On the sensitivity of cyclically-invariant Boolean functions - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2011

On the sensitivity of cyclically-invariant Boolean functions

Résumé

In this paper we construct a cyclically invariant Boolean function whose sensitivity is Theta(n(1/3)). This result answers two previously published questions. Turan (1984) asked if any Boolean function, invariant under some transitive group of permutations, has sensitivity Omega(root n). Kenyon and Kutin (2004) asked whether for a "nice" function the product of 0-sensitivity and 1-sensitivity is Omega(n). Our function answers both questions in the negative. We also prove that for minterm-transitive functions (a natural class of Boolean functions including our example) the sensitivity is Omega(n(1/3)). Hence for this class of functions sensitivity and block sensitivity are polynomially related.
Fichier principal
Vignette du fichier
2050-6590-2-PB.pdf (303.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00990492 , version 1 (13-05-2014)

Identifiants

Citer

Sourav Chakraborty. On the sensitivity of cyclically-invariant Boolean functions. Discrete Mathematics and Theoretical Computer Science, 2011, Vol. 13 no. 4 (4), pp.51--60. ⟨10.46298/dmtcs.552⟩. ⟨hal-00990492⟩

Collections

TDS-MACS
42 Consultations
1269 Téléchargements

Altmetric

Partager

More