Some properties of semiregular cages - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2010

Some properties of semiregular cages

Résumé

A graph with degree set \r, r + 1\ is said to be semiregular. A semiregular cage is a semiregular graph with given girth g and the least possible order. First, an upper bound on the diameter of semiregular graphs with girth g and order close enough to the minimum possible value is given in this work. As a consequence, these graphs are proved to be maximally connected when the girth g >= 7 is odd. Moreover an upper bound for the order of semiregular cages is given and, as an application, every semiregular cage with degree set \r, r + 1\ is proved to be maximally connected for g is an element of \6, 8\, and when g = 12 for r >= 7 and r not equal 20. Finally it is also shown that every (\r, r + 1\; g)-cage is 3-connected.
Fichier principal
Vignette du fichier
1100-5799-3-PB.pdf (146.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00990460 , version 1 (13-05-2014)

Identifiants

Citer

Camino Balbuena, Xavier Marcote, Diego Gonzalez-Moreno. Some properties of semiregular cages. Discrete Mathematics and Theoretical Computer Science, 2010, Vol. 12 no. 5 (5), pp.125-138. ⟨10.46298/dmtcs.499⟩. ⟨hal-00990460⟩

Collections

TDS-MACS
110 Consultations
1030 Téléchargements

Altmetric

Partager

More