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Abstract. In this paper, we assess the sensitivity of reactive tabu search
to its meta-parameters. With a thorough experimental analysis, based
on the quadratic assignment and the maximum clique problem, we show
that the performance of reactive tabu search is relatively insensitive to its
meta-parameters. This is particularly evident when compared to the sen-
sitivity of tabu search to its parameters: tabu search is rather penalized
if used with sub-optimal parameter settings. Reactive tabu search does
not strongly pay its high parameter robustness in terms of performance,
although it does not improve the peak performance of tabu search.

1 Introduction

Tabu search (TS) is a metaheuristic that exploits the search history to direct
an underlying local search. The essential idea behind TS is to forbid revisit-
ing previously seen solutions. In practice, TS rather forbids components of the
past T local search moves. In tabu search, T is a parameter called tabu list
length or tabu tenure, and it is known to have a strong impact on performance.
Reactive tabu search (RTS) [1–4, 6, 8, 11, 15, 16, 19] is a technique that adapts
the value of T at run-time. The adaptation of the parameter T is managed by
a mechanism that sits on top of the underlying search method and whose be-
havior in turn depends on the values of other parameters to which we refer as
“meta-parameters”. In a sense, RTS eliminates some parameters from TS but it
introduces new meta-parameters, thus, possibly increasing the number of param-
eters of the underlying tabu search algorithm. This is done with the hope that it
becomes easier to set the meta-parameters and that the algorithm achieves high
performance regardless of the characteristics of the instances to be tackled.

An obvious question is how the meta-parameters impact on the performance
of the algorithm. Often, it is tacitly assumed that parameter adaptation methods
help and that their meta-parameters have a negligible impact on performance.
In fact, only few articles investigate the impact of meta-parameters on perfor-
mance. For what concerns RTS, the first paper proposing this method [3] devoted
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some experiments to the study of the impact of the meta-parameter settings on
performance. The authors concluded that a 10% variation of these settings does
not have any relevant effect on the results. Some work has been devoted to pa-
rameter adaptation methods applied to evolutionary algorithms [7, 10], but these
methods differ very strongly from the mechanism used in RTS.

In this paper, we study the sensitivity of RTS to its meta-parameters, and we
compare it with the sensitivity of TS to its parameters. Starting from the RTS
algorithms proposed in the literature for tackling the quadratic assignment and
the maximum clique problem, we eliminate the modules related to parameter
adaptation, fix the relevant parameters, and, thus, obtain the TS algorithms for
tackling the two problems. By doing this, differences in the behavior of RTS and
TS are due to whether the parameter adaptation method is used or not. We
show that the performance of RTS is rather insensitive to the meta-parameters.
The opposite holds for TS: in some cases TS suffers a major performance degra-
dation if inappropriate yet reasonable parameter settings are used. Moreover,
the instance-based optimal parameter settings of TS vary strongly as a function
of the characteristics of the instance tackled, and the adoption of sub-optimal
parameter settings worsens significantly performance.

Our results also indicate that RTS with optimal meta-parameter settings does
not outperform TS with optimal, instance-specific parameter settings. However,
if the optimal parameter and meta-parameter settings are unknown, RTS is a
safe choice for achieving high performance.

We base these conclusions on an experimental analysis on the quadratic as-
signment problem (QAP) for which RTS was originally proposed [3]. We tackle
multiple instances with different sizes and characteristics, and we give the re-
sults of a full factorial analysis that tests several parameter and meta-parameter
settings for TS and RTS, respectively. In addition, we study the main effects
of meta-parameters and parameters through an ANOVA analysis. This anal-
ysis shows that, even if some interactions exist among RTS meta-parameters,
they do not strongly impact on our conclusions. In TS, instead, the main effect
of parameters strongly varies as a function of the instances being tackled. We
replicate these analyses on the maximum clique problem (MCP), for which RTS
is currently a state-of-the-art algorithm [1]. The results on the MCP support the
conclusions we draw on the QAP.

The rest of the paper is organized as follows. Section 2 shortly describes the
algorithms we consider, their parameters and meta-parameters. Sections 3 and 4
report the setup and the results of the experimental analyses on the QAP and
the MCP, respectively. Section 5 summarizes the conclusions drawn from these
analyses.

2 TS and RTS

The main goal of RTS is to adapt the tabu list length during the search process
by exploiting the feedback provided by the search process itself. In particular,
if the search revisits already seen solutions, this is taken as an indication of an



insufficient diversification, and, thus, the tabu list length is increased. If for a
large number of local search steps no solutions are revisited, this is taken as
an indication of the need of a greater intensification, and, thus, the tabu list
length is reduced. If the number of visits to a same solution exceeds a predefined
threshold, the algorithm is recognized to stagnate. In this case, RTS escapes the
basin of attraction of the current local optimum by focusing the search on another
region of the search space, either through a restart or through a perturbation.
Restart means randomly selecting a new initial solution for the local search, as
done by Battiti and Mascia in the RTS algorithm for the MCP [1]. Perturbation
means introducing a large, random modification to the current solution, as done
by Battiti and Tecchiolli in the RTS algorithm for the QAP [3].

