On the metric dimension of Grassmann graphs - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2012

On the metric dimension of Grassmann graphs

Résumé

The metric dimension of a graph Gamma is the least number of vertices in a set with the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. We consider the Grassmann graph G(q)(n, k) (whose vertices are the k-subspaces of F-q(n), and are adjacent if they intersect in a (k 1)-subspace) for k \textgreater= 2. We find an upper bound on its metric dimension, which is equal to the number of 1-dimensional subspaces of F-q(n). We also give a construction of a resolving set of this size in the case where k + 1 divides n, and a related construction in other cases.
Fichier principal
Vignette du fichier
2049-6715-1-PB.pdf (260.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00990476 , version 1 (13-05-2014)

Identifiants

Citer

Robert F. Bailey, Karen Meagher. On the metric dimension of Grassmann graphs. Discrete Mathematics and Theoretical Computer Science, 2012, Vol. 13 no. 4 (4), pp.97--104. ⟨10.46298/dmtcs.532⟩. ⟨hal-00990476⟩

Collections

TDS-MACS
55 Consultations
1488 Téléchargements

Altmetric

Partager

More