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Abstract
A/B testing refers to the task of determining the best option among two alternatives that yield
random outcomes. We provide distribution-dependent lower bounds for the performance of A/B
testing that improve over the results currently available both in the fixed-confidence (or δ-PAC) and
fixed-budget settings. When the distribution of the outcomes are Gaussian, we prove that the com-
plexity of the fixed-confidence and fixed-budget settings are equivalent, and that uniform sampling
of both alternatives is optimal only in the case of equal variances. In the common variance case,
we also provide a stopping rule that terminates faster than existing fixed-confidence algorithms. In
the case of Bernoulli distributions, we show that the complexity of fixed-budget setting is smaller
than that of fixed-confidence setting and that uniform sampling of both alternatives—though not
optimal—is advisable in practice when combined with an appropriate stopping criterion.
Keywords: Sequential testing. Best arm identification. Bandit models. Sample complexity.

1. Introduction

A/B Testing is a popular procedure used, for instance, for website optimization: two versions of a
webpage, say A and B, are empirically compared by being presented to users. Each user only sees
one of the two versions, and the goal is to determine which version is preferable. We assume that
the users provide a real-valued index of the quality of the pages, which is modeled by probability
distributions νA and νB , with respective means µA and µB . For example, a standard objective is to
determine which webpage has the highest conversion rate (probability that a user actually becomes
a customer) by receiving binary feedback from the users.

Methods for A/B Testing are often viewed as statistical tests of the hypothesis H0 : (µA ≤
µB) against H1 : (µA > µB). One may consider either classical tests, based on a number of
samples nA and nB from each distribution fixed before the experiment, or sequential tests, based
on paired samples (Xs, Ys) of νA, νB and in which a randomized stopping rule determines when the
experiment is to be terminated. In both of these test settings, the sampling schedule is determined
in advance, which is a possible source of sub-optimality as A/B Testing algorithms could take
advantage of past observations to provide a smarter choice of the page to be displayed to the next
user. In the sequel, we investigate whether A/B Testing could benefit from an adaptive sampling
schedule. Ignoring the possible long-term effects on users of presenting one or the other option, we
consider it as a particular instance of best arm identification in a two-armed bandit model.

c© 2014 E. Kaufmann, O. Cappé & A. Garivier.
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A two-armed bandit model consists of two unknown probability distributions on R, ν1 and
ν2, sometimes referred to as arms or options (webpages in our motivating example). Arm a has
expectation µa. At each time t = 1, 2, . . . , an agent chooses an option At ∈ {1, 2} and receives
an independent draw Zt of the corresponding arm νAt . We denote by Pν (resp. Eν) the probability
law (resp. expectation) of the corresponding process (Zt). We assume that the bandit model ν =
(ν1, ν2) belongs to a classM such that for all ν ∈ M, µ1 6= µ2. In order to identify the best arm,
that is the arm a∗ with highest expectation, the agent must use a strategy defining which arms to
sample from, when to stop sampling, and which arm â to choose. The sampling rule determines
how, at time t, the arm At is chosen based on the past observations; in other words, At is Ft−1–
measurable, with Ft = σ(A1, Z1, . . . , At, Zt). The stopping rule τ is a stopping time with respect
to (Ft)t∈N satisfying Pν(τ < +∞) = 1. The recommendation rule is a Fτ -measurable random
arm â ∈ {1, 2}. This triple ((At), τ, â) entirely determines the strategy, which we denote in the
sequel by A. As discussed before, statistical tests correspond to strategies that sample the arms in a
round-robin fashion, which we will refer to as uniform sampling.

In the bandit literature, two different settings have been considered. In the fixed-confidence
setting, a risk parameter δ is fixed. A strategy A is called δ-PAC if, for every choice of ν ∈ M,
Pν(â = a∗) ≥ 1− δ. The goal is, among the δ-PAC strategies, to minimize the expected number of
draws Eν [τ ]. In the fixed-budget setting, the number of draws τ is fixed in advance (τ = t almost
surely) and the goal is to choose the recommendation rule so as to minimize pt(ν) := Pν(â 6=
a∗). In the fixed-budget setting, a strategy A is called consistent if, for every choice of ν ∈ M,
pt(ν) →

t→∞
0.

In order to unify and compare these approaches, we define the complexity κC(ν) (resp. κB(ν))
of best arm identification in the fixed-confidence (resp. fixed-budget) setting, as follows:

κC(ν) = inf
A δ−PAC

lim sup
δ→0

Eν [τ ]

log(1/δ)
, κB(ν) = inf

A consistent

(
lim sup
t→∞

−1

t
log pt(ν)

)−1

.

Heuristically, for a given bandit model ν and a given δ > 0, a fixed-confidence optimal strategy uses
an average number of samples of order κC(ν) log(1/δ), whereas a fixed-budget optimal strategy
uses approximately t = κB(ν) log(1/δ) draws in order to ensure a probability of error at most
equal to δ. Most of the existing performance bounds for the fixed confidence and fixed budget
settings can be expressed using these complexity measures.

