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Modeling for non isothermal cavitation using four-equation

models
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Abstract

A compressible, two-phase, one-fluid solver has been developed to investigate the

behaviour of cavitation models including thermodynamic effects. The code is com-

posed by three conservation laws for mixture variables (mass, momentum and total

energy) and a supplementary transport equation for the void ratio. Two formulations

for the mass transfer between phases are studied. Numerical simulations are firstly

performed on rarefaction cavitating problems in which the working fluid is hot water

and freon R-114. A realistic turbulent Venturi case with freon R-114 is performed

and comparisons are done between 3- and 4-equation models. A warming effect is

highlighted downstream the cavitation pocket in the region of pressure recuperation.
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Nomenclature

B B-factor

c speed of sound

Cp, Cv thermal capacities

E total energy

e internal energy

g free Gibbs enthalpy

h enthalpy

Lvap latent heat of vaporization

ṁ mass transfer between phases

P static pressure

Pvap vapour pressure

P∞ reference pressure

Pr, Prt molecular and turbulent Prandtl numbers

Q total heat flux

q energy of formation

ReL Reynolds number based on the length L

T temperature

Tref reference temperature

u, v velocity components

w conservative variables

Y mass fraction of gas

α volume fraction of gas

γ ratio of thermal capacities

λ, λt molecular and turbulent thermal conductivity
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µ, µt molecular and eddy viscosity

ρ density

σ cavitation number

τ total stress tensor

()l liquid value

()v vapour value

()sat saturation value

()v viscous

()t turbulent

1. Introduction

Cavitation is a significant engineering phenomenon that occurs in fluid machinery,

fuel injectors, marine propellers, nozzles, underwater bodies, etc. In most cases, cav-

itation is an undesirable phenomenon, significantly degrading performance, resulting

in reduced flow rates, lower pressure increases in pumps, load asymmetry, vibrations,

noise and erosion. Such flows are characterized by important variations of the local

Mach number (due to the drastic diminution of the speed of sound in the mixture),

large density ratio between the liquid and the vapor phases, compressibility effects

and non equilibrium thermodynamic states.

Cavitation can be manifested at a constant temperature, and thus, it is usually

assumed to be an isothermal phenomenon. However, the constant temperature hy-

pothesis is no longer valid when cryogenic fluids (also known as thermosensitive

fluids) are considered. For such fluids, the liquid-vapour density ratio is lower than
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that of typical fluids (cold water) and consequently more liquid mass has to vaporize

to sustain a cavity. Therefore evaporative cooling effects are more pronounced and

the temperature of the liquid in the immediate vicinity of the liquid-vapour interface

is depressed below the free-stream temperature. Because of the strong variation of

thermodynamic properties (vapour pressure, density), the temperature depression,

negligible in water, is quite substantial. The local cooling effect delays the cavitation

phenomenon and reduces the local vapour pressure of the fluid, which leads to a

lower observed cavity pressure.

Several physical and numerical models have been developed to investigate cavitating

flows within the framework of averaged two-phase model or bubbly models based on

the Rayleigh-Plesset equation. For the averaged model, there are different approaches

according to the assumptions made on the local thermodynamic equilibrium and the

slip condition between phases. A hierarchy of models exists, with the numbers of

equations ranging from seven to three only. The full non-equilibrium seven-equation

models are the most complete. For both fluids, it contains equations for the mass,

momentum and energy, and the seventh equation describes the topology of the flow.

These models can take into account the physical details occurring in the cavitation

phenomenon such as mass exchange, thermal transfer and surface tension. However,

the transfer terms have to be known; such quantities are usually very difficult to

obtain. Various formulations have been investigated to deal with metastable states

and evaporation front dynamics [1, 2, 3, 4, 5]. Temperature and free Gibbs enthalpy

exchange terms are included in the equations as relaxation terms to model heat and

mass transfer. For thermal-hydraulics applications with cavitation, nucleation and

boiling flows, a six-equation model has been developed [6, 7]. The interfacial mass

transfer is modeled as a function of the interfacial heat transfer terms and the inter-
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facial phase-averaged enthalpies.

A reduced five-equation model can be derived with the assumptions of velocity equi-

librium and pressure equilibrium. The archetype five-equation model is that of Kapila

[8]. It is composed of four conservation laws: two for masses, one for the mixture

momentum and one for the mixture energy. It is completed by an equation for a

non-conservative quantity describing the flow topology, usually the void ratio. Such

a model has been used for inviscid high speed cavitating applications and cavitation

pocket in fuel injector nozzles [9, 10]. Heat and mass transfer processes are modelled

through thermal and chemical relaxation procedures.

By assuming the thermal equilibrium between phases, a four-equation model can

be expressed. A very popular formulation, originally developed to simulate tur-

bulent cavitating flows in cold water, has been adapted to cryogenic applications

[11, 12, 13, 14]. It is composed by three conservation laws for mixture quantities

(mass, momentum, energy) plus a mass equation for the vapour or liquid density

including a cavitation source term. The main difficulty is related to the formulation

of the source term and the tunable parameters involved for the vaporization and con-

densation processes (different sets of parameters are presented in [12]). Moreover,

this family of models are not thermodynamically well-posed and does not respect

thermodynamic constraints [15]. Another popular model devoted to ebullition prob-

lems uses a mass fraction equation with a relaxation term (Homogeneous Relaxation

Model). The source term involves a relaxation time that is the time for the system

to regain its thermodynamic equilibrium state. This time is difficult to determine

and is estimated from experimental data [16, 17, 18, 19].

With the assumption of complete thermodynamic equilibrium between phases (local

temperature, pressure and free Gibbs enthalpy equality between phases), we obtain

the 3-equation models or Homogeneous Equilibrium Models (HEM). Vaporization
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or condensation processes are assumed to be instantaneous. An equation of state

(EOS) is necessary to close the system. Different closure relations (tabulated EOS

or combination of pure phase EOSs) that link the pressure to the thermodynamic

variables have been proposed [20, 21, 22, 23, 24].

