Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2010

Edge-Removal and Non-Crossing Configurations in Geometric Graphs

Résumé

A geometric graph is a graph G = (V, E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V. We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.
Fichier principal
Vignette du fichier
985-4942-2-PB.pdf (182.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00990435 , version 1 (13-05-2014)

Identifiants

Citer

Oswin Aichholzer, Sergio Cabello, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, et al.. Edge-Removal and Non-Crossing Configurations in Geometric Graphs. Discrete Mathematics and Theoretical Computer Science, 2010, Vol. 12 no. 1 (1), pp.75-86. ⟨10.46298/dmtcs.525⟩. ⟨hal-00990435⟩

Collections

TDS-MACS
101 Consultations
1250 Téléchargements

Altmetric

Partager

More