The main goal of this paper is to determine κC and κB for important classes of parametric
bandit models, allowing for a comparison between the fixed-confidence and fixed-budget settings.
Classical sequential testing theory provides a first element in that direction in the simpler case of
fully specified alternatives. Consider for instance the case where ν1 and ν2 are Gaussian laws with
the same known variance σ2, the means µ1 and µ2 being known up to a permutation. Denoting by
P the joint distribution of the paired samples (Xs, Ys), one must choose between the hypotheses
H0 : P = N

(
µ1, σ

2
)
⊗ N

(
µ2, σ

2
)

and H1 : P = N
(
µ2, σ

2
)
⊗ N

(
µ1, σ

2
)
. It is known since

Wald (1945) that among the sequential tests such that type I and type II probabilities of error are
both smaller than δ, the Sequential Probability Ratio Test (SPRT) minimizes the expected number
of required samples, and is such that Eν [τ ] = 2σ2/(µ1 − µ2)2 log(1/δ). However, the batch test
that minimizes both probabilities of error is the Likelihood Ratio test; it can be shown to require a
sample size of order 8σ2/(µ1 − µ2)2 log(1/δ) in order to ensure that both type I and type II error
probabilities are smaller than δ. Thus, when the sampling strategy is uniform and the parameters are
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known, there is a clear gain in using randomized stopping strategies. We show in the following that
this conclusion is not valid anymore when the values of µ1 and µ2 are not assumed to be known.

Related works. Bandit models have received a considerable interest since their introduction
by Thompson (1933). An important focus was set on a slightly different perspective, in which
each observation is considered as a reward: the agent aims at maximizing the cumulative rewards
obtained until some horizon t. Equivalently, his goal is to minimize the regret Rt(ν) = tµ[1] −
Eν
[∑t

s=1 Zs
]
. Regret minimization, which is paradigmatic of the so-called exploration versus

exploitation dilemma, was introduced by Robbins (1952) and its complexity is well understood for
parametric bandits. In generic one-parameter models, Lai and Robbins (1985) prove that, with a
proper notion of consistency adapted to regret minimization,

inf
A consistent

lim inf
t→∞

Rt(ν)

log t
≥

∑
a:µa<µ[1]

(µ[1] − µa)
KL(νa, ν[1])

,

where KL(νi, νj) denotes the Kullback-Leibler divergence between distributions νi and νj . Since
then, non-asymptotic analyses of efficient algorithms matching this bound have been proposed.
Optimal algorithms include the KL-UCB algorithm of Cappé et al. (2013)—a variant of UCB1
(Auer et al. (2002)) using informational upper bounds, Thompson Sampling (Kaufmann et al.
(2012b); Agrawal and Goyal (2013)), the DMED algorithm (Honda and Takemura, 2011) and
Bayes-UCB Kaufmann et al. (2012a). This paper is a first step in the attempt to similarly char-
acterize the complexity of pure exploration, where the goal is to determine the best arms without
trying to maximize the cumulated observations.

The problem of best arm identification has received an important interest in the 1950s as a
particular case of ’ranking and identification problems’. The literature on the subject goes beyond
two-armed bandit models to finding the m > 1 best arms among K > 2 arms, and sometimes
introduces a relaxation parameter ε > 0, such that arms within ε of the best arm should be recom-
mended. In the sequel, we always particularize the existing results to the two-armed bandit models
presented above. The first advances on this topic are summarized in the monograph by Bechhofer
et al. (1968), who only consider the fixed-confidence setting. In the same setting, algorithms in-
troduced more recently by Even-Dar et al. (2006); Kalyanakrishnan et al. (2012); Gabillon et al.
(2012) can be used to find the best arm in a two-armed bounded bandit model, in which ν1 and ν2

are probability distributions on [0, 1]. Combining the upper bound on Eν [τ ] for the LUCB algo-
rithm of Kalyanakrishnan et al. (2012) with the lower bound following from the work of Mannor
and Tsitsiklis (2004), it can be shown that for bounded bandit models such that µa ∈ [0, 1− α] for
a ∈ {1, 2}, there exists a constant Cα for which

Cα/(µ1 − µ2)2 ≤ κC(ν) ≤ 584/(µ1 − µ2)2.

The fixed-budget setting has been studied recently by Audibert et al. (2010); Bubeck et al.
(2013). In two-armed bandit problems, the algorithms introduced in these papers boil down to
sampling each arm t/2 times—t denoting the total budget—and recommending the empirical best
arm. A simple upper bound on the probability of error of this strategy can be derived, and this result
paired with the lower bound of Audibert et al. (2010) yields, for bounded bandit models such that
µa ∈ [α; 1− α] for a ∈ {1, 2}:

(2/5)α(1− α)/(µ1 − µ2)2 ≤ κB(ν) ≤ 2/(µ1 − µ2)2.
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Bubeck et al. (2011) show that in the fixed-budget setting any sampling strategy designed to
minimize regret performs poorly with respect to the simple regret rt := µ∗−µŜ1

, a quantity closely
related to the probability pt(ν) of recommending the wrong arm. Therefore, good strategies for
best arm identification have to be quite different from UCB-like strategies. We will show below that
the complexities κB(ν) and κC(ν) of pure-exploration involve information terms that are different
from the Kullback-Leibler divergence featured in Lai and Robbins’ lower bound on regret.