The bubbly flow models are composed by three balance equations for the mixture

quantities coupled with a macroscopic model for the bubble dynamics based on the

Rayleigh-Plesset equation. This model is capable of handling either single bubbles or

clouds of bubbles that grow and decrease through a pressure field [25, 26, 27]. In the

case where heat transfer is negligible, the phase change is driven by inertia effects.

Yet, when thermal effects are involved, the liquid inertia become rapidly negligible

and the evolution is controlled by the heat flux provided by the liquid at the bubble

surface. By comparing characteristic times of thermal and inertial phenomena, it

can be shown that this thermal regime is an accurate representation of reality for

moderate levels of superheating or subcooling [28, 29, 30].

In a recent study, we proposed a new mass transfer formulation associated to a four-

equation model for isothermal cavitation [31, 32]. The generic formulation involves

the ratio c2/c2wallis between the mixture speed of sound and the Wallis velocity, which

is the speed of sound without heat and mass transfer. First, we extend the isothermal

formulation with a non isothermal thermodynamic path using a linear approxima-

tion of the vapour pressure evolution. This model is built using the mixture speed of

sound evaluated with a modified barotropic equation of state [24]. A second closure

is investigated using a mixture of stiffened gas EOS and its associated mixture speed

of sound. The validation is done through one-dimensional inviscid double rarefaction

test cases in which reference solutions have been computed [5]. A new test case is
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proposed with the thermosensitive freon R-114 (C2Cl2F4) as working fluid. Secondly,

models are compared with experimental data on a turbulent Venturi case in which

the running fluid is freon R-114. Local analyses with void ratio profiles and wall

temperature depression are proposed. A warming effect downstream the cavitation

pocket is exhibited.

This paper is organized as follows. We give a brief description of models. The aver-

aged Navier-Stokes equations are presented and the numerical methods are described.

Numerical results are presented with comparisons between models and validations

against two-fluid solutions. The study of the turbulent venturi case is described.

Finally, conclusions and future investigations are discussed.

2. Mixture models and mass transfer

The numerical simulations are carried out using an in-house CFD code solving the

one-fluid compressible Euler and Navier-Stokes systems.

The homogeneous mixture approach is used to model two-phase flows. The phases

are assumed to be sufficiently well mixed and the disperse particle size are sufficiently

small thereby eliminating any significant relative motion. The phases are strongly

coupled and moving at the same velocity. In addition, the phases are assumed to

be in thermal and mechanical equilibrium: they share the same temperature T and

the same pressure P . The evolution of the two-phase flow can be described by the

conservation laws that employ the representative flow properties as unknowns just

as in a single-phase problem.

We introduce α the void fraction or the averaged fraction of presence of the vapour.

The density ρ, the center of mass velocity u and the internal energy e for the mixture
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are defined by [33]:

ρ = αρv + (1− α)ρl (1)

ρu = αρvu+ (1− α)ρlu (2)

ρe = αρvev + (1− α)ρlel (3)

To close the system, an equation of state (EOS) is necessary to link the pressure and

the temperature to the internal energy and the density. For the pure phases, we used

the convex stiffened gas EOS (see [34]):

P (ρ, e) = (γ − 1)ρ(e− q)− γP∞ (4)

P (ρ, T ) = ρ(γ − 1)CvT − P∞ (5)

T (ρ, h) =
h− q

Cp

(6)

where γ = Cp/Cv is the heat capacity ratio, Cp and Cv are thermal capacities, q the

energy of the fluid at a given reference state and P∞ is a constant reference pressure.

The speed of sound c is given by:

c2 = γ
P + P∞

ρ
= (γ − 1)CpT (7)

For the mixture, two EOS are tested: a mixture of stiffened gas (SG) and a modified

barotropic EOS.
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2.1. A mixture of stiffened gas EOS

By assuming the pressure equilibrium between phases, an expression for the pressure

can be deduced, function of the void ratio α and the vapour mass fraction Y = αρv/ρ:

P (ρ, e, α, Y ) = (γ(α)− 1)ρ(e− q(Y ))− γ(α)P∞(α) (8)

1

γ(α)− 1
=

α

γv − 1
+

1− α

γl − 1
(9)

q(Y ) = Y qv + (1− Y )ql (10)

P∞(α) =
γ(α)− 1

γ(α)

[
α

γv
γv − 1

P v
∞ + (1− α)

γl
γl − 1

P l
∞

]
(11)

By assuming the thermal equilibrium between phases, the mixture temperature is

expressed as:

T (ρ, h, Y ) =
hl − ql
Cpl

=
hv − qv
Cpv

=
h− q(Y )

Cp(Y )
(12)

Cp(Y ) = Y Cpv + (1− Y )Cpl (13)

We assume that the vaporization pressure varies linearly with the temperature:

Pvap(T ) = Pvap(Tref ) +
dP

dT
(T − Tref ) (14)

The constant quantity dP/dT is evaluated with a thermodynamic table.

The speed of sound in the mixture can be expressed as a function of the enthalpy of

each phase (see Appendix A):

C1 =
1

γ − 1
+

ρvhv − ρlhl

(ρl − ρv)
dP
dT

(
α
dρv
dT

+ (1− α)
dρl
dT

)
(15)

ρc2 =
1

C1

[
ρvρl

(ρl − ρv)
(hv − hl)

]
(16)

Enthalpies of pure phase hl and hv are computed with the mixture temperature T .

Due to numerical problems, the derivatives of densities with the temperature are not

taken into account in this study.
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2.2. A modified barotropic EOS

A modified barotropic relation [24] can be considered for the mixture. When the

pressure is between Pvap(T ) + ∆P and Pvap(T ) − ∆P , the following relationship

applies:

P (α, T ) = Pvap(T ) +

(
ρsatl − ρsatv

2

)
c2baro Arcsin (1− 2α) (17)

where ∆P represents the pressure range of the law and, for a void ratio value of 0.5,

the pressure is equal to the saturation pressure Pvap(T ) at the local temperature T .