The TS and RTS algorithms that we use in this paper differ only in the
management of the parameters. As mentioned in Section 1, the parameters that
are adapted in the RTS algorithms are clamped to some fixed values in the TS
algorithms.

2.1 RTS QAP and TS QAP

RTS has been first proposed applying it to the QAP. The QAP consists in
finding the minimum-cost assignment of n facilities to n locations. Each pair of
locations (i, j) is separated by a distance dij . A flow fkl exists between each pair
of facilities (k, l). Let πi be the facility assigned to location i, then the cost of
an allocation is given by

n∑
i=1

n∑
j=1

fπ(i)π(j)dij .

The RTS QAP algorithm that we consider in this paper is the one proposed
by Battiti and Tecchiolli [3]. It relies on 2-opt moves, where a move exchanges
the facilities assigned to two locations. The tabu status is associated to the as-
signment of facilities to locations: a move is tabu if, after the exchange, both
facilities involved occupy locations that they had already occupied in the last
T steps. All non-tabu moves are allowed. On the other hand, tabu moves are
forbidden, unless an aspiration criterion is met: if the solution obtained by ap-
plying a tabu move has a better objective function value than the best found so
far, then the move is allowed despite its tabu status. At each step, RTS QAP
selects the best allowed or aspired move and applies it. The setting of T changes
as a function of the visits of already seen solutions during the search: RTS QAP
increases T by a factor Tincr , Tincr > 1, when it visits an already seen solu-
tion; RTS QAP decreases T by a factor Tdecr , 0 < Tdecr < 1, if no already
seen solution is visited for a fixed number of moves. As a further means for
escaping from local optima, RTS QAP uses perturbations. A perturbation oc-
curs as soon as the number of visits of already seen solutions is greater than a
meta-parameter chaos. A perturbation is a sequence of randomly selected 2-opt
moves, whose number is a function of the number MA of steps that are made
between successive visits of already seen solutions: the larger MA, the larger
the number of random 2-opt moves, that is, the perturbation size. Hence, the



perturbation size varies as a function of the evolution of the search, and, thus, it
is a further parameter adapted by RTS QAP. Together with Tincr , Tdecr and
chaos, RTS QAP introduces four additional meta-parameters that are used, for
example, for setting the perturbation size as a function of MA. In the analysis
presented in this paper, we focus on the two meta-parameters that we consider
the most important ones due to their immediate influence on the adaptation of
T (Tincr and Tdecr). In addition, we study meta-parameter chaos due to the
strong impact of the perturbations on the performance. In summary, the param-
eters adapted by RTS QAP are the tabu list length (T ) and the perturbation
size (p size).

We obtain from RTS QAP the TS QAP algorithm by imposing static values
to T and p size. Moreover, by eliminating all the modules related to the adapta-
tion, we eliminate also the trigger that decides when to perform a perturbation.
TS QAP performs a perturbation after each sequence of n imp consecutive non-
improving moves.

2.2 RTS MCP and TS MCP

RTS is currently one of the best performing approaches available for tackling
the maximum clique problem (MCP). The MCP consists in finding a clique of
maximum cardinality in a given graph. Let G = (V,E) be a graph, with V being
the set of nodes and E being the set of edges. Let G(S) = (S,E ∩ S × S) be
the subgraph induced by S ⊆ V . A clique is a set S such that G(S) is complete,
that is, all nodes in S are pairwise adjacent.

The RTS MCP algorithm that we use for the MCP is described in Battiti and
Mascia [1]. It relies on a local search, in which a basic move corresponds to either
the addition or the removal of one node from the current clique. The tabu status
is associated to nodes: a node that has been either inserted in or removed from
one of the last T cliques can be neither inserted in nor removed from the current
one. At each step, the algorithm evaluates all solutions in the neighborhood of the
current clique, and it moves to the best non-tabu one. No aspiration criterion is
applied. Furthermore, the algorithm escapes from local optima through restarts.
The number of steps made before a restart is a parameter of the algorithm.
This parameter is expressed as a constant, restart , multiplied by the size of the
maximum clique found. RTS MCP adapts the parameter T as a function of the
number of visits of already seen solutions during the search. When an already
seen solution is visited, RTS MCP rises T to max{T ·Tincr , T+1}. As RTS QAP,
RTS MCP decreases T by a factor Tdecr if no already seen solution is visited
for a fixed number of steps. Differently from RTS QAP, the parameter restart is
not adapted by RTS MCP, thus, it remains constant.

We obtain the TS MCP algorithm by suppressing the adaptation of T and
by eliminating the hash-table used for recording already seen solutions.



