 2 for x ∈ [ 1 16 , 19 48 ] and the length L Sp (g, h), obtained with the sparse estimator dened by the sparsity function H(h) = h -1 2 . Let g m and g h m be the piecewise ane functions dened in Section 3.2. Then the lengths of their curves satisfy L(g h m ) + 0.05h ≤ L(g m ) ≤ L(g) for any h = (12(8p + 1)) -2 where p ∈ N. Moreover, the bounds of the interval [ 1 16 , 19 48 ] are multiple of h. Hence, there is no error due to the bounds. Eventually, for any p ∈ N and h = (12(8p + 1)) -2 , we get L(g) -L Sp (g, h) ≥ 0.06h.

Detailed calculus

Let h = 1 144(8p+1) 2 (p ∈ N) and H(h) = h -1 2 = 12(8p + 1).
Thereby, here we have m = hH(h) = Furthermore, we have g(x 0 ) ≡ 0 (mod h)

and g(x i ) ≡ 1 2 ih (mod h) (16) We set c = h 2 = m 2 2 , z i = 1 2 (x i + x i+1
) and y i = g(x i+1 ) -g(x i ) = -2m z i . Then, from ( 16 By summing,

L(g m )-L(g h m ) ≥ m 2 16p+1 i=0 z 2i+1 1 + 4z 2i+1 2 - z 2i √ 1 + 4z 2i 2 - m 3 8 32p+3 i=0 1 √ 1 + 4z i 2 .
Since the function f 1 (x) =

x √ 1+4x 2 is monotonically increasing and concave, one has

16p+1 i=0 (f 1 (z 2i+1 ) -f 1 (z 2i )) ≥ 1 2 32p+3 i=0 (f 1 (z i+1 ) -f 1 (z i )) ≥ 1 2 (f 1 (z 32p+4 ) -f 1 (z 0 ))
Moreover, the function f 2 (x) = ) .

Since m ≤ 1 12 for any p ∈ N, we obtain

L(g m ) -L(g h m ) > 0.066m 2 .
Eventually, for any h = 1 (12(8p+3)) 2 , we have shown that L(g) ≥ L(g m ) ≥ L(g h m ) + 0.06h.
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Fig. 1 :

 1 Fig. 1: Sparse estimation at two resolutions

  Figure 2 shows the three functions g, g m , g h m on an interval [x k , x k+1 ].

Fig. 2 :

 2 Fig.2: The two main parts of the estimation error: the curve g (in green, solid) to its chord g m (in magenta, dotted-dashed) then the curve chord to the chord g h m (in blue, dashed) of the digitized curve D O (g, h) (black points).

FigFig. 4 :

 4 Fig.4illustrates the conguration studied in Lemma 7.

Fig. 5 :

 5 Fig. 5: = AB + BC -AC.

  1. In [17, Lemma 2], we take k = 0 (we does not need other values) and we change the denition of A r and B r to [[A r , B r ]] = J r (thus, N r = card J r ). From rJ r ⊆ [a, b], the inequalities obtained under the hypothesis cα > 0 (instead of c > 0) become : -2cαrN r ≤ 2cα(b -a + r) ; -|θ| = |2cαr(A r + k) + cβ| ≤ 2cα |b| + 2cαr |k| + |cβ|. The remainder of the proof of [17, Lemma 2] is unchanged. Thus, we get a new version of the lemma (restricted to the case k = 0). Lemma 9. For any quadratic polynomial function g : [a, b] → R, for any real c = 0 and for any integer interval family (J r ) r>0 such that ∀r > 0, rJ r ⊆ [a, b] and lim r→0 card J r = +∞, one has

  For any i ∈ [[0, N ]], x i = 1 16 + i m = x 0 + i m (in particular, the last interval of the sparse estimation have size m).

  ), we deriveL(g m ) -L(g h m ) = 16p+1 i=0 m 2 + y 2i 2 + m 2 + y 2i+1 2 -m 2 + (y 2i -c) 2 + m 2 + (y 2i+1 + c) 2On the one handm 2 + y 2i 2 -m 2 + (y 2i -c) 2 = -On the other hand m 2 + y 2i+1 2 -m 2 + (y 2i+1 + c)

sn RD the hypothesis on g is not lerF yn the one hndD the ode F(g, h) is supposed to hve {0, 1} s lphetF yn the other hndD RD rop I does not retin ny hypothesis on g ut its lss of di'erentiilityF sndeedD in the proofD the derivtive of g needs not e positive nor limited y IF

[17, Property 3] does not depend upon the denition of A r and B r . So, we can state the following new version of the property.