This temperature is evaluated using the relation (13). ρsatl and ρsatv are pure phases

densities at saturation evaluated at the reference temperature Tref . The quantity

cbaro, which has the dimension of a velocity, is a parameter of the model.

As previously we assume that the vaporization pressure varies linearly with the tem-

perature and follows the relation (14).

The speed of sound in the mixture can be written as [24]:

c2 =

ρV ρL
ρ(ρL−ρV )

(hV − hL)
dP
dT

+ ρCpc
2
T

ρCp − dP
dT

(18)

Cp = Y Cpv + (1− Y )Cpl (19)

c2T =

(
∂P

∂ρ

)
s

=

(
∂P

∂ρ

)
T

=
c2baro

2
√
α(1− α)

(20)

Where cT is the isothermal speed of sound (i.e. when dP/dT=0).

2.3. A void ratio transport-equation with mass transfer

The model consists in three conservation laws for mixture quantities and an addi-

tional equation for the void ratio. It is obtained from a reduction of the Kapila
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five-equation model assuming the liquid is at its saturation state [31]. We present

below only the void ratio equation:

∂α

∂t
+ V

∂α

∂x
=

(
ρlc

2
l − ρvc

2
v

ρlc
2
l

1−α
+ ρvc2v

α

)
︸ ︷︷ ︸

=K

divV +

(
c2v
α
+

c2l
1−α

ρlc
2
l

1−α
+ ρvc2v

α

)
︸ ︷︷ ︸

=1/ρI the interfacial density

ṁ (21)

where ṁ denotes the mass transfer between phases, V the homogeneous velocity

vector, ck the speed of sound of the phase k.

By assuming that the mass transfer is proportional to the velocity divergence, it is

possible to build a family of models in which the mass transfer ṁ is expressed as

ṁ =
ρlρv

ρl − ρv

(
1− c2

c2wallis

)
divV (22)

where cwallis is the propagation velocity of acoustic waves without mass transfer [35].

This speed of sound is expressed as a weighted harmonic mean of speeds of sound of

each phase:
1

ρc2wallis

=
α

ρvc2v
+

1− α

ρlc2l
(23)

The liquid density ρl is assumed to be in its equilibrium state at the reference tem-

perature: ρl = ρsatl (Tref ). We did not test to introduce a thermal variation for the

liquid density. The vapour density ρv follows the pure phase EOS (i.e. the stiffened

gas EOS) and varies with the temperature.

With this generic form for the mass transfer, we remark that all models in which

the mixture speed of sound is the Wallis one can not produce or destroy the void

ratio during the phase transition (it is the case of most of void ratio transport equa-

tion models). The void ratio is only modified through the term K involving the

compressibility of pure phases.
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2.4. Model with a barotropic EOS

A first model is built using the speed of sound of the modified barotropic model pre-

sented previously. In the following, this model will be named 4-equation barotropic

model. It involves two parameters: cbaro and dP/dT .

As the temperature and pressure relations are coupled (relations 14 and 17), an iter-

ative procedure on the temperature is introduced. The temperature is initialized by

the liquid temperature computed with the pure phase EOS. Five iterations are done

and it has been checked that the numerical solution did not change with a higher

number of iteration.

Without thermal variation, this model has been successfully tested on rarefaction

tube problems [31] and cavitating venturi flows [32].

2.5. Model with a mixture of stiffened gas EOS

A second model is built using the mixture of stiffened gas EOS. The mass trans-

fer term is activated when the local pressure P is smaller than the vapour pressure

Pvap(T ) evaluated using the relation (14). This model will be named 4-equation SG

model. It involves only the parameter dP/dT .

As previously, the temperature and pressure relations are coupled and an iterative

procedure on the temperature is done with five iterations. It has been checked that

the numerical solution did not change with a higher number of iteration.

Characteristics of both four-equation models and the three-equation barotropic model

[24] are summarized in Table 8. In addition, characteristics of the two-fluid model
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of Zein et al. [5] based on relaxation procedures on the pressure, temperature and

Gibbs enthalpy are presented.

2.6. Speed of sound in the mixture

The mass transfer formulation involves explicitly the difference between the speed

of sound in the mixture and the Wallis one. Fig. 1 compares the evolution of

this speed of sound (with a logarithmic scale) as a function of the void ratio for

the EOS presented, the Wallis formulation and the equilibrium speed of sound in

a mixture of freon R-114. Without heat and mass transfer effects, the propagation

of acoustic waves follows the Wallis speed of sound. When exchanges of mass and

heat between phases are involved, the sound speed decreases to the thermodynamic

equilibrium one [36]. This limit speed is evaluated with the assumption of local

thermodynamic equilibrium between phases: equalities of pressure, temperature and

free Gibbs enthalpy between phases. The expression of this velocity is given in [15].

To compare the different speeds, the temperature is assumed to be constant equal

to 293 K and saturation values are used. The parameters of the stiffened gas EOS

are given in table 2. For the barotropic EOS, the parameter cbaro is set at 1.5 m/s.

We can observe that for both EOS the mixture speed of sound is well limited by the

Wallis and the equilibrium ones. Both models are able to create vapour as soon as the

divergence of velocity is strictly positive. Moreover, we remark that the barotropic

speed of sound is very close to the equilibrium one while the SG speed is relatively

close to the Wallis one.