Table 1. Sets of QAP instances tackled.

set size type set size type

qap1 60 structured qap7 100 structured
qap2 60 unstructured qap8 100 unstructured
qap3 60 structured and qap9 100 structured and

unstructured unstructured
qap4 80 structured qap10 60, 80 and 100 structured
qap5 80 unstructured qap11 60, 80 and 100 unstructured
qap6 80 structured and qap12 60, 80 and 100 structured and

unstructured unstructured

3 Analysis on the QAP

As a first step, we analyze the sensitivity of RTS QAP to the meta-parameters.
We do this analysis using multiple sets of instances to assess the impact of both
the characteristics and the heterogeneity of the set of instances. We tackle in-
stances of three sizes, namely n ∈ {60, 80, 100}, and of two types, namely struc-
tured and unstructured. We created 100 instances of each size and type using the
generator and the parameters described in Pellegrini et al. [18] and Hussin and
Stützle [12]. In unstructured instances, the entries of both distance and flow ma-
trices are random numbers uniformly distributed in the interval [0, 99]. In struc-
tured instances, the entries of the distance matrix are the Euclidean distances
of points positioned in a 100 × 100 square according to a uniform distribution,
rounded to the nearest integer. The entries of the flow matrix are assigned so
that the resulting values follow the characteristics pf real-life instances, that is,
the flow matrix entries have an asymmetric distribution, a significant fraction of
the entries are zero (0.22) and for the non-zero entries there is a high frequency
of low values and a low frequency of high values. From these instances we obtain
twelve sets of instances that are shown in Table 1.

We test multiple parameter and meta-parameter settings for TS QAP and
RTS QAP, respectively. The settings are reported in Table 2. The range of values
we chose for TS QAP’s parameter settings include the values of the analogous
parameter adopted in RTS QAP while running with the default meta-parameter
settings. While the frequency with which RTS QAP uses each setting varies
from instance to instance, the range of the values adopted for the parameters
T and p size during a run of RTS QAP remains rather constant. The range
of RTS QAP meta-parameter settings is naturally bounded for what concerns
Tdecr : being this a multiplicative factor used for decreasing T , it must be positive
and smaller than one. Conversely, Tincr must be greater than one. In this case,
it is not possible to identify a natural upper bound; we fixed as the upper bound
2.5. The interval we consider is large enough to contain all the values that we
expect to be the best ones for RTS QAP. Our expectation is based on the results
reported by Battiti and Tecchiolli [3] and on our own previous experience. Please
notice that the interval we consider includes the default value of 1.1 suggested



Table 2. Parameter and meta-parameter settings tested for the QAP.

parameter settings: TS QAP meta-parameter settings: RTS QAP

T 1, 3, 5, 7, ..., 79 Tincr 1.1, 1.2, 1.3, ..., 2.5
p size 1, 5, 10, 15, 20, 25, 30, 40, 50 Tdecr 0.1, 0.2, 0.3, ..., 0.9
n imp 1, 5, 10, 20, 40, 80 chaos 1, 2, 3, 4, 5, 6

by Battiti and Tecchiolli [3]. Moreover, we consider the granularity of 0.1 as fine
enough to highlight the differences in the performance of RTS QAP that are
due to the settings of meta-parameters Tincr and Tdecr . This granularity is the
same used by Battiti and Tecchiolli in the short experimental analysis that led
them to the default settings of 1.1 and 0.9 [3]. For setting the upper bound of
meta-parameter chaos we made a similar reasoning: its default value is three [3]
and its upper bound here is set to six.

We run the algorithms on Xeon E5410 quad core 2.33GHz processors with
2x6 MB L2-Cache and 8 GB RAM, under the Linux cluster Rocks distribution
CentOS version 5.3. We use as a stopping criterion a computation time of 7 sec-
onds for instances of size 60, 15 seconds for instances of size 80 and 30 seconds for
instances of size 100. This allows RTS with the default meta-parameter settings
(Tincr = 1.1, Tdecr = 0.9, chaos = 3 [3]) to perform about 1300n iterations,
where n is the size of the instance. We evaluate the results of RTS QAP and
TS QAP in terms of the relative error with respect to the best-known solution on
a single run per instance [5]. Moreover, we verify whether the conclusions drawn
on the mean results on multiple instances are equivalent to the ones drawn on
a single instance basis. For studying the results on single instances, we perform
100 runs on two randomly drawn instances from each set.

For each instance, we obtain the best-known solution by selecting the best
result among the ones achieved in the following experiments: first, we perform
ten runs of RTS QAP with the default meta-parameter settings, considering runs
40 times as long as the previous mentioned times. Second, we perform ten runs of
the same duration using an ILS algorithm [20] with the default parameter setting.
Note that ILS [20] typically performs better than RTS QAP on structured QAP
instances. Third, we consider all the shorter runs we performed for evaluating
the algorithms. All the instances used in the experimental analysis are available
from Pellegrini et al. [17], together with their best-known solution value.

In this paper, we report only the results on the set of all structured and
unstructured instances. The conclusions that can be drawn from these results are
confirmed by the results of the whole experimental analysis, where we consider
different levels of aggregation of the twelve sets. The full experimental results
are available in Pellegrini et al. [17].