Contents of the paper. Compared to existing results, we provide general lower bounds on
κB(ν) and κC(ν) that: (i) are tighter, leading in specific parametric cases to a precise evaluation
of these complexities; (ii) do not require unnecessary support assumptions; and (iii) are stated in
terms of information divergences between the distributions ν1 and ν2 rather than in terms of the gap
µ1−µ2. As can be expected, we will indeed confirm that the inverse of the squared gap (µ1−µ2)2

is the relevant measure of complexity only in the Gaussian case, and an approximation (in the spirit
of Pinsker’s inequality) for sub-Gaussian distributions.

Lower bounds on the sample complexity (resp. probability of error) of algorithms using the
uniform sampling strategy in the fixed-confidence (resp. fixed-budget) setting are also derived and
we show that for Gaussian bandit models with different variances, there is a significant gain in using
a non-uniform sampling strategy. For Bernoulli bandits however, we show that little can be gained
by departing from uniform sampling, and we therefore propose close-to-optimal tests both for the
batch and sequential settings. For Gaussian bandits with a known common variance the optimal
algorithm uses uniform sampling. In this specific case, we propose an improved δ-PAC stopping
rule, illustrating its performance through numerical experiments.

Our contributions follow from two main mathematical results: Lemma 8 provides a general re-
lation between the expected number of draws and Kullback-Leibler divergences of the arms’ distri-
butions, which is the key element to derive the lower bounds. Lemma 9 is a tight devation inequality
for martingales with sub-Gaussian increments, in the spirit of the Law of Iterated Logarithm.

The paper is structured as follows. Section 2 presents a distribution-dependent lower bound
on both κB(ν) and κC(ν) under the some identifiability assumption, as well as lower bounds for
algorithms using uniform sampling. Gaussian bandit models are then studied in details in Section
3, and Bernoulli bandit models in Section 4. Section 5 includes a practical illustration of the per-
formance of matching algorithms for Gaussian bandits, as well as a practical comparison of the
fixed-confidence and fixed-budget settings. The most important elements of proof are gathered in
Section 6, with the rest of the proofs in the Appendix.

2. Lower Bounding the Complexity

Introducing the Kullback-Leibler divergence of any two probability distributions p and q:

KL(p, q) =

{ ∫
log
[
dp
dq (x)

]
dp(x) if q � p,

+∞ otherwise,

we make the assumption that there exists a set N such that for all ν = (ν1, ν2) ∈ M, for a ∈
{1, 2}, νa ∈ N and that N satisfies

∀p, q ∈ N , p 6= q ⇒ 0 < KL(p, q) < +∞.
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A class M of bandit models satisfying this property is called identifiable. For M an identifiable
class of bandit models, Theorem 1 provides lower bounds on κB(ν) and κC(ν) for every ν ∈ M.
The proof of this theorem is based on changes of distribution and detailed in Section 6.

Theorem 1 Let ν = (ν1, ν2) be a two-armed bandit model such that µ1 > µ2. In the fixed-budget
setting, any consistent algorithm satisfies

lim sup
t→∞

−1

t
log pt(ν) ≤ c∗(ν), where c∗(ν) := inf

(ν′1,ν
′
2)∈M:µ′1<µ

′
2

max
{

KL(ν ′1, ν1),KL(ν ′2, ν2)
}
.

In the fixed-confidence setting any algorithm that is δ-PAC onM satisfies, when δ ≤ 0.15,

Eν [τ ] ≥ 1

c∗(ν)
log

(
1

2δ

)
, where c∗(ν) := inf

(ν′1,ν
′
2)∈M:µ′1<µ

′
2

max
{

KL(ν1, ν
′
1),KL(ν2, ν

′
2)
}
.

In particular, Theorem 1 implies that κB(ν) ≥ 1/c∗(ν) and κC(ν) ≥ 1/c∗(ν). Proceeding
similarly, one can obtain lower bounds for the algorithms that use uniform sampling of both arms.
The proof of the following result is easily adapted from that of Theorem 1 (cf. Section 6), using that
each arm is drawn τ/2 times.

Theorem 2 Let ν = (ν1, ν2) be a two-armed bandit model such that µ1 > µ2. In the fixed-budget
setting, any consistent algorithm using a uniform sampling strategy satisfies

lim sup
t→∞

−1

t
log pt(ν) ≤ I∗(ν) where I∗(ν) := inf

(ν′1,ν
′
2)∈M:µ′1<µ

′
2

KL (ν ′1, ν1) + KL (ν ′2, ν2)

2
.

In the fixed-confidence setting, any algorithm that is δ-PAC on M and uses a uniform sampling
strategy satisfies, for δ ≤ 0.15,

Eν [τ ] ≥ 1

I∗(ν)
log

1

2δ
where I∗(ν) := inf

(ν′1,ν
′
2)∈M:µ′1<µ

′
2

KL (ν1, ν
′
1) + KL (ν2, ν

′
2)

2
.

