N
N

N

HAL

open science

On the sensitivity of reactive tabu search to its
meta-parameters

Paola Pellegrini, Franco Mascia, Thomas Stutzle, Mauro Birattari

» To cite this version:

Paola Pellegrini, Franco Mascia, Thomas Stutzle, Mauro Birattari.
tabu search to its meta-parameters. Soft Computing, 2014, 16p.

00990429

HAL Id: hal-00990429
https://hal.science/hal-00990429
Submitted on 7 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

On the sensitivity of reactive
10.1007/s00500-013-1192-6 . hal-

https://hal.science/hal-00990429
https://hal.archives-ouvertes.fr

Institut de Recherches Interdisciplinaires
IRIDIA MM -t de Développements en Intelligence Artificielle

4 N

On the Sensitivity of Reactive Tabu Search
to its Meta-parameters

Paola PELLEGRINI, Franco MASCIA,
\ Thomas STUTZLE, and Mauro BIRATTARI /

4 I
IRIDIA — Technical Report Series

Technical Report No.
TR/IRIDIA /2011-025
December 2011

IRIDIA — Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

UNIVERSITE LIBRE DE BRUXELLES

Av F. D. Roosevelt 50, CP 194/6

1050 Bruxelles, Belgium

Technical report number TR/TRIDIA /2011-025

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA —
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

On the Sensitivity of Reactive Tabu Search
to its Meta-parameters

Paola, Pellegrini'*, Franco Mascia?, Thomas Stiitzle?, and Mauro Birattari?

L IFSTTAR — ESTAS, Villeneuve d’Ascq, Lille, France
2IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
paola.pellegrininQifsttar.fr; fmascia@ulb.ac.be; stuetzle@ulb.ac.be;
mbiroQulb.ac.be

Abstract. In this paper, we assess the sensitivity of reactive tabu search
to its meta-parameters. With a thorough experimental analysis, based
on the quadratic assignment and the maximum clique problem, we show
that the performance of reactive tabu search is relatively insensitive to its
meta-parameters. This is particularly evident when compared to the sen-
sitivity of tabu search to its parameters: tabu search is rather penalized
if used with sub-optimal parameter settings. Reactive tabu search does
not strongly pay its high parameter robustness in terms of performance,
although it does not improve the peak performance of tabu search.

1 Introduction

Tabu search (TS) is a metaheuristic that exploits the search history to direct
an underlying local search. The essential idea behind TS is to forbid revisit-
ing previously seen solutions. In practice, TS rather forbids components of the
past T local search moves. In tabu search, T is a parameter called tabu list
length or tabu tenure, and it is known to have a strong impact on performance.
Reactive tabu search (RTS) [1-4,6,8,11,15,16,19] is a technique that adapts
the value of T at run-time. The adaptation of the parameter T is managed by
a mechanism that sits on top of the underlying search method and whose be-
havior in turn depends on the values of other parameters to which we refer as
“meta-parameters”. In a sense, RTS eliminates some parameters from TS but it
introduces new meta-parameters, thus, possibly increasing the number of param-
eters of the underlying tabu search algorithm. This is done with the hope that it
becomes easier to set the meta-parameters and that the algorithm achieves high
performance regardless of the characteristics of the instances to be tackled.

An obvious question is how the meta-parameters impact on the performance
of the algorithm. Often, it is tacitly assumed that parameter adaptation methods
help and that their meta-parameters have a negligible impact on performance.
In fact, only few articles investigate the impact of meta-parameters on perfor-
mance. For what concerns RTS, the first paper proposing this method [3] devoted

* Paola Pellegrini has carried our part of the study reported in this paper while working
at IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium.

some experiments to the study of the impact of the meta-parameter settings on
performance. The authors concluded that a 10% variation of these settings does
not have any relevant effect on the results. Some work has been devoted to pa-
rameter adaptation methods applied to evolutionary algorithms [7, 10], but these
methods differ very strongly from the mechanism used in RTS.

In this paper, we study the sensitivity of RTS to its meta-parameters, and we
compare it with the sensitivity of TS to its parameters. Starting from the RTS
algorithms proposed in the literature for tackling the quadratic assignment and
the maximum clique problem, we eliminate the modules related to parameter
adaptation, fix the relevant parameters, and, thus, obtain the TS algorithms for
tackling the two problems. By doing this, differences in the behavior of RTS and
TS are due to whether the parameter adaptation method is used or not. We
show that the performance of RTS is rather insensitive to the meta-parameters.
The opposite holds for T'S: in some cases TS suffers a major performance degra-
dation if inappropriate yet reasonable parameter settings are used. Moreover,
the instance-based optimal parameter settings of TS vary strongly as a function
of the characteristics of the instance tackled, and the adoption of sub-optimal
parameter settings worsens significantly performance.

Our results also indicate that RT'S with optimal meta-parameter settings does
not outperform TS with optimal, instance-specific parameter settings. However,
if the optimal parameter and meta-parameter settings are unknown, RTS is a
safe choice for achieving high performance.

We base these conclusions on an experimental analysis on the quadratic as-
signment problem (QAP) for which RTS was originally proposed [3]. We tackle
multiple instances with different sizes and characteristics, and we give the re-
sults of a full factorial analysis that tests several parameter and meta-parameter
settings for TS and RTS, respectively. In addition, we study the main effects
of meta-parameters and parameters through an ANOVA analysis. This anal-
ysis shows that, even if some interactions exist among RTS meta-parameters,
they do not strongly impact on our conclusions. In TS, instead, the main effect
of parameters strongly varies as a function of the instances being tackled. We
replicate these analyses on the maximum clique problem (MCP), for which RTS
is currently a state-of-the-art algorithm [1]. The results on the MCP support the
conclusions we draw on the QAP.

The rest of the paper is organized as follows. Section 2 shortly describes the
algorithms we consider, their parameters and meta-parameters. Sections 3 and 4
report the setup and the results of the experimental analyses on the QAP and
the MCP, respectively. Section 5 summarizes the conclusions drawn from these
analyses.