3. Reynolds averaged Navier-Stokes equations

For turbulent computations, the compressible one-fluid RANS equations are used,

coupled with the one-equation turbulence model of Spalart-Allmaras (SA) [37]. These
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equations can be expressed as:

∂w

∂t
+ div (Fc − Fv) = S (24)

w =



ρ

ρV

ρE

α

ρν̃


; Fc =



ρV

ρV ⊗ V + PI

(ρE + P )V

αV

ρν̃V


; Fv =



0

τ v + τ t

(τ v + τ t).V −Qv −Qt

0

(µ+ ρν̃/σν) grad ν̃


where w denotes the conservative variables and the void ratio, Fc and Fv the convec-

tive and viscous flux densities and S the source terms, which concern the void ratio

equation and the turbulent transport equation. E = e + u2/2 is the mixture total

energy. ν̃ is the transported turbulent variable.

The total stress tensor τ is evaluated using the Stokes hypothesis, Newton’s law and

the Boussinesq assumption. The total heat flux vector Q is obtained from the Fourier

law involving a turbulent thermal conductivity λt with the constant Prandtl number

hypothesis.

τ = τ v + τ t = (µ+ µt)

[
( gradV + ( gradV )t)− 2

3
( divV )I

]
+

2

3
ρkI

Q = Qv +Qt = − (λ+ λt) gradT with λt =
µtCp

Prt

(25)

In the pure liquid, the viscosity is determined by an exponential law and, in pure

vapour, the viscosity follows the Sutherland law. The mixture viscosity is defined

as the arithmetic mean of the liquid and vapour viscosities (fluctuations of viscosity
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are neglected) [33]:

µL(T ) = µ0L exp (B/T ) (26)

µV (T ) = µ0V

√
T

293

1 + TS/293

1 + TS/T
(27)

µ(T, α) = αµV (T ) + (1− α)µL(T ) (28)

where µ0L , µ0V , B and TS are constant parameters.

The mixture thermal conductivity λ is also defined as the arithmetic mean of the

liquid and vapour values:

λ(α, T ) = α
µV (T )CpV

PrV

+ (1− α)
µL(T )CpL

PrL

(29)

The turbulent Prandtl number Prt is set to 1.

For the modelling of flow close to the wall, a two-layer wall law approach is used [38].

4. Numerical methods

The numerical simulations are carried out using an explicit CFD code based on a

finite-volume discretization. For the mean flow, the convective flux density vector on

a cell face is computed with the Jameson-Schmidt-Turkel scheme [39]. The artificial

viscosity includes a second-order dissipation term D2 and a fourth-order dissipation

term D4, which involve two tunable parameters k(2) and k(4).

The viscous terms are discretized by a second-order space-centered scheme. For the

turbulence transport equations, the upwind Roe scheme [40] is used to obtain a more

robust method. The second-order accuracy is obtained by introducing a flux-limited

dissipation [41].
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The numerical treatment of boundary conditions is based on the use of the charac-

teristic relationships. More details are given in [31].

5. 1D inviscid rarefaction test case with water

A double rarefaction tube problem is considered with an initial velocity discontinuity

located at the middle of the tube. This test consists in a one meter long tube filled

with liquid water at atmospheric pressure and with density ρl =1150 kg/m3. The

temperature of water is Tref = 355 K. A weak volume fraction of vapor α =0.01 is

initially added to the liquid. The initial discontinuity is set at 0.5 m, the left velocity

and the right velocity have the same value but an opposite sign. Two velocities are

tested: u = ±2 m/s and u = ±100 m/s. The vapour pressure Pvap(Tref ) is set to

51000 Pa at the initial temperature.

The solution involves two expansion waves. As gas is present, the pressure cannot

become negative. To maintain positive pressure, the gas volume fraction increases

due to the gas mechanical expansion and creates a pocket. Liquid water is expanded

until the saturation pressure is reached then evaporation appears and quite small

amount of vapor is created. The solution with phase transition is composed of four

expansion waves. The extra two expansion waves correspond to the evaporation

fronts.

These cases were computed in [5] using a two-fluid model in which instantaneous

relaxation processes toward equilibrium are included for the temperature and the

Gibbs free energy. The mesh contains 5000 cells. The time step is set to 10−7 s. The

value of cbaro is set to 1.31 m/s for the 4-equation barotropic model as presented in

[31].

The parameters of the stiffened gas EOS and saturation values for densities are

given in Table 3. The quantities have been evaluated with a saturation table at the
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reference temperature.

5.1. Velocity | u |= 2 m/s

The value of dP/dT , evaluated with a thermodynamic table on the temperature in-

terval [350K, 355K], is set to 2000 Pa/K. Void ratio, velocity, temperature, pressure,

speed of sound and mass fraction of gas evolutions are shown in Fig. 2 at time t =3.2

ms. Results are compared with the two-fluid solution computed by Zein et al. [5].

Both models provide a similar evolution for the pressure, velocity, volume and mass

fraction of gas, in good agreement with the two-fluid solution. The mixture speeds of

sound for both models are compared with the Wallis formulation (with a logarithmic

scale). A large discrepancy is noticeable between models. Using the SG model, the

speed of sound is equal to the Wallis one excepted in the cavitation area where it is

a little smaller. This small gap is enough to create the cavitation pocket. On the

contrary, the speed of sound given by the barotropic model is clearly lower than the

Wallis one (by a factor 5), as observed in Figure 1.

The temperature evolution puts in evidence the small cooling effect during the phase

transition. For this test case, the thermal effect is weak. The temperature drop

reaches 0.25 K with the 4-equation barotropic model and 0.5 K with the 4-equation

SG model. Unfortunately the temperature evolution was not plotted in [5].

A simple heat balance between the two phases can estimate the scale of temperature

difference ∆T ∗ caused by thermal effects. The B-factor is estimated as the ratio

between the actual temperature drop and ∆T ∗:

∆T ∗ =
ρvLvap

ρlCpl

and B =
∆T

∆T ∗ (30)

where Lvap is the latent heat and CpL represents the specific heat.
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The B-factor of ideal gas-liquid mixture is expressed by the following equation [42]:

B =
α

1− α
(31)

With the maximum value reached during the computation, that is α = 0.7, the ideal

temperature depression is around 0.33 K. Both models provide a cooling effect close

to this value.

