A divergent generating function that can be summed and analysed analytically - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2010

A divergent generating function that can be summed and analysed analytically

Résumé

We study a recurrence relation, originating in combinatorial problems, where the generating function, as a formal power series, satisfies a differential equation that can be solved in a suitable domain; this yields an analytic function in a domain, but the solution is singular at the origin and the generating function has radius of convergence 0. Nevertheless, the solution to the recurrence can be obtained from the analytic solution by finding an asymptotic series expansion. Conversely, the analytic solution can be obtained by summing the generating function by the Borel summation method. This is an explicit example, which we study detail, of a behaviour known to be typical for a large class of holonomic functions. We also express the solution using Bessel functions and Lommel polynomials.
Fichier principal
Vignette du fichier
1305-4850-1-PB.pdf (242.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00990430 , version 1 (13-05-2014)

Identifiants

Citer

Svante Janson. A divergent generating function that can be summed and analysed analytically. Discrete Mathematics and Theoretical Computer Science, 2010, Vol. 12 no. 2 (2), pp.1-22. ⟨10.46298/dmtcs.520⟩. ⟨hal-00990430⟩

Collections

TDS-MACS
161 Consultations
1122 Téléchargements

Altmetric

Partager

More