Coloring Geographical Threshold Graphs - Archive ouverte HAL Access content directly
Journal Articles Discrete Mathematics and Theoretical Computer Science Year : 2010

Coloring Geographical Threshold Graphs

Abstract

We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e. g., wireless networks, the Internet, etc.) need to be studied by using a ''richer'' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: chi = ln n/ln ln n(1 +o(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C ln n/(ln ln n)(2), and specify the constant C.
Fichier principal
Vignette du fichier
1356-5542-1-PB.pdf (315.09 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00990456 , version 1 (13-05-2014)

Identifiers

Cite

Milan Bradonjic, Tobias Mueller, Allon G. Percus. Coloring Geographical Threshold Graphs. Discrete Mathematics and Theoretical Computer Science, 2010, Vol. 12 no. 3 (3), pp.103-114. ⟨10.46298/dmtcs.497⟩. ⟨hal-00990456⟩

Collections

TDS-MACS
41 View
758 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More