3.1 Sensitivity to parameters and meta-parameters on the QAP

As a first step, we conducted a landscape analysis of the meta-parameter and the
parameter space. In particular, for RTS QAP and TS QAP, respectively, we plot



for each combination of meta-parameter and parameter values the response as
measured by the mean relative error across a given set of instances w.r.t. to the
best-known solutions. In particular, Figures 1 and 2 give the mean relative error
incurred by RTS QAP and TS QAP on unstructured (Figure 1) and structured
(Figure 2) instances of all sizes (sets qap10 and qap11 in Table 1) for each
combination of RTS QAP meta-parameter or TS QAP parameter settings. We
show here only the results achieved with chaos = 3 for RTS QAP, and n imp =
20 for TS QAP. The trends shown are confirmed by the analysis of all results [17].

The performance of RTS QAP appears almost insensitive to the meta-parameter
settings: the meta-parameter landscape is relatively flat for both structured
and unstructured instances (upper plots of Figures 1 and 2). Only the set-
ting Tincr = 1.1 leads to a noticeable worsening of the results: if Tincr = 1.1
and Tdecr < 0.8, the performance is clearly worse than the one achieved using
meta-parameter settings with a higher value of Tincr . The default combination
Tincr = 1.1, Tdecr = 0.9 is not much worse than the best settings, yet never as
good as them. The behavior of RTS QAP remains the same independently of the
type of instances (size, structure) being tackled (see also Pellegrini et al. [17]).

The sensitivity of TS QAP to its parameter settings is higher: the parameter
landscape (bottom plots of Figures 1 and 2) is less flat than that of the RTS QAP.
TS QAP has very different behavior for unstructured and structured instances.
As an example, note that the adoption of a low value of p size leads to high
performance in unstructured instances, and to low performance in structured
ones. Instead, the shape of the meta-parameter landscape of RTS QAP is almost
indifferent to the type of instances tackled. These observations are confirmed by
the ANOVA analysis of the results we present in Section 3.2.

Figure 3 illustrates the higher sensitivity of TS QAP. This figure shows the
cumulative cost distribution of the different meta-parameter and parameter con-
figurations extracted from the results represented in Figures 1 and 2, considering
all the settings tested for RTS QAP and TS QAP. The cost of a configuration is
measured as the average relative error on the instance set under consideration.
In particular, the plots report on the x-axis the relative error, and on the y-axis
the frequency by which RTS QAP and TS QAP with any settings in the range
defined in Table 2 achieve a relative error that is smaller than or equal to the
corresponding value on the x-axis. The distribution of the results of RTS QAP
is similar for structured and unstructured instances. On the other hand, the
distribution of the results of TS QAP varies quite strongly in the two cases: in
structured instances, the distribution is almost equal to the one of RTS QAP,
being slightly better for small relative errors. In unstructured instances, TS QAP
obtains very good results only with a small fraction of parameter settings.

The measure in which RTS QAP pays its low sensitivity to meta-parameter
settings in terms of performance is represented in Table 3. This table reports
the mean relative error made by RTS QAP and TS QAP with the best meta-
parameter and parameter settings, respectively: we selected the best settings
based on the results of the analysis, and we evaluated their performance on
an additional run for each instance, or on 100 additional runs when consider-
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Fig. 1. Mean relative error of RTS QAP (top plot) and TS QAP (bottom plot) for
unstructured QAP instances.

ing a single instance. In the same table, we report the best meta-parameter
or parameter settings for each set of instances and for each considered single
instance. When multiple instances are tackled by using the best set-specific set-
tings, RTS QAP performs consistently better than TS QAP as far as unstruc-
tured instances are present: this holds for both sets including only unstructured
instances, and sets including both structured and unstructured ones. When only



RTS: All structured instances,   chaos=3
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Fig. 2. Mean relative error of RTS QAP (top plot) and TS QAP (bottom plot) for
structured QAP instances.

structured instances are to be tackled, TS QAP is the best algorithm. In case of
multiple runs on a single instance, when using instance-based optimal settings,
the two algorithms are comparable on the unstructured instances, and TS QAP
achieves better results in the structured ones. Both the best parameter and the
best meta-parameter settings vary quite significantly as a function of the in-
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Fig. 3. Cumulative cost distribution of parameter and meta-parameter configurations
for the QAP: all settings tested for RTS QAP and TS QAP.

stance set tackled. The size of the instances does not have a noticeable impact,
neither on the results, nor on the optimal parameter settings.

3.2 ANOVA analysis on the QAP

We analyze through ANOVA the main effect of RTS QAP meta-parameters and
of TS QAP parameters. The residuals in the original data have fat tails and
depart somehow from the normal distribution. The normality of the residuals is
strongly improved by a square-root transformation. The results obtained in the
analyses on the original and the square-root transformed data are qualitatively
equivalent. Thus, we show here the results obtained in the analysis of the original
data, since they allow an easier match between the intuition and the observations.
The results for the whole analysis are available in Pellegrini et al. [17].