Obviously, one always has I∗(ν) ≤ c∗(ν) and I∗(ν) ≤ c∗(ν) suggesting that uniform sampling
can be sub-optimal. It is possible to give explicit expressions for the quantities c∗(ν), c∗(ν) and
I∗(ν), I∗(ν) for specific classes of parametric bandit models that will be considered in the rest of
the paper. In the case of Gaussian bandits with known variance (see Section 3):

M = {ν =
(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
: (µ1, µ2) ∈ R2, µ1 6= µ2}, (1)

one obtains

c∗(ν) = c∗(ν) =
(µ1 − µ2)2

2(σ1 + σ2)2
and I∗(ν) = I∗(ν) =

(µ1 − µ2)2

4(σ2
1 + σ2

2)
.

Hence, the lower bounds of Theorem 1 are equal in this case, and we provide in Section 3 matching
upper bounds confirming that indeed κB(ν) = κC(ν). In addition, the observation that 2I∗(ν) ≥
c∗(ν) ≥ I∗(ν) implies that, except when σ1 = σ2, strategies based on uniform sampling are sub-
optimal.

5



KAUFMANN CAPPÉ GARIVIER

The values of c∗(ν) and c∗(ν) can also be computed for canonical one-parameter exponential
families with density with respect to some reference measure given by

fθ(x) = A(x) exp(θx− b(θ)), for θ ∈ Θ ⊂ R. (2)

We consider the class of bandit models

M = {ν = (νθ1 , νθ2) : (θ1, θ2) ∈ Θ2, θ1 6= θ2}

where νθa has density fθa given by (2). Using the shorthand K(θ, θ′) = KL(νθ, νθ′) for (θ, θ′) ∈
Θ2, one can show that, for ν such that µ1 > µ2:

c∗(ν) = infθ∈Θ max (K(θ, θ1),K(θ, θ2)) = K(θ∗, θ1), where K(θ∗, θ1) = K(θ∗, θ2),
c∗(ν) = infθ∈Θ max (K(θ1, θ),K(θ2, θ)) = K(θ1, θ∗), where K(θ1, θ∗) = K(θ2, θ∗).

The coefficient c∗(ν) is known as the Chernoff information K∗(θ1, θ2) between the distributions
νθ1 and νθ2 (see Cover and Thomas (2006) and Kaufmann and Kalyanakrishnan (2013) for earlier
notice of the relevance of this quantity in the best arm selection problem). By analogy, we will also
denote c∗(ν) by K∗(θ1, θ2) = K(θ1, θ∗).

For exponential family bandits the quantities c∗(ν) and c∗(ν) are not equal in general, although
it can be shown that it is the case when the log-partition function b(θ) is (Fenchel) self-conjugate
(e.g., for Gaussian and exponential variables). In Section 4, we will focus on the case of Bernoulli
models for which c∗(ν) > c∗(ν). By exhibiting a matching strategy in the fixed-budget case, we
will show that this implies that κC(ν) > κB(ν) in this case.

3. The Gaussian Case

We study in this Section the class of two-armed Gaussian bandit models with known variances
defined by (1), where σ1 and σ2 are fixed. In this case, we observed above that the lower bounds of
Theorem 1 are similar, because c∗(ν) = c∗(ν). We prove in this section that indeed

κC(ν) = κB(ν) =
2(σ1 + σ2)2

(µ1 − µ2)2

by exhibiting strategies that reach these performance bounds. These strategies are based on the
simple recommendation of the empirical best arm but use non-uniform sampling in cases where σ1

and σ2 differ. When σ1 = σ2 we provide in Theorem 3 an improved stopping rule that is δ-PAC but
results in a significant reduction of the running time of fixed-confidence tests.

3.1. Fixed-Budget Setting

We consider the simple family of static strategies that draw n1 samples from arm 1 followed by
n2 = t − n1 samples of arm 2, and then choose arm 1 if µ̂1,n1 < µ̂2,n2 , where µ̂i,ni denotes
the empirical mean of the ni samples from arm i. Assume for instance that µ1 > µ2. Since
µ̂1,n1 − µ̂2,n2 − µ1 + µ2 ∼ N

(
0, σ2

1/n1 + σ2
2/n2

)
, the probability of error of such a strategy is

easily upper bounded as:

P (µ̂1,n1 < µ̂2,n2) ≤ exp

(
−
(
σ2

1

n1
+
σ2

2

n2

)−1
(µ1 − µ2)2

2

)
.
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The right hand side is minimized when n1/(n1 + n2) = σ1/(σ1 + σ2), and the static strategy
drawing n1 = dσ1t/(σ1 + σ2)e times arm 1 is such that

lim inf
t→∞

−1

t
log pt(ν) ≥ (µ1 − µ2)2

2(σ1 + σ2)2
,

which matches the bound of Theorem 1 for Gaussian bandit models.