2 TS and RTS

The main goal of RTS is to adapt the tabu list length during the search process
by exploiting the feedback provided by the search process itself. In particular,
if the search revisits already seen solutions, this is taken as an indication of an

insufficient diversification, and, thus, the tabu list length is increased. If for a
large number of local search steps no solutions are revisited, this is taken as
an indication of the need of a greater intensification, and, thus, the tabu list
length is reduced. If the number of visits to a same solution exceeds a predefined
threshold, the algorithm is recognized to stagnate. In this case, RTS escapes the
basin of attraction of the current local optimum by focusing the search on another
region of the search space, either through a restart or through a perturbation.
Restart means randomly selecting a new initial solution for the local search, as
done by Battiti and Mascia in the RTS algorithm for the MCP [1]. Perturbation
means introducing a large, random modification to the current solution, as done
by Battiti and Tecchiolli in the RTS algorithm for the QAP [3].

The TS and RTS algorithms that we use in this paper differ only in the
management of the parameters. As mentioned in Section 1, the parameters that
are adapted in the RTS algorithms are clamped to some fixed values in the TS
algorithms.

2.1 RTS_QAP and TS_QAP

RTS has been first proposed applying it to the QAP. The QAP consists in
finding the minimum-cost assignment of n facilities to n locations. Each pair of
locations (i, j) is separated by a distance d;;. A flow fi; exists between each pair
of facilities (k,1). Let m; be the facility assigned to location 7, then the cost of

an allocation is given by
DD fetimdis-

i=1 j=1
The RTS_QAP algorithm that we consider in this paper is the one proposed
by Battiti and Tecchiolli [3]. It relies on 2-opt moves, where a move exchanges
the facilities assigned to two locations. The tabu status is associated to the as-
signment of facilities to locations: a move is tabu if, after the exchange, both
facilities involved occupy locations that they had already occupied in the last
T steps. All non-tabu moves are allowed. On the other hand, tabu moves are
forbidden, unless an aspiration criterion is met: if the solution obtained by ap-
plying a tabu move has a better objective function value than the best found so
far, then the move is allowed despite its tabu status. At each step, RTS_ QAP
selects the best allowed or aspired move and applies it. The setting of T changes
as a function of the visits of already seen solutions during the search: RTS_QAP
increases T by a factor Tincr, Tincr > 1, when it visits an already seen solu-
tion; RTS_QAP decreases T by a factor Tdecr, 0 < Tdecr < 1, if no already
seen solution is visited for a fixed number of moves. As a further means for
escaping from local optima, RTS_QAP uses perturbations. A perturbation oc-
curs as soon as the number of visits of already seen solutions is greater than a
meta-parameter chaos. A perturbation is a sequence of randomly selected 2-opt
moves, whose number is a function of the number MA of steps that are made
between successive visits of already seen solutions: the larger MA, the larger
the number of random 2-opt moves, that is, the perturbation size. Hence, the

perturbation size varies as a function of the evolution of the search, and, thus, it
is a further parameter adapted by RTS_QAP. Together with Tincr, Tdecr and
chaos, RTS_QAP introduces four additional meta-parameters that are used, for
example, for setting the perturbation size as a function of MA. In the analysis
presented in this paper, we focus on the two meta-parameters that we consider
the most important ones due to their immediate influence on the adaptation of
T (Tincr and Tdecr). In addition, we study meta-parameter chaos due to the
strong impact of the perturbations on the performance. In summary, the param-
eters adapted by RTS_QAP are the tabu list length (7') and the perturbation
size (p_size).

We obtain from RTS_QAP the TS_QAP algorithm by imposing static values
to T and p_size. Moreover, by eliminating all the modules related to the adapta-
tion, we eliminate also the trigger that decides when to perform a perturbation.
TS_QAP performs a perturbation after each sequence of n_imp consecutive non-
improving moves.

2.2 RTS_MCP and TS_MCP

RTS is currently one of the best performing approaches available for tackling
the maximum clique problem (MCP). The MCP consists in finding a clique of
maximum cardinality in a given graph. Let G = (V, E) be a graph, with V being
the set of nodes and E being the set of edges. Let G(S) = (S,EN S x S) be
the subgraph induced by S C V. A clique is a set S such that G(S) is complete,
that is, all nodes in S are pairwise adjacent.

The RTS_MCP algorithm that we use for the MCP is described in Battiti and
Mascia [1]. It relies on a local search, in which a basic move corresponds to either
the addition or the removal of one node from the current clique. The tabu status
is associated to nodes: a node that has been either inserted in or removed from
one of the last T cliques can be neither inserted in nor removed from the current
one. At each step, the algorithm evaluates all solutions in the neighborhood of the
current clique, and it moves to the best non-tabu one. No aspiration criterion is
applied. Furthermore, the algorithm escapes from local optima through restarts.
The number of steps made before a restart is a parameter of the algorithm.
This parameter is expressed as a constant, restart, multiplied by the size of the
maximum clique found. RTS_MCP adapts the parameter T' as a function of the
number of visits of already seen solutions during the search. When an already
seen solution is visited, RTS_MCP rises T' to max{T" Tincr, T+1}. As RTS_QAP,
RTS_MCP decreases T by a factor Tdecr if no already seen solution is visited
for a fixed number of steps. Differently from RTS_QAP, the parameter restart is
not adapted by RTS_MCP, thus, it remains constant.

We obtain the TS_MCP algorithm by suppressing the adaptation of T' and
by eliminating the hash-table used for recording already seen solutions.

Table 1. Sets of QAP instances tackled.

set size type set size type
qapl 60 structured qap? 100 structured
qap2 60 unstructured qap8 100 unstructured
qap3 60 structured and | qap9 100 structured and
unstructured unstructured
qap4 80 structured qapl0 60, 80 and 100 structured
qapb 80 unstructured qapll 60, 80 and 100 unstructured
qap6 80 structured and | qapl2 60, 80 and 100 structured and
unstructured unstructured

3 Analysis on the QAP

As a first step, we analyze the sensitivity of RTS_QAP to the meta-parameters.
We do this analysis using multiple sets of instances to assess the impact of both
the characteristics and the heterogeneity of the set of instances. We tackle in-
stances of three sizes, namely n € {60,80, 100}, and of two types, namely struc-
tured and unstructured. We created 100 instances of each size and type using the
generator and the parameters described in Pellegrini et al. [18] and Hussin and
Stiitzle [12]. In unstructured instances, the entries of both distance and flow ma-
trices are random numbers uniformly distributed in the interval [0,99]. In struc-
tured instances, the entries of the distance matrix are the Euclidean distances
of points positioned in a 100 x 100 square according to a uniform distribution,
rounded to the nearest integer. The entries of the flow matrix are assigned so
that the resulting values follow the characteristics pf real-life instances, that is,
the flow matrix entries have an asymmetric distribution, a significant fraction of
the entries are zero (0.22) and for the non-zero entries there is a high frequency
of low values and a low frequency of high values. From these instances we obtain
twelve sets of instances that are shown in Table 1.