Figures 4 and 5 report the plots of the main effects on unstructured and struc-
tured instances, respectively. The plots report the mean relative error obtained
with each setting. The variability of the results of this analysis is extremely low.
In principle, the plots report also the confidence intervals corresponding to the
mean relative error, according to the Student t-test with confidence level 0.95.
Yet, in our results the extremes of the confidence intervals coincide with the
mean relative errors.

The left column of Figures 4 and 5 show that different trends appear, espe-
cially for Tdecr , for RTS QAP meta-parameters when tackling unstructured and
structured instances. Yet, on both unstructured and structured instances the dif-
ferences in the performance achieved with different meta-parameter settings are
very small. Moreover, in both unstructured and structured instances, the curves
shown in the left column of Figures 4 and 5 are rather smooth, and confirm the
low sensitivity to meta-parameters. Some interactions among meta-parameters
exist [17]; hence, the best settings reported in Table 3 cannot be identified by
looking only at the main effect plots reported here. Yet, it is quite easily re-
markable that the ANOVA analysis supports the conclusion that the default
meta-parameter settings of RTS QAP proposed by Battiti and Tecchiolli [3] are



Table 3. Mean relative error across instances or runs of the best parameter and meta-
parameter settings for the QAP. The difference between the results obtained by the best
meta-parameter and the best parameter settings are statistically significant according
to the t-test with 95% confidence level. We report in bold font the best mean for each
set of instances. Below each result, we report in parenthesis the meta-parameter and
parameter settings adopted. For RTS QAP, the three values correspond to the setting
of Tincr , Tdecr , and chaos, respectively. For TS QAP, the three values correspond to
the setting of T, p size, and n imp, respectively.

All sizes
all unstructured structured

RTS QAP TS QAP RTS QAP TS QAP RTS QAP TS QAP

0.0044 0.0047 0.0042 0.0046 0.0040 0.0028
(2.5,0.4,1) (7,10,20) (2.0,0.6,5) (7,1,40) (1.5,0.2,2) (33,15,40)

Individual sizes
all unstructured structured

RTS QAP TS QAP RTS QAP TS QAP RTS QAP TS QAP

size 60 0.0045 0.0055 0.0050 0.0055 0.0035 0.0025
(2.3,0.4,2) (7,10,40) (2.5,0.2,1) (5,1,10) (2.2,0.6,5) (49,10,20)

size 80 0.0041 0.0043 0.0039 0.0042 0.0038 0.0028
(1.7,0.3,2) (7,15,40) (2.3,0.5,5) (5,1,20) (1.7,0.3,2) (41,10,10)

size 100 0.0038 0.0043 0.0034 0.0039 0.0037 0.0028
(1.5,0.5,2) (7,15,40) (1.9,0.7,4) (7,1,40) (1.4,0.4,2) (35,10,10)

Randomly selected individual instances
unstructured structured

RTS QAP TS QAP RTS QAP TS QAP

60.a 0.0068 0.0064 0.0024 0.0009
(2.4,0.5,3) (5,1,40) (2.4,0.1,1) (21,5,1)

60.b 0.0074 0.0051 0.0031 0.0018
(2.3,0.5,4) (5,1,20) (1.8,0.2,1) (23,10,40)

80.a 0.0053 0.0064 0.0036 0.0024
(2.0,0.5,6) (5,1,40) (1.3,0.5,2) (23,20,40)

80.b 0.0060 0.0054 0.0059 0.0043
(2.4,0.6,5) (7,1,40) (1.8,0.5,2) (37,10,40)

100.a 0.0040 0.0054 0.0029 0.0018
(2.1,0.6,5) (7,1,40) (1.4,0.5,1) (51,5,5)

100.b 0.0049 0.0051 0.0036 0.0022
(2.4,0.5,4) (5,1,20) (1.3,0.5,2) (51,15,20)

not the best possible ones, even if they do not lead to a strong worsening of the
solution quality.
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Fig. 4. Main effects on unstructured instances for RTS QAP (left column) and
TS QAP (right column). Note that all plots use the same scale on the y-axis.
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Fig. 5. Main effects on structured instances for RTS QAP (left column) and TS QAP
(right column). Note that all plots use the same scale on the y-axis.



As it emerged from Figures 1 and 2, the results of the ANOVA analysis show
that the relation between parameter settings of TS QAP and performance vary
quite strongly with the characteristics of the instances tackled (right column
of Figures 4 and 5). In particular, in unstructured instances (right column of
Figure 4), T must be set to a rather low value, with a small perturbation size and
a large value of n imp. Thus, TS QAP in unstructured instances performs better
when as few perturbations as possible are made, and when these perturbations
are as small as possible. In structured instances (right column of Figure 5),
instead, the performance is quite insensitive to the setting of T , provided that T
is large enough. This is counterintuitive, since the typical expectation is that the
tabu list length is the most important parameter of TS QAP, and that the results
are strongly related to its settings. This observation on the reduced impact of
the tabu list length on structured instances may also explain the relatively worse
performance of RTS QAP on these instances: RTS QAP focuses on adapting a
parameter that for this instance class is not very relevant. In structured instances,
the best performance is achieved by setting both p size and n imp to non-
extreme values. This is very much in contrast with the behavior observed on
unstructured instances, where in general perturbations are disadvantageous. This
observation is confirmed by the interaction plots [17].

