On the complexity of vertex-coloring edge-weightings - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2011

On the complexity of vertex-coloring edge-weightings

Résumé

Given a graph G = (V; E) and a weight function omega : E -\textgreater R, a coloring of vertices of G, induced by omega, is defined by chi(omega) (nu) = Sigma(e(sic)nu) omega (e) for all nu is an element of V. In this paper, we show that determining whether a particular graph has a weighting of the edges from \1, 2\ that induces a proper vertex coloring is NP-complete.
Fichier principal
Vignette du fichier
1508-6558-1-PB.pdf (251.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00990502 , version 1 (13-05-2014)

Identifiants

Citer

Andrzej Dudek, David Wajc. On the complexity of vertex-coloring edge-weightings. Discrete Mathematics and Theoretical Computer Science, 2011, Vol. 13 no. 3 (3), pp.45--50. ⟨10.46298/dmtcs.548⟩. ⟨hal-00990502⟩

Collections

TDS-MACS
139 Consultations
1103 Téléchargements

Altmetric

Partager

More