We test multiple parameter and meta-parameter settings for TS_QAP and
RTS_QAP, respectively. The settings are reported in Table 2. The range of values
we chose for TS_QAP’s parameter settings include the values of the analogous
parameter adopted in RTS_QAP while running with the default meta-parameter
settings. While the frequency with which RTS_QAP uses each setting varies
from instance to instance, the range of the values adopted for the parameters
T and p_size during a run of RTS_QAP remains rather constant. The range
of RTS_QAP meta-parameter settings is naturally bounded for what concerns
Tdecr: being this a multiplicative factor used for decreasing T, it must be positive
and smaller than one. Conversely, Tincr must be greater than one. In this case,
it is not possible to identify a natural upper bound; we fixed as the upper bound
2.5. The interval we consider is large enough to contain all the values that we
expect to be the best ones for RTS_QAP. Our expectation is based on the results
reported by Battiti and Tecchiolli [3] and on our own previous experience. Please
notice that the interval we consider includes the default value of 1.1 suggested

Table 2. Parameter and meta-parameter settings tested for the QAP.

parameter settings: TS_ QAP ‘meta—parameter settings: RTS_QAP
T 1,3,5,7,...,79 Tincr 11,1.2,13,...25
p_size 1,5, 10,15, 20, 25, 30, 40, 50 Tdecr 0.1,0.2,0.3,...,0.9
n_imp 1, 5,10, 20,40, 80 chaos 1,2,3,4,5,6

by Battiti and Tecchiolli [3]. Moreover, we consider the granularity of 0.1 as fine
enough to highlight the differences in the performance of RTS_QAP that are
due to the settings of meta-parameters Tincr and Tdecr. This granularity is the
same used by Battiti and Tecchiolli in the short experimental analysis that led
them to the default settings of 1.1 and 0.9 [3]. For setting the upper bound of
meta-parameter chaos we made a similar reasoning: its default value is three [3]
and its upper bound here is set to six.

We run the algorithms on Xeon E5410 quad core 2.33GHz processors with
2x6 MB L2-Cache and 8 GB RAM, under the Linux cluster Rocks distribution
CentOS version 5.3. We use as a stopping criterion a computation time of 7 sec-
onds for instances of size 60, 15 seconds for instances of size 80 and 30 seconds for
instances of size 100. This allows RTS with the default meta-parameter settings
(Tiner = 1.1, Tdecr = 0.9, chaos = 3 [3]) to perform about 1300n iterations,
where n is the size of the instance. We evaluate the results of RTS_QAP and
TS_QAP in terms of the relative error with respect to the best-known solution on
a single run per instance [5]. Moreover, we verify whether the conclusions drawn
on the mean results on multiple instances are equivalent to the ones drawn on
a single instance basis. For studying the results on single instances, we perform
100 runs on two randomly drawn instances from each set.

For each instance, we obtain the best-known solution by selecting the best
result among the ones achieved in the following experiments: first, we perform
ten runs of RTS_QAP with the default meta-parameter settings, considering runs
40 times as long as the previous mentioned times. Second, we perform ten runs of
the same duration using an ILS algorithm [20] with the default parameter setting.
Note that ILS [20] typically performs better than RTS_QAP on structured QAP
instances. Third, we consider all the shorter runs we performed for evaluating
the algorithms. All the instances used in the experimental analysis are available
from Pellegrini et al. [17], together with their best-known solution value.

In this paper, we report only the results on the set of all structured and
unstructured instances. The conclusions that can be drawn from these results are
confirmed by the results of the whole experimental analysis, where we consider
different levels of aggregation of the twelve sets. The full experimental results
are available in Pellegrini et al. [17].

3.1 Sensitivity to parameters and meta-parameters on the QAP

As a first step, we conducted a landscape analysis of the meta-parameter and the
parameter space. In particular, for RT'S_QAP and TS_QAP, respectively, we plot

for each combination of meta-parameter and parameter values the response as
measured by the mean relative error across a given set of instances w.r.t. to the
best-known solutions. In particular, Figures 1 and 2 give the mean relative error
incurred by RTS_QAP and TS_QAP on unstructured (Figure 1) and structured
(Figure 2) instances of all sizes (sets qapl0 and qapll in Table 1) for each
combination of RTS_QAP meta-parameter or TS_QAP parameter settings. We
show here only the results achieved with chaos = 3 for RT'S_QAP, and n_imp =
20 for TS_QAP. The trends shown are confirmed by the analysis of all results [17].

The performance of RT'S_QAP appears almost insensitive to the meta-parameter
settings: the meta-parameter landscape is relatively flat for both structured
and unstructured instances (upper plots of Figures 1 and 2). Only the set-
ting Tincr = 1.1 leads to a noticeable worsening of the results: if Tincr = 1.1
and Tdecr < 0.8, the performance is clearly worse than the one achieved using
meta-parameter settings with a higher value of Tincr. The default combination
Tincr = 1.1, Tdecr = 0.9 is not much worse than the best settings, yet never as
good as them. The behavior of RT'S_QAP remains the same independently of the
type of instances (size, structure) being tackled (see also Pellegrini et al. [17]).

The sensitivity of TS_QAP to its parameter settings is higher: the parameter
landscape (bottom plots of Figures 1 and 2) is less flat than that of the RT'S_QAP.
TS_QAP has very different behavior for unstructured and structured instances.
As an example, note that the adoption of a low value of p_size leads to high
performance in unstructured instances, and to low performance in structured
ones. Instead, the shape of the meta-parameter landscape of RT'S_QAP is almost
indifferent to the type of instances tackled. These observations are confirmed by
the ANOVA analysis of the results we present in Section 3.2.