4 Analysis on the MCP

We verify the validity of the conclusions drawn for the QAP by reproducing the
same analysis on the MCP, a problem for which RTS MCP is a state-of-the-art
algorithm [1].

We ran the experiments on the same hardware as the experiments for the
QAP. In this analysis, we tackle a subset of the instances used in the DIMACS
implementation challenge [13]. This subset includes the instances used by Bat-
titi and Mascia [1] that can be solved under a memory limitation of 500 MB
RAM. The instances tackled are listed in Table 5. We perform 100 runs for each
instance, imposing two stopping criteria: the algorithm stops when either it has
reached a global optimum (or a solution with the best-known solution value),
or it has performed 108 steps. The optimal or best-known solution value of each
instance is publicly available [9].

We compare the performance of each setting of TS MCP and RTS MCP
in terms of the number of steps necessary to reach an optimal or best-known
solution. Besides analyzing the results for each instance, we consider the set of all
instances. In this case, we evaluate the performance in terms of the total number
of steps needed for performing one run for each instance: first, we compute the
mean number of steps needed to find an optimal or best-known solution for each
instance; second, we sum these values for obtaining the mean number of steps
necessary for solving all instances once. In the following, we will refer to this
performance measure as the number of steps to reach a bound.

Table 4 reports the parameter and meta-parameter settings tested for TS MCP
and RTS MCP, respectively. The settings tested for the meta-parameters of



Table 4. Parameter and meta-parameter settings tested for the MCP.

parameter settings: TS MCP meta-parameter settings: RTS MCP

T 1, 3, 5, 7, ..., 49 Tincr 1.1, 1.2, 1.3, ..., 2.5
Tdecr 0.1, 0.2, 0.3, ..., 0.9

RTS MCP are the same as used for the QAP. The values of T are a super-
set of the best static values for each instance [14]. Both for RTS MCP and for
TS MCP we use the default setting of parameter restart , which is 100 [1]. As
remarked in Section 2.2, the only parameter that RTS MCP adapts is T . Thus,
it is the only parameter that we consider in the study of TS MCP.

4.1 Sensitivity to parameters and meta-parameters on the MCP

In Figure 6, we report the meta-parameter and parameter landscape analysis for
RTS MCP and TS MCP on the set of all instances (top plots), and on instances
DSJC1000.5 and MANN a27 (center and bottom plots, respectively). The results
for all the other instances are available in Pellegrini et al. [17]; they lead to the
same conclusions that can be drawn based on the results reported here.

The conclusions of the analysis on the QAP are confirmed by these results:
the sensitivity of TS MCP to parameter settings is much higher than the one of
RTS MCP to meta-parameter settings. The extremely flat landscapes on the first
two plots in the left column of Figure 6 indicate that RTS MCP is insensitive
to specific settings of meta-parameters. For what concerns the results achieved
on instance MANN a27, even if the meta-parameter landscape appears rather
rough, the difference in the mean number of steps to reach the optimal clique size
with the best and the worst setting is 31495 steps, the maximum being 116181;
the difference between the 75th and the 25th percentile of the distribution of
the results is 3946. Fixing Tincr to 1.1 when Tdecr is very low does not have
a remarkable impact on the performance on the set of all instances and on
DSJC1000.5, and it is a quite advantageous choice on MANN a27. For TS MCP,
the performance is strongly worsened by inappropriate parameter settings, as
shown in the right column of Figure 6. This is particularly true on the set of all
instances and on DSJC1000.5. The parameter settings does not strongly impact
the performance on MANN a27: in this case, using the worst parameter settings
of TS QAP leads to an increase of 47269 of the number of steps to reach a
bound with respect to using the best setting, the maximum being 121043; the
difference between the the 75th and the 25th percentile of the distribution of the
results is 11626. These differences are statistically significant according to the
Wilcoxon rank-sum test with a confidence level of 0.95. The center and bottom
plots show that the relation between parameter settings and performance in
TS MCP depends on the instance tackled, as it emerged in the analysis on the
QAP.

The different sensitivity of TS MCP to its parameter settings as a function of
the instance tackled is very evident in Figure 7. Here, we report the cumulative



cost distribution of the RTS MCP meta-parameter and TS MCP parameter set-
tings corresponding to the results shown on all instances, instance DSJC1000.5
and instance MANN a27. The plots show on the y−axis the frequency with
which the algorithms find the optimal or best-known solution in a given number
of steps that is reported on the x-axis in a logarithmic scale. This frequency is
computed considering all the settings tested, analogously to Figure 3: the cost of
a configuration is the average number of steps to reach a bound on the instance
or instance set under consideration.