3.2. Fixed-Confidence Setting

3.2.1. EQUAL VARIANCES

We start with the simpler case σ1 = σ2 = σ, where the quantity I∗(ν) introduced in Theorem 2
coincides with c∗(ν), which suggests that uniform sampling could be optimal. A uniform sampling
strategy is equivalent to collecting paired samples (Xs, Ys) from both arms. The difference Xs−Ys
is Gaussian with mean µ = µ1 − µ2 and a δ-PAC algorithm is equivalent to a sequential test of
H0 : µ < 0 versus H1 : µ > 0 such that the probability of error is uniformly bounded by δ.
Robbins (1970) proposes such a test that stops after a number of samples

τ = inf

t ∈ 2N∗ :

∣∣∣∣∣∣
t/2∑
s=1

(Xs − Ys)

∣∣∣∣∣∣ >√2σ2tβ(t, δ)

 with β(t, δ) =
t+ 1

t
log

(
t+ 1

2δ

)
(3)

and recommends the empirical best arm. This procedure belongs to the class of elimination strate-
gies, introduced by Jennison et al. (1982) who derive a lower bound on the sample complexity of any
δ-PAC elimination strategy—whereas our lower bound applies to any δ-PAC algorithm—matched
by Robbins’ algorithm, that is, limδ→0 Eν [τ ]/log 1

δ = 8σ2/(µ1 − µ2)2. Therefore, Robbins’ rule
(3) yields an optimal strategy matching our general lower bound of Theorem 1 in the particular case
of Gaussian distributions with common known variance.

Note that any elimination strategy that is δ-PAC and uses a threshold function smaller than Rob-
bins’ also matches our asymptotic lower bound, while being strictly more efficient than Robbins’
rule. For practical purpose, it is therefore interesting to exhibit smaller exploration rates β(t, δ)
leading to a δ-PAC algorithm. The probability of error of such an algorithm is upper bounded, for
example for µ1 < µ2 by

Pν

(
∃k ∈ N :

k∑
s=1

Xs − Ys − (µ1 − µ2)√
2σ2

>
√

2kβ(2k, δ)

)
= P

(
∃k ∈ N : Sk >

√
2kβ(2k, δ)

)
(4)

where Sk is a sum of k i.i.d. variables of distribution N (0, 1). Robbins (1970) obtains a non-
explicit confidence region of risk at most δ by choosing β(2k, δ) = log (log(k)/δ) + o(log log(k)).
The dependency in k is in some sense optimal, because the Law of Iterated Logarithm (LIL) states
that lim supk→∞ Sk/

√
2k log log(k) = 1 almost surely. Recently, Jamieson et al. (2013) proposed

an explicit confidence region inspired by the LIL. However, Lemma 1 of (Jamieson et al., 2013)
cannot be used to upper bound (4) by δ and we provide in Section 6 a result derived independently
(Lemma 9) that achieves this goal and yields the following result.

Theorem 3 For δ small enough, the elimination strategy (3) is δ-PAC with

β(t, δ) = log
1

δ
+

3

4
log log

1

δ
+

3

2
log(1 + log(t/2)). (5)

7
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Algorithm 1 α-Elimination
Require: Exploration function β(t, δ), parameter α.

1: Initialization: µ̂1(0) = µ̂2(0) = 0, σ2
0(α) = 1. t = 0.

2: while |µ̂1(t)− µ̂2(t)| ≤
√

2σ2
t (α)β(t, δ) do

3: t = t+ 1.
4: If dαte = dα(t− 1)e, At = 2, else At = 1.
5: Observe Zt ∼ νAt and compute the empirical means µ̂1(t) and µ̂2(t).
6: Compute σ2

t (α) = σ2
1/dαte+ σ2

2/(t− dαte).
7: end while
8: return a = argmax

a=1,2
µ̂a(t)

3.2.2. MISMATCHED VARIANCES

In the case where σ1 6= σ2, we rely on an α-elimination strategy, described in Algorithm 1. For
a = 1, 2, µ̂a(t) denotes the empirical mean of the samples gathered from arm a up to time t. The
algorithm is based on a non-uniform sampling strategy governed by the parameter α ∈ (0, 1) which
ensures that, at the end of every round t, N1(t) = dαte, N2(t) = t − dαte and µ̂1(t) − µ̂2(t) ∼
N
(
µ1 − µ2, σ

2
t (α)

)
. The sampling schedule used here is thus deterministic.

Theorem 4 shows that the σ1/(σ1 + σ2)-elimination algorithm, with a suitable exploration rate,
is δ-PAC and matches the lower bound on Eν [τ ], at least asymptotically when δ → 0. Its proof can
be found in Appendix C.

Theorem 4 If α = σ1/(σ1 + σ2), the α-elimination strategy using the exploration rate β(t, δ) =
log t

δ + 2 log log(6t) is δ-PAC onM and satisfies, for every ν ∈M, for every ε > 0,

Eν [τ ] ≤ (1 + ε)
2(σ1 + σ2)2

(µ1 − µ2)2
log

(
1

δ

)
+ oε
δ→0

(
log

(
1

δ

))
.

Remark 5 When σ1 = σ2, 1/2-elimination reduces, up to rounding effects, to the elimination
procedure described in Section 3.2.1, for which Theorem 3 suggests an exploration rate of order
log(log(t)/δ). As the feasibility of this exploration rate when σ1 6= σ2 is yet to be established, we
focus on Gaussian bandits with equal variances in the numerical experiments of Section 5.

4. The Bernoulli Case

We consider in this section the class of Bernoulli bandit models defined by

M = {ν = (B(µ1),B(µ2)) : (µ1, µ2) ∈]0; 1[2, µ1 6= µ2},

where each arm can be equivalently parametrized by the natural parameter of the exponential
family, θa = log(µa/(1− µa)). Following the notation of Section 2, the Kullback-Leibler di-
vergence between two Bernoulli distributions can be either expressed as a function of the means,
KL(B(µ1),B(µ2)), or of the natural parameters, K(θ1, θ2).

