The determining number of Kneser graphs - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2013

The determining number of Kneser graphs

Résumé

A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G is the minimum cardinality of a determining set of G. This paper studies the determining number of Kneser graphs. First, we compute the determining number of a wide range of Kneser graphs, concretely Kn:k with n≥k(k+1) / 2+1. In the language of group theory, these computations provide exact values for the base size of the symmetric group Sn acting on the k-subsets of 1,..., n. Then, we establish for which Kneser graphs Kn:k the determining number is equal to n-k, answering a question posed by Boutin. Finally, we find all Kneser graphs with fixed determining number 5, extending the study developed by Boutin for determining number 2, 3 or 4.
Fichier principal
Vignette du fichier
2072-7632-2-PB.pdf (397.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00990602 , version 1 (13-05-2014)

Identifiants

Citer

José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Maria Luz Puertas. The determining number of Kneser graphs. Discrete Mathematics and Theoretical Computer Science, 2013, Vol. 15 no. 1 (1), pp.1--14. ⟨10.46298/dmtcs.634⟩. ⟨hal-00990602⟩

Collections

TDS-MACS
88 Consultations
2138 Téléchargements

Altmetric

Partager

More