5.2. Velocity | u |= 100 m/s

The same conditions are used except regarding velocities which are set to |u|=100

m/s. In this case, evaporation is much more intense resulting in a large cavitation

pocket where the gas volume fraction is close to 1. However, this pocket does not

contain pure gas but a mixture at thermodynamic equilibrium. For this test case,

thermal effects are strong.

The value of dP/dT , evaluated with a thermodynamic table on the temperature

interval [250K, 355K], is set to 300 Pa/K . The volume and mass fractions of gas,

pressure, temperature, velocity and speed of sound evolutions are plotted in Fig. 3,

at time t = 1.5 ms. No differences appear on the void ratio between models whereas

the mass fraction simulated by our models is twice higher in comparison with the

two-fluid solution. It is due to differences in the evaluation of the gas density. In

our models, ρv is function of the mixture temperature through the stiffened gas EOS

while the gas density is function of the gas temperature for the two-fluid model.

For the pressure profiles, the pressure drop under Pvap(Tref ) is around 0.3 bar with

both models, in close agreement with the two-fluid solution. Discrepancies appear

for the velocity profile in comparison with the two-fluid solution: variations across

the evaporation front are stiffer with our models. As previously observed, the SG
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speed of sound is slightly smaller than the Wallis one near the evaporation fronts.

Inside the cavitation pocket, the barotropic speed of sound is close to the Wallis one

whereas the SG velocity is twice lower.

The temperature drop inside the cavitation pocket due to the phase transition is

very large. It reaches more than 70 K with the 4-equation SG model and 90 K with

the 4-equation barotropic model.

For this case, the difference with the isothermal solution presented in [31] is very

strong. Solutions between isothermal and non isothermal 4-equation barotropic

models are illustrated in Fig. 4. For the pressure profiles, the pressure drop under

Pvap(Tref ) is around 0.05 bar with the isothermal model. Moreover the temperature

drop is very intense and lead to negative values.

5.3. Shock-cavitation interaction, | u |= 100 m/s

This case is similar to the previous one, except that the two ends of the tube are

simultaneously closed once the flow starts. Therefore, a shock created at each end

moves towards the center, resulting in shock-cavitation interaction and cavitation

collapse. Both evaporation and condensation processes can be investigated.

The flow is initially quasi pure water (the initial fraction of gas is 10−10) and soon

changes phase into a vapour-liquid mixture at the center, and then reverting back

into a pure liquid after the cavitation collapse. A similar test case was depicted in

[31].

A uniform mesh of 5000 cells is used and the time step is set to 10−8 s. The param-

eter cbaro is set to 1.31 m/s for the 4-equation barotropic model, as previously.

Volume fraction obtained with both models are plotted at different times in Fig. 5.
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As the cavitation pocket grows, up to time t = 0.3 ms, solutions are similar. After

time t = 0.3 ms, the shocks created at the ends meet the rarefaction waves gener-

ated at the center, and then interacts with the expanding cavitation interface. The

cavitation collapse begins. The simulation obtained with the 4-equation barotropic

model predicts the decrease of the void ratio. At time t = 0.7 ms, the maximum

void ratio value is close to 0.4. On the contrary, using the 4-equation SG model the

decrease is badly reproduced. The maximum value at time t = 0.7 ms is 0.9.

The 4-equation SG model is able to produce and to transport the void ratio but it

does not destroy the void ratio in the flow where the pressure is greater than the

vapour pressure. We propose to modify the formulation adding a destruction term:

ṁ =
ρlρv

ρl − ρv

(
1− c2

c2wallis

)
divV − Cdes

ρv
ρl
α
Max (0, P − Pvap)

0.5ρrefU2
ref

(32)

where Cdes is a tunable parameter. This new formulation does not modify the mix-

ture speed of sound and the eigenvalues of the inviscid system.

The influence of the constant Cdes is investigated and different values are tested from

0.1 to 1000. Using values smaller than 100, the effect is weak and is not presented.

The evolution of the volume fraction at different times is presented in Fig. 6 using

Cdes=100 and Cdes=1000. As expected, higher is the constant Cdes, more intense is

the condensation phenomenon. At time t = 0.7 ms, the maximum void ratio value

is 0.75 with Cdes=100 and only 0.1 with Cdes=1000.

6. 1D inviscid rarefaction test case with freon R-114

A double rarefaction tube problem is considered with freon R-114 similarly to those

presented previously in water. The tube is filled with liquid freon at ambient tem-
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perature Tref = 293 K and the pressure is set to 3 bar. A weak volume fraction

of vapor α =0.01 is initially added to the liquid. The initial discontinuity is set at

0.5 m and two velocities are tested: u = ±10 m/s and u = ±100 m/s. The vapour

pressure Pvap(Tref ) is set to 181000 Pa.

The mesh contains 5000 cells. The time step is set to 10−7 s. The value of cbaro is

set to 1.66 m/s for the 4-equation barotropic model.

The parameters of the stiffened gas EOS and saturation values for densities are

given in Table 2. The quantities have been evaluated with a saturation table at the

reference temperature.

6.1. Velocity | u |= 10 m/s

The value of dP/dT , evaluated with a thermodynamic table on the temperature

interval [283K, 293K], is set to 4720 Pa/K. Void ratio, velocity, temperature and

pressure evolutions are shown in Fig. 7 at time t =2.4 ms. Both models provide a

similar evolution for the void ratio and the velocity profiles. The pressure drop in

the cavitation area is more pronounced with the 4-equation barotropic model. It is

due to a higher temperature drop. It reaches 9 K with this model instead of 7 K

with the 4-equation SG model. Using the B-factor theory and a maximum void ratio

value equal to 0.8, the ideal temperature depression is around 4.85 K. Both models

tend to overestimate this value.