In this Section, we prove that κC(ν) > κB(ν) for Bernoulli bandit models (Proposition 7).
To do so, we first introduce a static strategy matching the lower bound of Theorem 1 in the fixed-
budget case (Proposition 6). This strategy is reminiscent of the algorithm exhibited for Gaussian
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bandits in Section 3 and uses parameter-dependent non uniform sampling. This strategy is not
directly helpful in practice but we show that it can be closely approximated by an algorithm using
the uniform sampling strategy. In the fixed-confidence setting we similarly conjecture that little
can be gained from using a non-uniform sampling strategy and propose an algorithm based on a
non-trivial stopping strategy that is believed to match the bound of Theorem 2.

Proposition 6 Let α(θ1, θ2) be defined by

α(θ1, θ2) =
θ∗ − θ1

θ2 − θ1
where K(θ∗, θ1) = K(θ∗, θ2).

For all t, the static strategy that allocates dα(θ1, θ2)te samples to arm 1 , and recommends the
empirical best arm, satisfies pt(ν) ≤ exp(−K∗(θ1, θ2)t).

This result, proved in Appendix D, shows in particular that for every ν ∈ M there exists a
consistent static strategy such that

lim inf
t→∞

−1

t
log pt ≥ K∗(θ1, θ2), and hence that κB(ν) =

1

K∗(θ1, θ2)
.

However, as α(θ1, θ2) depends in the Bernoulli case on the unknown means of the arms, this optimal
static strategy is not useful in practice. So far, it is not known whether there exists a universal
strategy such that pt(ν) ≤ exp(−K∗(θ1, θ2)t) for all bandit instance ν ∈M.

For Bernoulli bandit models it can be checked that for all ν ∈ M, K∗(θ1, θ2) < K∗(θ1, θ2).
This fact together with Proposition 6 and Theorem 1 yields the following inequality.

Proposition 7 For all ν ∈M, κC(ν) > κB(ν).

In the specific case of Bernoulli distributions, there is a strong incentive to use uniform sam-
pling: the quantities I∗(ν) and I∗(ν) introduced in Theorem 2 appear to be very close to c∗(ν)
and c∗(ν) respectively. This fact is illustrated in Figure 1, on which we represent these different
quantities, that are functions of the means µ1, µ2 of the arms, as a function of µ1, for two fixed
values of µ2. Therefore, algorithms matching the bounds of Theorem 2 provide upper bounds on
κB(ν) (resp. κC(ν)) very close to 1/c∗(ν) (resp. 1/c∗(ν)). In the fixed-budget setting, Lemma
15 shows that the strategy with uniform sampling that recommends the empirical best arm, sat-
isfies pt(ν) ≤ e−tI

∗(ν), and matches the bound of Theorem 2 (see Remark 16 in Appendix D).
Hence, problem-dependent optimal strategy described above can be approximated by a very sim-
ple, universal algorithm. Similarly, finding an algorithm for the fixed-confidence setting sam-
pling the arms uniformly and matching the bound of Theorem 2 is a crucial matter. This boils
down to finding a good stopping rule. In all the algorithms studied so far, the stopping rule was
based on the difference of the empirical means of the arms. For Bernoulli arms, such a strat-
egy can be analyzed with the tools provided in this paper: the algorithm stopping for t such that
µ̂1,t/2 − µ̂2,t/2 >

√
2β(t, δ)/t with β(t, δ) as in Theorem 3 is δ-PAC and its expected running time

bounded by 2/(µ1 − µ2)2 log 1
δ + o

(
log 1

δ

)
. Yet, Pinsker’s inequality implies that I∗(µ1, µ2) >

(µ1 − µ2)2/2 and this algorithm is thus not optimal with respect to Theorem 2. The approximation
I∗(µ1, µ2) = (µ1− µ2)2/(8µ1(1− µ1)) + o

(
(µ1 − µ2)2

)
suggests that the loss with respect to the

9
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Figure 1: Comparison of different information terms in Bernoulli bandit models.

optimal error exponent is particularly significant when both means are close to 0 or 1. The stopping
rule we propose to circumvent this drawback is the following:

τ = inf
{
t ∈ 2N∗ : tI∗(µ̂1,t/2, µ̂2,t/2) > log ((log(t) + 1)/δ)

}
. (6)

This algorithm is related to the KL-LUCB algorithm of Kaufmann and Kalyanakrishnan (2013). In-
deed, I∗(x, y) mostly coincides with K∗(B(x),B(y)) (Figure 1) and a closer examination shows that
the stopping criterion in KL-LUCB for two arms is exactly of the form tK∗(B(µ̂1,t/2),B(µ̂2,t/2)) >
β(t, δ). The results of Kaufmann and Kalyanakrishnan (2013) show in particular that the algorithm
based on (6) is provably δ-PAC for appropriate choices of β(t, δ). However, by analogy with the
result of Theorem 3 we believe that the analysis of Kaufmann and Kalyanakrishnan (2013) is too
conservative and that the proposed approach should be δ-PAC for exploration rates β(t, δ) that grow
as a function of t only at rate log log t.