Figure 3 illustrates the higher sensitivity of TS_QAP. This figure shows the
cumulative cost distribution of the different meta-parameter and parameter con-
figurations extracted from the results represented in Figures 1 and 2, considering
all the settings tested for RTS_.QAP and TS_QAP. The cost of a configuration is
measured as the average relative error on the instance set under consideration.
In particular, the plots report on the z-axis the relative error, and on the y-axis
the frequency by which RTS_QAP and TS_QAP with any settings in the range
defined in Table 2 achieve a relative error that is smaller than or equal to the
corresponding value on the z-axis. The distribution of the results of RTS_-QAP
is similar for structured and unstructured instances. On the other hand, the
distribution of the results of TS_QAP varies quite strongly in the two cases: in
structured instances, the distribution is almost equal to the one of RTS_QAP,
being slightly better for small relative errors. In unstructured instances, TS_ QAP
obtains very good results only with a small fraction of parameter settings.

The measure in which RTS_QAP pays its low sensitivity to meta-parameter
settings in terms of performance is represented in Table 3. This table reports
the mean relative error made by RTS_QAP and TS_QAP with the best meta-
parameter and parameter settings, respectively: we selected the best settings
based on the results of the analysis, and we evaluated their performance on
an additional run for each instance, or on 100 additional runs when consider-

RTS: All unstructured instances, chaos=3

relative error

TS: All unstructured instances, n_imp=20

5 002

gj 0.01 ‘:iiiisiiiiz‘isi?iii\iiii §§§‘\$~ “.'\-

E S

oo NN N
0 \\§§\\\\\\\\\\\\\\\\\\\\\\\

—_——

Fig. 1. Mean relative error of RTS_QAP (top plot) and TS_QAP (bottom plot) for
unstructured QAP instances.

ing a single instance. In the same table, we report the best meta-parameter
or parameter settings for each set of instances and for each considered single
instance. When multiple instances are tackled by using the best set-specific set-
tings, RT'S_QAP performs consistently better than TS_QAP as far as unstruc-
tured instances are present: this holds for both sets including only unstructured
instances, and sets including both structured and unstructured ones. When only

RTS: All structured instances, chaos=3

relative error

TS: All structured instances, n_imp=20

relative error
o
2

©
i Y
. NN ‘:§§““‘{\\

AN RSN
AN ST
TrImriai S
SSo S
B S S SISO

Fig. 2. Mean relative error of RTS_QAP (top plot) and TS_QAP (bottom plot) for
structured QAP instances.

structured instances are to be tackled, TS_QAP is the best algorithm. In case of
multiple runs on a single instance, when using instance-based optimal settings,
the two algorithms are comparable on the unstructured instances, and TS_QAP
achieves better results in the structured ones. Both the best parameter and the
best meta-parameter settings vary quite significantly as a function of the in-

All unstructured instances All structured instances

o] <
— - —
@ -7 [ee]
=8 o
> >
o] g«
[} ° [e
S S
82 —— RTS_QAP 3 J, —— RTS_QAP
= --- TS_QAP = --- TS_QAP
~N o~
S o
=3 S
o o
0 0.0075 0.015 0.0225 0.03 0 0.0075 0.015 0.0225 0.03
relative error relative error

Fig. 3. Cumulative cost distribution of parameter and meta-parameter configurations
for the QAP: all settings tested for RT'S_QAP and TS_QAP.

stance set tackled. The size of the instances does not have a noticeable impact,
neither on the results, nor on the optimal parameter settings.

3.2 ANOVA analysis on the QAP

We analyze through ANOVA the main effect of RT'S_QAP meta-parameters and
of TS_.QAP parameters. The residuals in the original data have fat tails and
depart somehow from the normal distribution. The normality of the residuals is
strongly improved by a square-root transformation. The results obtained in the
analyses on the original and the square-root transformed data are qualitatively
equivalent. Thus, we show here the results obtained in the analysis of the original
data, since they allow an easier match between the intuition and the observations.
The results for the whole analysis are available in Pellegrini et al. [17].

Figures 4 and 5 report the plots of the main effects on unstructured and struc-
tured instances, respectively. The plots report the mean relative error obtained
with each setting. The variability of the results of this analysis is extremely low.
In principle, the plots report also the confidence intervals corresponding to the
mean relative error, according to the Student t-test with confidence level 0.95.
Yet, in our results the extremes of the confidence intervals coincide with the
mean relative errors.

The left column of Figures 4 and 5 show that different trends appear, espe-
cially for Tdecr, for RT'S_QAP meta-parameters when tackling unstructured and
structured instances. Yet, on both unstructured and structured instances the dif-
ferences in the performance achieved with different meta-parameter settings are
very small. Moreover, in both unstructured and structured instances, the curves
shown in the left column of Figures 4 and 5 are rather smooth, and confirm the
low sensitivity to meta-parameters. Some interactions among meta-parameters
exist [17]; hence, the best settings reported in Table 3 cannot be identified by
looking only at the main effect plots reported here. Yet, it is quite easily re-
markable that the ANOVA analysis supports the conclusion that the default
meta-parameter settings of RTS_QAP proposed by Battiti and Tecchiolli [3] are

Table 3. Mean relative error across instances or runs of the best parameter and meta-
parameter settings for the QAP. The difference between the results obtained by the best
meta-parameter and the best parameter settings are statistically significant according
to the t-test with 95% confidence level. We report in bold font the best mean for each
set of instances. Below each result, we report in parenthesis the meta-parameter and
parameter settings adopted. For RTS_QAP, the three values correspond to the setting
of Tincr, Tdecr, and chaos, respectively. For TS_QAP, the three values correspond to
the setting of T', p_size, and n_imp, respectively.