6.2. Velocity | u |= 100 m/s

The value of dP/dT , evaluated with a thermodynamic table on the temperature in-

terval [50K, 293K], is set to 500 Pa/K. Void ratio, velocity, temperature and pressure

evolutions are presented in Fig. 8 at time t =1.5 ms. Both models provide a similar
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evolution for the void ratio and the velocity profiles. As previously, the temperature

depression is more intense using the 4-equation barotropic model. It reaches 260 K

with this model and 240 K using the 4-equation SG model. This difference on the

cooling effect leads to a more intense pressure drop in the cavitation pocket.

7. 2D viscous turbulent Venturi case

7.1. Experimental and numerical conditions

The freon R-114 experimental facility of the CREMHyG is a closed loop operat-

ing with a reference pressure, obtained by pressurizing a tank with nitrogen gas.

The cavitation tunnel was designed to simulate cavitating flows developing on the

blades of space turbopump inducers. The loop is fitted with a test section having

the shape of a two-dimensional Venturi, characterized by a convergence angle of 4.3◦

and a divergence angle of 4◦ (Fig. 9). The edge forming the throat of the Ven-

turi is used to fix the separation point of the cavitation cavity. This geometry is

equipped with three probing holes to take various measurements. Optical probes

and micro-thermocouples are used to evaluate the local void ratio and the wall tem-

perature, respectively. The uncertainty on the temperature measurement is about

±0.2K [43, 44]. Flow conditions and experimental parameters are given in Table 4.

With these parameters, a cavity length around 80 mm was obtained, with a relatively

stable aspect.

The freon R-114 is a thermosensitive fluid, which allows to study the thermody-

namic effect in ambient conditions. It provides the same temperature depression

∆T ∗ = 1.22 K in comparison with the liquid hydrogen at Tref = 22K. The thermo-

dynamic properties at saturation for freon R-114 are given in Table 2.
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All cavitating simulations are steady computations, which are started from the non

cavitating numerical solution. The H-type grid contains 251 nodes in the flow direc-

tion and 77 in the orthogonal direction (Fig. 10). Numerical parameters are given in

Table 4.

Computations have been performed using both 4-equation models in order to obtain

a cavity length close to 80 mm. The value of the inlet cavitation parameter σinlet was

around 0.57 for all computations, close to the experimental value. In the following,

the numerical solutions are compared with the previous results obtained with a 3-

equation model [24] and the experimental data.

7.2. Visualization of the pocket

A visualization of the cavitation pocket is proposed in Figure 11 where the contours

of the density gradient modulus are plotted (Schlieren-like visualization). The grey

scale is the same for all computations. The cavity length is around 80 mm for all

simulations. Using the 3-equation model, the interface of the cavity and the closure

part of the cavity are more diffuse in comparison with the 4-equation solutions.

Discrepancies appear also on the thickness of the cavity. The 4-equation barotropic

model predicts the thinner cavity.

7.3. Void ratio profiles

Figure 12 illustrates the numerical void ratio obtained with the three models in

comparison with the measurements. At station 1, all models over-predict the cavity

thickness and the maximum value of void ratio. According to analyses presented

in [43], the experimental void ratio is certainly under-estimated at this station. At

stations 2 and 3, the cavity thickness is clearly better predicted by the 4-equation
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barotropic model. Using the 3-equation model, the thickness is over-estimated with

a factor 2. An intermediate result is provided by the 4-equation SG model. As regard

to the maximum value of the void ratio, the 4-equation barotropic model predicts

a higher value in comparison with the two other models. The decrease of the void

ratio close to the wall is not captured by models. This behaviour was also observed

for cold water simulations [32].

7.4. Temperature evolution

The temperature deficit profile at station 1 is plotted in Figure 13 for the three mod-

els. The wall temperature is in good agreement with the experimental data using

the 3-equation model and the 4-equation barotropic model. Using the 4-equation SG

model, the wall temperature depression is about 4.2K instead of 2.1K for the exper-

imental data. Moreover, the shape of the temperature profile marks discrepancies.

The temperature deficit is almost constant in a large part of the cavity from the wall

up to y = 0.002 m.

Figure 14 shows the temperature deficit T − Tref inside the divergent of the Ven-

turi for the three computations. The grey scale is the same for all computations.

The cooling effect due to the vaporization process is clearly observed for all simu-

lations (negative values) and it is stronger using the 4-equation SG model. A large

discrepancy appears between the 3- and 4-equation models downstream the cavity

in the recompression area. Using the 3-equation model, the temperature deficit is

close to zero downstream the cavitation pocket, that is the temperature goes back

to the freestream temperature. On the contrary, we observe a warming effect down-

stream the cavity using both 4-equations models. Locally, the temperature exceeds

the freestream temperature and values reach more than 6 K with the 4-equation SG
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model.

Such a phenomenon was depicted in [45] on a hot water Venturi flow. Using high

speed infra-red thermography, authors measured a temperature depression of ap-

proximately 0.4 K in the vicinity of the throat and a temperature rise up to 1.4 K

was recorded in the region of pressure recuperation. The collapse of bubbles causes

the rapid recuperation of the temperature.

The same temperature difference is plotted in Figure 15 in a larger domain for the

4-equation barotropic model. The elevation of temperature is extended inside the

divergent up to a distance of 0.4 m that is more than four times the cavity length.

The temperature gradient is illustrated in Figure 16 for the three computations. The

grey scale is the same for all computations. We clearly observe differences on the

behaviour of models in the closure part of the cavitation pocket. Using the 3-equation

model, there is no temperature gradient at the end of the pocket. We just see a small

gradient at the interface in the vicinity of the throat. With both 4-equation models,

strong gradients are put in evidence in the closure part of the pocket and downstream

in the recompression area.