5. Numerical Experiments and Discussion

The goal of this Section is twofold: to compare results obtained in the fixed-budget and fixed-
confidence settings and to illustrate the improvement resulting from the adoption of the reduced
exploration rate of Theorem 3.

In Figure 2, we consider two bandit models: the ’easy’ one is N (0.5, 0.25) ⊗ N (0, 0.25),
κ = 8 (left) and the ’difficult’ one is N (0.01, 0.25) ⊗ N (0, 0.25), κ = 20000 (right). In the
fixed-budget setting, stars (’*’) report the probability of error pn(ν) as a function of n. In the fixed-
confidence setting, we plot both the empirical probability of error by circles (’O’) and the specified
maximal error probability δ by crosses (’X’) as a function of the empirical average of the running
times. Note the logarithmic scale used for the probabilities on the y-axis. All results are averaged on
N = 106 independent Monte Carlo replications. For comparison purposes, a plain line represents
the theoretical rate x 7→ exp(−x/κ) which is a straight line on the log scale.

In the fixed-confidence setting, we report results for algorithms of the form (3) with g(t, δ) =√
2σ2tβ(t, δ) for three different exploration rates β(t, δ). The exploration rate we consider are: the

provably-PAC rate of Robbins’ algorithm log(t/δ) (large blue symbols), the conjectured ’optimal’
exploration rate log((log(t) + 1)/δ), almost provably δ-PAC according to Theorem 3 (bold green
symbols), and the rate log(1/δ), which would be appropriate if we were to perform the stopping test
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Figure 2: Experimental results (descriptions in text; plots best viewed in color).

only at a single pre-specified time (orange symbols). For each algorithm, the log probability of error
is approximately a linear function of the number of samples, with a slope close to −1/κ, where κ
is the complexity. We can visualize the gain in sample complexity achieved by smaller exploration
rates, but while the rate log((log(t) + 1)/δ) appears to guarantee the desired probability of error
across all problems, the use of log(1/δ) seems too risky, as one can see that the probability of error
becomes larger than δ on difficult problems. To illustrate the gain in sample complexity when the
means of the arms are known, we add in red the SPRT algorithm mentioned in the introduction along
with the theoretical relation between the probability of error and the expected number of samples,
materialized as a dashed line. The SPRT stops for t such that |(µ1−µ2)(S1,t/2−S2,t/2)| > log(1/δ).

Robbins’ algorithm is δ-PAC and matches the complexity (which is illustrated by the slope
of the measures), though in practice the use of the exploration rate log((log(t) + 1)/δ) leads to
huge gain in terms of number of samples used. It is important to keep in mind that running times
play the same role as error exponents and hence the threefold increase of average running times
observed on the rightmost plot of Figure 2 when using β(t, δ) = log(t/δ) is really prohibitive. This
illustrates the asymptotic nature of our notion of complexity: the leading term in Eν [τ ] is indeed
κ log(1/δ) but there is a second-order constant term which is not negligible for fixed value of δ.
Jamieson et al. (2013) implicitly consider an alternative complexity for Gaussian bandit models
with common known variance: for a fixed value of δ, if ∆ = µ1 − µ2, they show that when the gap
∆ goes to zeros, the sample complexity if of order some constant—that depends on δ—multiplied
by ∆−2 log log ∆−2.

If one compares on each problem the results for the fixed-budget setting to those for the best
δ-PAC algorithm (in green), one can see that to obtain the same probability of error, the fixed-
confidence algorithm needs an average number of samples of order at least twice larger than the
deterministic number of samples required by the fixed-budget setting algorithm. This remark should
be related to the fact that a δ-PAC algorithm is designed to be uniformly good across all problems,
whereas consistency is a weak requirement in the fixed-budget setting: any strategy that draws both
arm infinitely often and recommends the empirical best is consistent. Figure 2 shows that when the
values of µ1 and µ2 are unknown, the sequential version of the test is no more preferable to its batch
counterpart and can even become much worse if the exploration rate β(t, δ) is chosen too conser-
vatively. This observation should be mitigated by the fact that the sequential (or fixed-confidence)
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approach is adaptive with respect to the difficulty of the problem whereas it is impossible to predict
the efficiency of a batch (or fixed-budget) experiment without some prior knowledge regarding the
problem under consideration.

6. Elements of Proof

6.1. Proof of Theorem 1

The cornerstone of the proof of all the lower bounds given in this paper is Lemma 8 which relates
the probabilities of the same event under two different models to the expected number of draws of
each arm. Its proof, which may be found in Appendix A, encapsulates the technical aspects of the
change of distributions. Na(t) denotes the number of draws of arm a up to round t andNa = Na(τ)
is the total number of draws of arm a by some algorithm A.

Lemma 8 Let ν and ν ′ be two bandit models. For any A ∈ Fτ such that 0 < Pν(A) < 1

Eν [N1]KL(ν1, ν
′
1) + Eν [N2]KL(ν2, ν

′
2) ≥ d(Pν(A),Pν′(A)), (7)

where d(x, y) := KL(B(x),B(y)) = x log(x/y) + (1− x) log
(
(1− x)/(1− y)

)
.