All sizes
all unstructured structured
RTS_ QAP TS_-QAP RTS_ QAP TS_.QAP RTS_ QAP TS_QAP
0.0044 0.0047 0.0042 0.0046 0.0040 0.0028
(2.5,0.4,1) (7,10,20) (2.0,0.6,5) (7,1,40) (1.5,0.2,2) (33,15,40)

Individual sizes

all
RTS_QAP TS_QAP

unstructured

RTS_QAP TS_QAP

structured

RTS.QAP TS_QAP

size 60 0.0045 0.0055

(2.3,0.4,2) (7,10,40)

0.0041 0.0043
(1.7,0.3,2) (7,15,40)

0.0038 0.0043
(1.5,0.5,2) (7,15,40)

size 80

size 100

0.0050 0.0055
(2.5,0.2,1) (5,1,10)

0.0039 0.0042
(2.3,0.5,5) (5,1,20)

0.0034 0.0039
(1.9,0.7,4) (7,1,40)

0.0035 0.0025
(2.2,0.6,5) (49,10,20)

0.0038 0.0028
(1.7,0.3,2) (41,10,10)

0.0037 0.0028
(1.4,0.4,2) (35,10,10)

Randomly selected individual instances

unstructured structured
RTS_QAP TS_QAP RTS_ QAP TS_QAP
60.a 0.0068 0.0064 0.0024 0.0009
(2.4,0.5,3) (5,1,40) (24,01,1) (21,5,1)
60.b 0.0074 0.0051 0.0031 0.0018
(2.3,0.5,4) (5,1,20) (1.8,0.2,1) (23,10,40)
80.a 0.0053 0.0064 0.0036 0.0024
(2.0,0.5,6) (5,1,40) (1.3,0.5,2) (23,20,40)
80.b 0.0060 0.0054 0.0059 0.0043
(2.4,0.6,5) (7,1,40) (1.8,0.5,2) (37,10,40)
100.a 0.0040 0.0054 0.0029 0.0018
(2.1,0.6,5) (7,1,40) (1.4,05,1) (51,5,5)
100.b 0.0049 0.0051 0.0036 0.0022
(2.4,0.5,4) (5,1,20) (1.3,0.5,2) (51,15,20)

not the best possible ones, even if they do not lead to a strong worsening of the
solution quality.

relative error relative error

relative error

Fig.4. Main effects on unstructured instances for RTS_QAP (left column) and

0.020

0.005

0.020

0.005

0.020

0.005

RTS_QAP: All unstructured instances

T T T T T T T T T T T T 1
11 13 15 17 19 21 23 25
Tincr

RTS_QAP: All unstructured instances

01 02 03 04 05 06 07 08 0.9
Tdecr

RTS_QAP: All unstructured instances

relative error relative error

relative error

0.020

0.005

0.020

0.005

0.020

0.005

TS_QAP: All unstructured instances

TTTTT T T T T T T T T T I T T T T T T T T T TTT
15 9 15 21 27 33 39 45 51 57
T

TS_QAP: All unstructured instances

1 5 10 15 20 25 30 40 50
p_size

TS_QAP: All unstructured instances

1 5 10 20 40 80
n_imp

TS_QAP (right column). Note that all plots use the same scale on the y-axis.

relative error relative error

relative error

Fig. 5. Main effects on structured instances for RTS_QAP (left column) and TS_ QAP

0.007

0.003

0.007

0.003

0.007

0.003

RTS_QAP: All structured instances

11 13 15 17 19 21 23 25
Tincr

RTS_QAP: All structured instances

S

01 02 03 04 05 06 07 08 09
Tdecr

RTS_QAP: All structured instances

relative error relative error

relative error

0.007

0.003

0.007

0.003

0.007

0.003

TS_QAP: All structured instances

w

TTTTT T T T T T T T T T I T T T T T T T T T TTT
159 15 21 27 33 39 45 51 57
T

TS_QAP: All structured instances

1 5 10 15 20 25 30 40 50
p_size

TS_QAP: All structured instances

w

T T T T T T

1 5 10 20 40 80
n_imp

(right column). Note that all plots use the same scale on the y-axis.

As it emerged from Figures 1 and 2, the results of the ANOVA analysis show
that the relation between parameter settings of TS_QAP and performance vary
quite strongly with the characteristics of the instances tackled (right column
of Figures 4 and 5). In particular, in unstructured instances (right column of
Figure 4), T must be set to a rather low value, with a small perturbation size and
a large value of n_imp. Thus, TS_QAP in unstructured instances performs better
when as few perturbations as possible are made, and when these perturbations
are as small as possible. In structured instances (right column of Figure 5),
instead, the performance is quite insensitive to the setting of T', provided that T’
is large enough. This is counterintuitive, since the typical expectation is that the
tabu list length is the most important parameter of TS_QAP, and that the results
are strongly related to its settings. This observation on the reduced impact of
the tabu list length on structured instances may also explain the relatively worse
performance of RTS_QAP on these instances: RT'S_QAP focuses on adapting a
parameter that for this instance class is not very relevant. In structured instances,
the best performance is achieved by setting both p_size and n_imp to non-
extreme values. This is very much in contrast with the behavior observed on
unstructured instances, where in general perturbations are disadvantageous. This
observation is confirmed by the interaction plots [17].

4 Analysis on the MCP

We verify the validity of the conclusions drawn for the QAP by reproducing the
same analysis on the MCP, a problem for which RTS_MCP is a state-of-the-art
algorithm [1].

We ran the experiments on the same hardware as the experiments for the
QAP. In this analysis, we tackle a subset of the instances used in the DIMACS
implementation challenge [13]. This subset includes the instances used by Bat-
titi and Mascia [1] that can be solved under a memory limitation of 500 MB
RAM. The instances tackled are listed in Table 5. We perform 100 runs for each
instance, imposing two stopping criteria: the algorithm stops when either it has
reached a global optimum (or a solution with the best-known solution value),
or it has performed 102 steps. The optimal or best-known solution value of each
instance is publicly available [9].

We compare the performance of each setting of TS_.MCP and RTS_MCP
in terms of the number of steps necessary to reach an optimal or best-known
solution. Besides analyzing the results for each instance, we consider the set of all
instances. In this case, we evaluate the performance in terms of the total number
of steps needed for performing one run for each instance: first, we compute the
mean number of steps needed to find an optimal or best-known solution for each
instance; second, we sum these values for obtaining the mean number of steps
necessary for solving all instances once. In the following, we will refer to this
performance measure as the number of steps to reach a bound.

Table 4 reports the parameter and meta-parameter settings tested for TS_MCP
and RTS_MCP, respectively. The settings tested for the meta-parameters of

Table 4. Parameter and meta-parameter settings tested for the MCP.

parameter settings: TS,MCP‘meta-parameter settings: RT'S_MCP
T1,3,5,7,....,49 Tiner 1.1,1.2,1.3,...,2.5
Tdecr 0.1,0.2,0.3,...,0.9

RTS_MCP are the same as used for the QAP. The values of T are a super-
set of the best static values for each instance [14]. Both for RT'S_MCP and for
TS_-MCP we use the default setting of parameter restart, which is 100 [1]. As
remarked in Section 2.2, the only parameter that RT'S_MCP adapts is 7. Thus,
it is the only parameter that we consider in the study of TS_-MCP.