7.5. Influence of the destruction term

The destruction term is now activated in the both 4-equation models following rela-

tion (32). This term is driven by a parameter Cdes. Only one value Cdes = 100 was

tested to observe the condensation process.

Figure 17 illustrates the void ratio and temperature deficit profiles computed with

the 4-equation barotropic model. Profiles are given at different locations in the di-
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vergent: x = 0.065 m, x = 0.075m inside the pocket and x = 0.095m, x = 0.135 m

downstream the pocket. At stations 1 to 3, void ratio and temperature profiles are

not modified because the destruction term is not activated in the vaporization area.

Inside the cavity at both abscissa x = 0.065m and x = 0.075 m, the effect of the

destruction term is clearly noticeable on the void ratio maximum value, which is

reduced by a factor 2. Similarly, the warming effect is also reduced (about 1 K).

At the abscissa x = 0.095 m, the void ratio profiles provided by both simulations

are quasi superposed. Yet, the temperature deficit profiles mark large discrepancies.

The warming effect is well exhibited when Cdes = 0 whereas a cooling effect (about

1 K) is predicted when the destruction term is activated. One possible explanation

is linked to the transient of the computation. A large pocket for which the length

reaches 0.2 m is simulated without the destruction term. In the closure part of the

pocket an intense warming effect is predicted. When the cavity narrows, the warm-

ing effect remains a long time, which is observed at the abscissa x = 0.095m and

x = 0.135 m. For this last location, with Cdes = 100 the void ratio is null and the

temperature is on its freestream value. On the contrary, without the activation of

the destruction term the warming effect is intense and reaches almost 8 K.

At the same locations, the void ratio and temperature profiles computed with the

4-equation SG model are plotted in Figure 18. At both abscissa x = 0.065 m and

x = 0.075 m, the void ratio profiles provided by simulations are quasi superposed.

The destruction of void ratio is not observed. As a consequence, the temperature

deficit profiles are quite similar. At the abscissa x = 0.095 m and x = 0.135 m, the

same behaviour observed previously with the 4-equation batrotropic model is put

in evidence. With similar void ratio profiles at location x = 0.095 m, temperature

evolutions are opposite: a warming effect (about 5 K) without the destruction term
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and a cooling effect (around 1 K) when the destruction term is used. At the last ab-

scissa, a strong temperature elevation about 8 K is predicted when Cdes = 0. Using

the destruction term, pure liquid at the freestream temperature is computed.

The temperature difference T − Tref is illustrated in Figure 19 for both simulations

using the destruction term. We can observe the warming effect located on the clo-

sure part of the cavitation pocket. This phenomenon is not extended as previously

simulated and the back to the freestream temperature is done on a short distance

(less than one cavity length). Yet, as the experimental temperature field is unknown,

it is impossible to calibrate the value of the parameter Cdes.

8. Conclusion

In this paper, a 4-equation model was developed to study cavitation in thermosensi-

tive fluid. This model is composed by three conservations law for mixture quantities

(mass, momentum, total energy) and an additional transport equation for the vapour

volume fraction, where mass transfer rate due to cavitation is modelled. The generic

model is based on the assumption of proportionality of the mass transfer with the

divergence of velocity. Two formulations were proposed using two equations of state:

a modified barotropic relation and a mixture of stiffened gas. The vapour pres-

sure is assumed to vary linearly with the mixture temperature through a parameter

dPvap/dT . Models have been implemented in a compressible Euler and RANS solvers

and have been applied for the simulation of various cavitating problems (inviscid and

turbulent cases).

First validations on inviscid one-dimensional cases shown the ability of models to

simulate the cavitation development in which the running fluid is hot water and

freon R-114. Comparisons with two-fluid solutions illustrated the good behaviour of
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models.

Secondly, RANS simulations were performed to study a quasi stable cavitation pocket

developing along a Venturi geometry in which the working fluid is freon R-114. Nu-

merical results obtained from the new models have been validated against experi-

mental data and 3-equation computations previously performed in our team. This

test-case lead to different concluding remark:

- About the cavity thickness, the new models and especially the 4-equation barotropic

model clearly improved the prediction in comparison with the 3-equation simulation.

- The wall temperature deficit was well simulated by the 3- and 4-equation barotropic

models. Yet, the solution obtained with the 4-equation SG model badly reproduced

the wall value (over-estimation of a factor 2).

- A new phenomenon was simulated with the 4-equations models: a warming ef-

fect was exhibited downstream the cavity in the recompression area. The intensity

of this warming effect is higher than the cooling effect observed near the Venturi

throat. This rise of temperature is due to the collapse of bubbles in the closure part

of the pocket and recent infra-red measurements highlighted this phenomenon inside

another Venturi geometry in which the running fluid was hot water.

- The distance where this temperature elevation was simulated depends on the con-

densation modelling. Without the activation of a destruction term, the warming ef-

fect was extended more than 4 times the cavity length. Using a constant Cdes = 100

in the destruction term, the distance became smaller than one cavity length. Unfortu-

nately, we need to know the temperature field to calibrate the destruction parameter.