Figure 7 shows that, even if the performance of RTS MCP depends on
the particular instance tackled, whatever the meta-parameter settings used,
RTS MCP quickly finds the target bounds on the clique size with a very high
frequency. This is not the case of TS MCP. In fact, despite the very best pa-
rameter settings allow the achievement of high performance, it is more sensitive
with respect to parameters settings than RTS MCP. In fact, the line representing
RTS MCP is always above the one representing TS MCP: whatever the num-
ber of steps, the frequency with which RTS MCP reaches the imposed bound is
higher than the one of TS MCP. The difference in the behavior of RTS MCP
and TS MCP is not remarkable in instance MANN a27, which is an exception
here. Given that the difference in absolute number of steps between RTS MCP
and TS MCP are minor and the choice of a log-scale on the x-axis, the curves
representing RTS MCP and TS MCP appear to coincide. When the curves do
not coincide, as in the QAP, RTS MCP appears a safer option to choose if is
the most appropriate parameter settings for TS MCP for solving an instance are
unknown.

Instead, if this knowledge is available, RTS MCP does not give better results
than TS MCP. Table 5 reports the mean number of steps to reach a bound for
the best RTS MCP meta-parameter and the best TS MCP parameter settings,
together with the best settings adopted. As we did for the QAP, we selected
the best settings based on the results reported in Figure 6, and we re-ran the
experiments using these settings. When the appropriate settings are selected,
TS MCP outperforms RTS MCP in 21 of 27 instances. The mean relative in-
crease of the number of steps to reach a bound when passing from TS MCP to
RTS MCP is 0.37, with a maximum relative increase of 3.56 in instance keller4,
and a maximum relative decrease of 0.15 in instance C125.9. Let us remark here
that the computation time needed for performing one step is hardly measurable.
In instance keller4, for example, the increase of the mean number of steps to
reach a bound of more than a factor of three corresponds to an increase of the
mean solution time from 0.0001 to 0.0002 CPU seconds.

Differently, RTS MCP is the best algorithm on the set of all instances that
is, if instance-wise optimal parameter settings are not known. This result is not
surprising given that (i) the best parameter and meta-parameter settings are
quite different across instances, and (ii) for RTS MCP the meta-parameter set-
tings have relatively little impact on performance. In the set of all instances, the
best meta-parameter setting is close to the default settings [1]. In this case, the
median difference in the number of steps to reach a bound when using the default



Table 5. Mean number of steps to reach a bound for the best instance-wise settings
of RTS MCP and TS MCP. The difference between the results obtained by the best
meta-parameters and the best parameters are statistically significant according to the
Wilcoxon rank-sum test with 95% confidence level, except for instance hamming8-4.
We report in bold font the lowest mean number of steps for each instance and for the
set of all instances. Below each result, we report in parenthesis the meta-parameter and
parameter settings adopted. For RTS MCP, the two values correspond to the setting
of Tincr and Tdecr , respectively. For TS MCP, the value corresponds to the setting of
T .

instance RTS MCP TS MCP instance RTS MCP TS MCP

All 996578 1119774 gen400 p0.9 75 1297 901
(1.1, 0.8) (9) (2.3, 0.5) (31)

C125.9 125 147 p hat1500-1 178264 142196
(1.1, 0.1) (17) (1.2, 0.4) (5)

C2000.5 37817 36556 p hat1500-2 844 848
(1.1, 0.1) (3) (1.4, 0.5) (21)

C250.9 1365 1115 p hat1500-3 1672 1133
(1.1, 0.8) (17) (1.1, 0.7) (27)

C500.9 78059 41951 p hat300-1 135 125
(1.1, 0.7) (13) (1.1, 0.5) (3)

DSJC1000.5 41700 31949 p hat300-2 46 35
(1.3, 0.3) (3) (2.3, 0.1) (5)

DSJC500.5 2007 1489 p hat300-3 787 577
(1.1, 0.7) (5) (1.1, 0.6) (15)

MANN a27 104910 107614 p hat700-1 1359 1556
(1.9, 0.7) (47) (1.1, 0.6) (3)

brock200 2 101054 76410 p hat700-2 137 107
(2.1, 0.4) (11) (1.1, 0.1) (11)

brock200 4 348108 173025 p hat700-3 319 402
(1.9, 0.9) (13) (1.2, 0.3) (9)

gen200 p0.9 44 2109 1693 hamming10-4 968 799
(1.1, 0.7) (21) (1.4, 0.6) (11)

gen200 p0.9 55 681 422 hamming8-4 16 16
(2.2, 0.7) (31) (1.1, 0.1) (1)

gen400 p0.9 55 35218 27479 keller4 164 36
(1.4, 0.5) (19) (1.3, 0.1) (11)

gen400 p0.9 65 1459 1129 keller5 3116 3113
(1.9, 0.7) (25) (1.1, 0.6) (13)



and the best setting (Tincr = 1.1 and Tdecr = 0.8) is very small: according to
the Wilcoxon rank-sum test with confidence level 0.95, the condifence interval
is (−4943, 2150).