4.1 Sensitivity to parameters and meta-parameters on the MCP

In Figure 6, we report the meta-parameter and parameter landscape analysis for
RTS_MCP and TS_MCP on the set of all instances (top plots), and on instances
DSJC1000.5 and MANN_a27 (center and bottom plots, respectively). The results
for all the other instances are available in Pellegrini et al. [17]; they lead to the
same conclusions that can be drawn based on the results reported here.

The conclusions of the analysis on the QAP are confirmed by these results:
the sensitivity of TS_.MCP to parameter settings is much higher than the one of
RTS_MCP to meta-parameter settings. The extremely flat landscapes on the first
two plots in the left column of Figure 6 indicate that RTS_MCP is insensitive
to specific settings of meta-parameters. For what concerns the results achieved
on instance MANN_a27, even if the meta-parameter landscape appears rather
rough, the difference in the mean number of steps to reach the optimal clique size
with the best and the worst setting is 31495 steps, the maximum being 116181;
the difference between the 75 and the 25" percentile of the distribution of
the results is 3946. Fixing Tincr to 1.1 when Tdecr is very low does not have
a remarkable impact on the performance on the set of all instances and on
DSJC1000.5, and it is a quite advantageous choice on MANN_a27. For TS_MCP,
the performance is strongly worsened by inappropriate parameter settings, as
shown in the right column of Figure 6. This is particularly true on the set of all
instances and on DSJC1000.5. The parameter settings does not strongly impact
the performance on MANN _a27: in this case, using the worst parameter settings
of TS_QAP leads to an increase of 47269 of the number of steps to reach a
bound with respect to using the best setting, the maximum being 121043; the
difference between the the 75" and the 25 percentile of the distribution of the
results is 11626. These differences are statistically significant according to the
Wilcoxon rank-sum test with a confidence level of 0.95. The center and bottom
plots show that the relation between parameter settings and performance in
TS_MCP depends on the instance tackled, as it emerged in the analysis on the
QAP.

The different sensitivity of TS_-MCP to its parameter settings as a function of
the instance tackled is very evident in Figure 7. Here, we report the cumulative

cost distribution of the RTS_MCP meta-parameter and TS_MCP parameter set-
tings corresponding to the results shown on all instances, instance DSJC1000.5
and instance MANN_a27. The plots show on the y—axis the frequency with
which the algorithms find the optimal or best-known solution in a given number
of steps that is reported on the z-axis in a logarithmic scale. This frequency is
computed considering all the settings tested, analogously to Figure 3: the cost of
a configuration is the average number of steps to reach a bound on the instance
or instance set under consideration.

Figure 7 shows that, even if the performance of RTS_MCP depends on
the particular instance tackled, whatever the meta-parameter settings used,
RTS_MCP quickly finds the target bounds on the clique size with a very high
frequency. This is not the case of TS_.MCP. In fact, despite the very best pa-
rameter settings allow the achievement of high performance, it is more sensitive
with respect to parameters settings than RTS_MCP. In fact, the line representing
RTS_MCP is always above the one representing TS _MCP: whatever the num-
ber of steps, the frequency with which RTS_MCP reaches the imposed bound is
higher than the one of TS_.MCP. The difference in the behavior of RTS_-MCP
and TS_MCP is not remarkable in instance MANN_a27, which is an exception
here. Given that the difference in absolute number of steps between RTS_MCP
and TS_MCP are minor and the choice of a log-scale on the z-axis, the curves
representing RTS_MCP and TS_MCP appear to coincide. When the curves do
not coincide, as in the QAP, RTS_MCP appears a safer option to choose if is
the most appropriate parameter settings for TS_MCP for solving an instance are
unknown.

Instead, if this knowledge is available, RT'S_MCP does not give better results
than TS_MCP. Table 5 reports the mean number of steps to reach a bound for
the best RTS_MCP meta-parameter and the best TS_MCP parameter settings,
together with the best settings adopted. As we did for the QAP, we selected
the best settings based on the results reported in Figure 6, and we re-ran the
experiments using these settings. When the appropriate settings are selected,
TS_MCP outperforms RTS_MCP in 21 of 27 instances. The mean relative in-
crease of the number of steps to reach a bound when passing from TS_MCP to
RTS_MCP is 0.37, with a maximum relative increase of 3.56 in instance keller4,
and a maximum relative decrease of 0.15 in instance C125.9. Let us remark here
that the computation time needed for performing one step is hardly measurable.
In instance keller4, for example, the increase of the mean number of steps to
reach a bound of more than a factor of three corresponds to an increase of the
mean solution time from 0.0001 to 0.0002 CPU seconds.

Differently, RT'S_MCP is the best algorithm on the set of all instances that
is, if instance-wise optimal parameter settings are not known. This result is not
surprising given that (i) the best parameter and meta-parameter settings are
quite different across instances, and (ii) for RTS_MCP the meta-parameter set-
tings have relatively little impact on performance. In the set of all instances, the
best meta-parameter setting is close to the default settings [1]. In this case, the
median difference in the number of steps to reach a bound when using the default

Table 5. Mean number of steps to reach a bound for the best instance-wise settings
of RTS_.MCP and TS_MCP. The difference between the results obtained by the best
meta-parameters and the best parameters are statistically significant according to the
Wilcoxon rank-sum test with 95% confidence level, except for instance hamming8-4.
We report in bold font the lowest mean number of steps for each instance and for the
set of all instances. Below each result, we report in parenthesis the meta-parameter and
parameter settings adopted. For RT'S_MCP, the two values correspond to the setting
of Tincr and Tdecr, respectively. For TS_MCP, the value corresponds to the setting of
T.