Finally, the new LEGI models are very attractive to study thermodynamic effects

and cryogenic cavitation. Additional works are in progress to pursue comparative

analyses between cavitation models and to improve the model calibration.
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Appendix

Appendix A: the speed of sound in a mixture of stiffened gas

Starting from the usual thermodynamic relation

de = Tds +
P

ρ2
dρ or d(ρe) = ρTds + hdρ

And with the differential of ρe:

d(ρe) =

(
∂ρe

∂ρ

)
P

dρ +

(
∂ρe

∂P

)
ρ

dP

We can obtained the differential of the pressure P :(
∂ρe

∂P

)
ρ

dP = ρTds +

[
h−

(
∂ρe

∂ρ

)
P

]
dρ

We deduce an expression of the speed of sound:

c2 =

(
∂P

∂ρ

)
s

=
h−

(
∂ρe
∂ρ

)
P(

∂ρe
∂P

)
ρ

The derivatives of the void ratio have to be evaluated :(
∂α

∂ρ

)
P

=
−1

ρL − ρV(
∂α

∂P

)
ρ

=
−1

ρV − ρL

dT

dP

[
α
dρV
dT

+ (1− α)
dρL
dT

]
Using the stiffened gas EOS, we have the following equalities:(

∂ρe

∂P

)
ρ

= α

(
∂ρV eV
∂P

)
ρ

+ (1− α)

(
∂ρLeL
∂P

)
ρ

+ (ρV hV − ρLhL)

(
∂α

∂P

)
ρ

=
1

γ − 1
+

ρV hV − ρLhL

ρL − ρV

dT

dP

[
α
dρV
dT

+ (1− α)
dρL
dT

]
(
∂ρe

∂ρ

)
P

=
∂

∂ρ

[
α

(
P

γV − 1
+ ρV qV +

γV
γV − 1

P V
∞

)
+ (1− α)

(
P

γL − 1
+ ρLqL +

γL
γL − 1

PL
∞

)]
=

ρLhL − ρV hV

ρL − ρV
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Finally, the speed of sound is:

ρc2 =
1(

∂ρe
∂P

)
ρ

[
ρV ρL

(ρL − ρV )
(hV − hL)

]
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Table 1: Characteristics of models

models 2-fluid 4-eqt baro 4-eqt SG 3-eqt baro

solved 2 masses 1 mass 1 mass 1 mass

equations 1 moment. 1 moment. 1 moment. 1 moment.

2 energies 1 energy 1 energy 1 energy

+ α +α +α

mixture EOS SG baro SG baro

source term µ(Pl − Pv) + θ(Tv − Tl) KdivV KdivV analytical

α equation + ṁ/ρI +ṁ/ρI +ṁ/ρI α = (ρ−ρl)
(ρv−ρl)

ṁ ν(gv − gl)

(
1− c2

c2wallis

)
divV

(
1− c2

c2wallis

)
divV -

metastable liquid - - -

states vapour vapour vapour -
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Table 2: Parameters of the stiffened gas EOS for freon R114 at T = 293K.

γ P∞ (Pa) q (J/kg) Cp (J/K.kg) ρsat (kg/m
3)

liquid 1.4 1.21 108 -6.901 104 984 1469.1

vapor 1.07 0 1.424 105 700 13.52
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Table 3: Parameters of the stiffened gas EOS for water at T = 355K.

γ P∞ (Pa) q (J/kg) Cp (J/K.kg) ρsat (kg/m
3)

liquid 2.35 109 -0.1167 107 4267 1149.9

vapor 1.43 0 0.2030 107 1487 0.31
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Table 4: Flow configuration, experimental and numerical parameters, Venturi case

inlet velocity Vinlet 14.4 m/s

inlet pressure Pinlet 265300 Pa

reference temperature Tref ≃ 293 K

vapour pressure at Tref 181100

cavitation parameter in the inlet section σinlet =
Pinlet−Pvap(Tref )

0.5ρV 2
inlet

≃ 0.55

reference length Lref 0.252 m

Reynolds number ReLref
=

Vinlet×Lref

ν(Tref )
18.4 106

mesh 251 × 77

y+ values in first cells 35 to 50

constant dPvap/dT , evaluated on the interval [290,293] K 5900 Pa/K

parameter cbaro 0.74 m/s (see [24])

CFL number 0.5

implicit Jacobi iterations 15

2nd and 4th order dissipation parameter 1 ; 0.04
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Figure 1: Mixture speed of sound comparison, freon R-114.
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Figure 2: Water-gas double rarefaction with cavitation |u| = 2 m/s, models comparison, mesh 5000

cells, t = 3.2ms. Void ratio, pressure, velocity, temperature, speed of sound and mass fraction of

gas.
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Figure 3: Water-gas double rarefaction with cavitation |u| = 100 m/s, models comparison, mesh

5000 cells, t = 1.5 ms. Void ratio, pressure, velocity, temperature, speed of sound and mass fraction

of gas.
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Figure 4: Water-gas double rarefaction with cavitation |u| = 100 m/s, isothermal versus non

isothermal models, mesh 5000 cells, t = 1.5 ms. Pressure and temperature.
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Figure 5: Shock-cavitation interaction |u| = 100 m/s, models comparison, mesh 5000 cells. Void

ratio at different times.
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Figure 6: Shock-cavitation interaction |u| = 100 m/s, influence of Cdes, 4-equation SG model, mesh

5000 cells. Void ratio at different times.
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Figure 7: Freon R114 double rarefaction with cavitation |u| = 10 m/s, models comparison, mesh

5000 cells, t = 2.4 ms. Void ratio, mixture pressure, temperature and velocity.
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5000 cells, t = 1.5 ms. Void ratio, mixture pressure, temperature and velocity.
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Figure 9: Schematic view of the Venturi profile.
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Figure 10: Enlargement of the mesh near the Venturi throat.
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Figure 11: Modulus of the density gradient (kg/m4), models comparison, Venturi case.
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Figure 12: Void ratio profiles at stations 1 to 3, models comparison, Venturi case.
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Figure 13: Wall temperature depression at station 1, models comparison, Venturi case.
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Figure 14: Temperature difference T − Tref (K) inside the divergent, models comparison, Venturi

case.
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Figure 16: Temperature gradient (K/m) inside the divergent, models comparison, Venturi case.
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Figure 17: Void ratio (left) and temperature deficit (right) profiles at different locations, influence

of the destruction term, 4-equation barotropic model, Venturi case.
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Figure 18: Void ratio (left) and temperature deficit (right) profiles at different locations, influence

of the destruction term, 4-equation SG model, Venturi case.
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Figure 19: Temperature difference T − Tref (K) inside the divergent, influence of the destruction

term, Venturi case.
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