4.2 ANOVA analysis on the MCP

The ANOVA analysis shows the main effect of the meta-parameters of RTS MCP
and of the parameter of TS MCP. Figures 8 and 9 depict the mean of the loga-
rithm of the number of steps to reach a bound computed on the results shown in
Section 4.1, for RTS MCP and TS MCP, respectively. The plots report also the
confidence intervals according to the Student t-test with confidence level 0.95.
When the confidence intervals are not visible, it means that the variability of the
results is extremely low. We applied a logarithmic transformation to the results,
so as to increase the normality of the residuals.

Figure 8 shows that different meta-parameter settings have no remarkable
impact on the performance. For TS MCP (Figure 9) the appropriate settings are
quite different on the three sets of instances, as reported in Table 5. For TS MCP,
being T the only parameter considered, there are no interactions to accout for,
and the indications of the ANOVA results correspond to those of the analysis
reported in Section 4.1. As for the QAP, an inappropriate TS MCP parameter
setting has a great impact on performance: selecting an inappropriate setting
may imply an increase in the number of steps to reach a bound of a factor of
188.2 for instance DSJC1000.5 and 1.63 for instance MANN a27 (remark that the
plots report the logarithm of the number of steps to reach a bound on the y-axis).
Selecting an inappropriate meta-parameter setting for RTS MCP may imply the
increase of the number of steps to reach a bound of a factor of 1.6 for instance
DSJC1000.5 and 1.37 for instance MANN a27. Some interactions exist between
RTS MCP meta-parameters [17], but they do not impact the conclusions on the
appropriate settings.

5 Conclusion

In this paper, we have compared the sensitivity of RTS to its meta-parameters
with the sensitivity of TS to its parameters. We made this comparison on two
combinatorial optimization problems, namely the QAP and the MCP using in-
stances with different characteristics. We also performed an ANOVA analysis for
studying the main effect of the parameters of TS and the meta-parameters of
RTS, as well as their interactions [17].

The results of these analyses lead to the same conclusion: RTS is less sensitive
than TS to settings of its parameters, and there are no significant interactions
according to the ANOVA analysis. We measured the sensitivity by observing the
difference in the performance achieved by the algorithms with different meta-
parameter (RTS) or parameter (TS) settings. If we consider only the best settings
for TS and RTS, in the QAP, TS performs better than RTS when only structured
instances are tackled, and the opposite holds when also unstructured instances



are involved in the computation. In the MCP, TS typically performs better than
RTS when the best settings are selected on an instance basis, and the opposite
holds when the best setting is selected across multiple instances. If non-optimal
parameter settings are fixed for TS, the performance can strongly worsen both
on single and across multiple instances. This is not the case if non-optimal meta-
parameter settings are fixed for RTS. Moreover, the best parameter setting for TS
is strongly dependent on the characteristics of the instances tackled. Instead, in
RTS, many meta-parameter settings perform similarly good on all the instances
tested.

In the analysis for the QAP, we get to conclusions that are rather different
from those drawn by Battiti and Tecchiolli [3]: from our results we would suggest
to take a value larger than the originally suggested value of 1.1 for Tincr , and
a value smaller than the originally suggested one of 0.9 for Tdecr . In particular,
Tincr = 2.0 and Tdecr = 0.5 are good settings across all the sets of instances
considered. It is not possible to identify a best overall setting for chaos, where
the default value is a good compromise. In the analysis for the MCP, instead, the
default values proposed by Battiti and Mascia [1] (Tincr = 1.1 and Tdecr = 0.9)
turned out to be very good on the set of all instances.

Our results show that, if one aims at generally good results, or if it is not
clear what are the characteristics of the instances that need to be considered
for determining the appropriate parameter settings for TS, RTS is a very good
option, and it can be used without any previous tuning of the meta-parameters:
despite the default meta-parameter settings are typically not the best ones, their
use does not have a strong negative impact on the performance of the algorithm.
On the other side, they also show that there is potential for the usage of pa-
rameter selection strategies where, depending on instance characteristics, fixed
instance-specific parameter values are chosen. This is an option we will explore
further in follow-up research.
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Fig. 6. Mean number of steps to reach the best-known or optimal clique size by
RTS MCP (left column) and TS MCP (right column) on all MCP instances (top),
instance DSJC1000.5 (middle) and instance MANN a27 (bottom)
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Fig. 8. Main effect in RTS MCP. Set of all MCP instances (top), and instances
DSJC1000.5 (middle) and MANN a27 (bottom). Note that all plots use the same scale
on the y-axis as the ones in Figure 9.
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Fig. 9. Main effect in TS MCP. Set of all MCP instances (top), and instances
DSJC1000.5 (middle) and MANN a27 (bottom). Note that all plots use the same scale
on the y-axis as the ones in Figure 8.