instance RTS_MCP TS_MCP|instance RTS_MCP TS_MCP
All 996578 1119774|gen400_p0.9_75 1297 901
(1.1, 0.8) 9) (2.3, 0.5) (31)
C125.9 125 147|p-hat1500-1 178264 142196
(1.1, 0.1) (17) (1.2, 0.4) (5)
C2000.5 37817 36556|p_hat1500-2 844 848
(1.1, 0.1) (3) (1.4, 0.5) (21)
C250.9 1365 1115|p_hat1500-3 1672 1133
(1.1, 0.8) (17) (1.1, 0.7) (27)
C500.9 78059 41951 |p_hat300-1 135 125
(1.1, 0.7) (13) (1.1, 0.5) (3)
DSJC1000.5 41700 31949|p_hat300-2 46 35
(1.3, 0.3) (3) (2.3,0.1) (5)
DSJC500.5 2007 1489|p_hat300-3 787 577
(1.1, 0.7) (5) (1.1, 0.6) (15)
MANN_a27 104910 107614|p-hat700-1 1359 1556
(1.9, 0.7) (47) (1.1, 0.6) 3)
brock200_2 101054 76410|p_hat700-2 137 107
(2.1, 0.4) (11) (1.1, 0.1) (11)
brock200_4 348108 173025|p_hat700-3 319 402
(1.9, 0.9) (13) (1.2, 0.3) 9)
gen200-p0.9_44 2109 1693 hammingl10-4 968 799
(1.1, 0.7) (21) (1.4, 0.6) (11)
gen200_p0.9_55 681 422|hamming8-4 16 16
(2.2, 0.7) (31) (1.1, 0.1) (1)
gen400_p0.9_55 35218 27479 keller4 164 36
(1.4, 0.5) (19) (1.3, 0.1) (11)
gen400-p0.9_65 1459 1129 kellerb 3116 3113
(1.9, 0.7) (25) (1.1, 0.6) (13)

and the best setting (Tincr = 1.1 and Tdecr = 0.8) is very small: according to
the Wilcoxon rank-sum test with confidence level 0.95, the condifence interval
is (—4943,2150).

4.2 ANOVA analysis on the MCP

The ANOVA analysis shows the main effect of the meta-parameters of RT'S_MCP
and of the parameter of TS_MCP. Figures 8 and 9 depict the mean of the loga-
rithm of the number of steps to reach a bound computed on the results shown in
Section 4.1, for RT'S_MCP and TS_MCP, respectively. The plots report also the
confidence intervals according to the Student t-test with confidence level 0.95.
When the confidence intervals are not visible, it means that the variability of the
results is extremely low. We applied a logarithmic transformation to the results,
so as to increase the normality of the residuals.

Figure 8 shows that different meta-parameter settings have no remarkable
impact on the performance. For TS_MCP (Figure 9) the appropriate settings are
quite different on the three sets of instances, as reported in Table 5. For TS_MCP,
being T the only parameter considered, there are no interactions to accout for,
and the indications of the ANOVA results correspond to those of the analysis
reported in Section 4.1. As for the QAP, an inappropriate TS_MCP parameter
setting has a great impact on performance: selecting an inappropriate setting
may imply an increase in the number of steps to reach a bound of a factor of
188.2 for instance DSJC1000.5 and 1.63 for instance MANN_a27 (remark that the
plots report the logarithm of the number of steps to reach a bound on the y-axis).
Selecting an inappropriate meta-parameter setting for RT'S_MCP may imply the
increase of the number of steps to reach a bound of a factor of 1.6 for instance
DSJC1000.5 and 1.37 for instance MANN_a27. Some interactions exist between
RTS_MCP meta-parameters [17], but they do not impact the conclusions on the
appropriate settings.

5 Conclusion

In this paper, we have compared the sensitivity of RTS to its meta-parameters
with the sensitivity of TS to its parameters. We made this comparison on two
combinatorial optimization problems, namely the QAP and the MCP using in-
stances with different characteristics. We also performed an ANOVA analysis for
studying the main effect of the parameters of TS and the meta-parameters of
RTS, as well as their interactions [17].

The results of these analyses lead to the same conclusion: RTS is less sensitive
than TS to settings of its parameters, and there are no significant interactions
according to the ANOVA analysis. We measured the sensitivity by observing the
difference in the performance achieved by the algorithms with different meta-
parameter (RTS) or parameter (TS) settings. If we consider only the best settings
for TS and RTS, in the QAP, TS performs better than RTS when only structured
instances are tackled, and the opposite holds when also unstructured instances

are involved in the computation. In the MCP, TS typically performs better than
RTS when the best settings are selected on an instance basis, and the opposite
holds when the best setting is selected across multiple instances. If non-optimal
parameter settings are fixed for TS, the performance can strongly worsen both
on single and across multiple instances. This is not the case if non-optimal meta-
parameter settings are fixed for RT'S. Moreover, the best parameter setting for T'S
is strongly dependent on the characteristics of the instances tackled. Instead, in
RTS, many meta-parameter settings perform similarly good on all the instances
tested.

In the analysis for the QAP, we get to conclusions that are rather different
from those drawn by Battiti and Tecchiolli [3]: from our results we would suggest
to take a value larger than the originally suggested value of 1.1 for Tincr, and
a value smaller than the originally suggested one of 0.9 for Tdecr. In particular,
Tincr = 2.0 and Tdecr = 0.5 are good settings across all the sets of instances
considered. It is not possible to identify a best overall setting for chaos, where
the default value is a good compromise. In the analysis for the MCP, instead, the
default values proposed by Battiti and Mascia [1] (Tincr = 1.1 and Tdecr = 0.9)
turned out to be very good on the set of all instances.

Our results show that, if one aims at generally good results, or if it is not
clear what are the characteristics of the instances that need to be considered
for determining the appropriate parameter settings for TS, RTS is a very good
option, and it can be used without any previous tuning of the meta-parameters:
despite the default meta-parameter settings are typically not the best ones, their
use does not have a strong negative impact on the performance of the algorithm.
On the other side, they also show that there is potential for the usage of pa-
rameter selection strategies where, depending on instance characteristics, fixed
instance-specific parameter values are chosen. This is an option we will explore
further in follow-up research.

Acknowledgements

This work was supported by the META-X project, an Action de Recherche Con-
certée funded by the Scientific Research Directorate of the French Community
of Belgium. Mauro Birattari and Thomas Stiitzle acknowledge support from the
Belgian F.R.S.-FNRS, of which they are Research Associates. The work of Paola
Pellegrini has been partially funded by a Bourse d’excellence Wallonie-Bruxelles
International.

References

1. Battiti, R., Mascia, F.: Reactive and dynamic local search for max-clique: Engi-
neering effective building blocks. Computers & Operations Research 37(3), 534542
(2010)

2. Battiti, R., Protasi, M.: Reactive local search techniques for the maximum k-
conjunctive constraint satisfaction problem (max-k-ccsp). Discrete Applied Math-
ematics 96-97, 3-27 (1999)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA Journal on Computing
6(2), 126-140 (1994)

Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.
Operations research/Computer Science Interfaces, Springer Verlag (2008)
Birattari, M.: On the estimation of the expected performance of a metaheuristic
on a class of instances. How many instances, how many runs? Tech. Rep. 2004-01,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2004)

Chiang, W., Russell, R.: A reactive tabu search metaheuristic for the vehicle rout-
ing problem with time windows. INFORMS Journal on Computing 9, 417-930
(1997)

Costa, L.D., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Ryan, C., Keijzer, M. (eds.) Genetic and
Evolutionary Computation Conference (GECCO). pp. 913-920. ACM, Atlanta,
USA (2008)

Datta, T., Srinidhi, N., Chockalingam, A., Rajan, B.: Random-restart reactive tabu
search algorithm for detection in large-mimo systems. Communications Letters,
IEEE 14(12), 1107-1109 (2010)

DIMACS Center: DIMACS implementation challenges.
http://dimacs.rutgers.edu/Challenges/ (2011)

Fialho, A., Costa, L.D., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Annals of Mathematics and Artificial Intelli-
gence 60(1-2), 25-64 (2010)

Fink, A., Volss], S.: Solving the continuous flow-shop scheduling problem by meta-
heuristics. European Journal of Operational Research 151(2), 400-414 (2003)
Hussin, M., Stiitzle, T.: Tabu search vs. simulated annealing for solving large
quadratic assignment instances. Tech. Rep. 2010-20, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium (2010)

Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: Second DI-
MACS Implementation Challenge, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 28. American Mathematical Society, Provi-
dence, RI, USA (1993)

Mascia, F., Pellegrini, P., Stiitzle, T., Birattari, M.: An analysis of parameter
adaptation in reactive tabu search. Tech. Rep. 026, IRIDIA-CoDE, Université Libre
de Bruxelles, Brussels, Belgium (2011)

Nanry, W., Barnes, J.: Solving the pickup and delivery problem with time windows
using reactive tabu search. Transportation Research Part B: Methodological 34(2),
107 — 121 (2000)

Osman, I., Wassan, N.: A reactive tabu search meta-heuristic for the vehicle routing
problem with back-hauls. Journal of Scheduling 5(4), 263—285 (2002)

Pellegrini, P., Mascia, F., Stiitzle, T., Birattari, M.: Companion of:
A detailed study on the meta-parameters of reactive tabu search.
http://iridia.ulb.ac.be/supp/IridiaSupp2011-26/ (2011), IRIDIA Supplemen-
tary page

Pellegrini, P., Stiitzle, T., Birattari, M.: A critical analysis of parameter adaptation
in ant colony optimization. Swarm Intelligence 6(1), 23-48 (2012)

Russell, R., Chiang, W., Zepeda, D.: Integrating multi-product production and
distribution in newspaper logistics. Computers & Operations Research 35, 1576—
1588 (2008)

Stiitzle, T.: Iterated local search for the quadratic assignment problem. European
Journal of Operational Research 174(3), 1519-1539 (2006)

SAll

RTS: Al
2e+08 [I T T T]
1.5e+08 -
@
Q
2 1e+08 i
(7
5e+07 - i
0 . L L
10 20 L 30 40 50
RTS: DSJC1000.5 TS: DSJC1000.5
3.6e+06
3.6e+06
2.7e+06
81.80+06 270406 |- .
% 900000
0 123
© 1.8e+06 - i
7
0.2
o 900000 _
Tdecr
0 1 1 1
10 20 L 30 40 50
RTS: MANN_a27 TS: MANN_a27
130000 . . .
130000
178000 —— 120000
& eSS =\
21 P AN L U UAN
3 gg%gg ‘("YA‘\%%‘{\"\“‘:\““; 110000
L AS Sy @
““\\:‘!‘" v $100000
02> S ’ 90000
0. -
S 80000
Tdecr = 5 16
Tincr 70000

Fig. 6. Mean number of steps to reach the best-known or optimal clique size by
RTS_MCP (left column) and TS_.MCP (right column) on all MCP instances (top),
instance DSJC1000.5 (middle) and instance MANN_a27 (bottom)

All instances DSJC1000.5 MANN_a27
[ee) fee) o]
>0 >0 >0
o Q Q
=4 =4 c
[} [} [}
T i %
o o o
° 6 14 16 18 ° 6 12 14 16 18 ° 6 12 14 16 18

1I%g(%lzeps) 1I%g(steps) 1I%g(steps)
Fig. 7. Cumulative cost distribution of parameter and meta-parameter configurations
for the MCP: all settings tested for RTS_MCP and TS_MCP.

RTS_MCP: All instances RTS_MCP: All instances

14 14
2 2
@10 10
n v

(
(

g6 26

lo
lo

N
N

1.1 1.4 1.7 2.0 2.3 0.1 0.3 0.5 0.7 0.9
Tincr Tdecr
RTS_MCP: DSJC1000.5 RTS_MCP: DSJC1000.5
14 14
a a
210 @10
& &
g6 g6
2 2
1.1 1.4 1.7 2.0 2.3 0.1 0.3 0.5 0.7 0.9
Tincr Tdecr
RTS_MCP: MANN_a27 RTS_MCP: MANN_a27
14 14
i [
210 210
2)
26 g6
2 2
1.1 1.4 1.7 2.0 2.3 0.1 0.3 0.5 0.7 0.9
Tincr Tdecr

Fig. 8. Main effect in RTS_.MCP. Set of all MCP instances (top), and instances
DSJC1000.5 (middle) and MANN_a27 (bottom). Note that all plots use the same scale
on the y-axis as the ones in Figure 9.

TS_MCP: All instances TS_MCP: DSJC1000.5
214 214 T
() Q
B0 | Bl
gs 86
2 2
1 9 19 29 39 49 1 9 19 . 29 39 49
TS_MCP: MANN_a27
214
()
310
86
2

Fig.9. Main effect in TS_MCP. Set of all MCP instances (top), and instances
DSJC1000.5 (middle) and MANN_a27 (bottom). Note that all plots use the same scale
on the y-axis as the ones in Figure 8.