Without loss of generality, assume that the bandit model ν = (ν1, ν2) is such that a∗ = 1.
Consider any alternative bandit model ν ′ = (ν ′1, ν

′
2) in which a∗ = 2 and the event A = (â = 1)

where â is the arm chosen by algorithm A. Clearly A ∈ Fτ .

Fixed-Confidence Setting. Let A be a δ-PAC algorithm. Then it is correct on both ν and ν ′

and satisfies Pν(A) ≥ 1 − δ and Pν′(A) ≤ δ. Using monotonicity properties of d (for example
x 7→ d(x, y) is increasing when x > y and decreasing when x < y) and inequality (7) in Lemma 8
yields Eν [N1]KL(ν1, ν

′
1) + Eν [N2]KL(ν2, ν

′
2) ≥ d(δ, 1− δ), and hence

Eν [τ ] ≥ d(δ, 1− δ)
maxa=1,2 KL(νa, ν ′a)

,

using that τ = N1+N2. Optimizing over the possible model ν ′ satisfying µ′1 < µ′2 to make the right
hand side of the inequality as large as possible gives the result, using moreover that for δ ≤ 0.15, it
can be shown that d(1− δ, δ) ≥ log(1/(2δ)).

Fixed-Budget Setting. Inequality (7) in Lemma 8 applied to A yields

Eν′ [N1(t)]KL(ν ′1, ν1) + Eν′ [N2(t)]KL(ν ′2, ν2) ≥ d(Pν′(A),Pν(A)).

Note that pt(ν) = 1− Pν(A) and pt(ν ′) = Pν′(A). As algorithm A is correct on both ν and ν ′, for
every ε > 0 there exists t0(ε) such that for all t ≥ t0(ε), Pν′(A) ≤ ε ≤ Pν(A). For t ≥ t0(ε),

Eν′ [N1(t)]KL(ν ′1, ν1) + Eν′ [N2(t)]KL(ν ′2, ν2) ≥ d(ε, 1− pt(ν)) ≥ (1− ε) log
1− ε
pt(ν)

+ ε log ε.

Taking the limsup (denoted by lim) and letting ε go to zero, one can show that

lim− 1

t
log pt(ν) ≤ lim

[Eν′ [N1(t)]

t
KL(ν ′1, ν1) +

Eν′ [N2(t)]

t
KL(ν ′2, ν2)

]
≤ max

a=1,2
KL(ν ′a, νa).

Optimizing over the possible model ν ′ satisfying µ′1 < µ′2 to make the right hand side of the
inequality as small as possible gives the result.
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6.2. Proof of Theorem 3

According to (4), the proof of Theorem 3 boils down to finding an exploration rate such that P(∃t ∈
N∗ : St >

√
2σ2tβ(t, δ)) ≤ δ, where St = X1 + · · ·+Xt is a sum of i.i.d. normal random variable.

Lemma 9 provides such a confidence region. Its proof can be found in Appendix B.

Lemma 9 Let ζ(u) =
∑

k≥1 k
−u. Let X1, X2, . . . be independent random variables such that, for

all λ ∈ R, φ(λ) := logE[exp(λX1)] ≤ λ2σ2/2. For every positive integer t let St = X1+· · ·+Xt.
Then, for all β > 1 and x ≥ 8

(e−1)2
,

P
(
∃t ∈ N∗ : St >

√
2σ2t(x+ β log log(et))

)
≤
√
e ζ
(
β
(
1− 1

2x

))( √x
2
√

2
+ 1
)β

exp(−x).

Let β(t, δ) be of the form β(t, δ) = log 1
δ +c log log 1

δ +d log log(et), for some constants c > 0
and d > 1. Lemma 9 yields

P
(
∃t ∈ N : St >

√
2σ2tβ(t, δ)

)
≤ ζ
(
d
(
1− 1

2(z + c log z)

)) √
e

(2
√

2)d
(
√
z + c log z +

√
8)d

zc
δ,

where z := log 1
δ > 0. To upper bound the above probability by δ, at least for large values of z

(which corresponds to small values of δ), it suffices to choose the parameters c and d such that

√
e ζ
(
d
(
1− 1

2(z + c log z)

)) 1

(2
√

2)d
(
√
z + c log z + 2

√
2)d

zc
≤ 1.

For c = d/2, the left hand side tends to
√
eζ (d)/(2

√
2)d when z goes to infinity, which is smaller

than 1 for d ≥ 1.47. Thus, for δ small enough, the desired inequality holds for d = 3/2 and
c = 3/4, which corresponds to the exploration rate of Theorem 3.

7. Conclusion

We provide distribution-dependent lower bounds for best-arm identification in the context of two-
armed bandit models. These bounds involve information-theoretic quantities that reflect the typical
causes of failure, which are different from those appearing in regret analysis. For Gaussian and
Bernoulli bandit models, we exhibit matching algorithms showing that these bounds are (mostly)
tight, highlighting relationships between the complexities of the fixed-budget and fixed-confidence
settings. Our numerical experiments illustrate the significance of using appropriate exploration rates
in the context of best arm(s) identification and we believe that Lemma 8 can be adapted to deal with
more general K-armed bandit scenarios.

These results suggest three practical implications for A/B testing. First, for Binary and Gaussian-
like responses with matched variances it is reasonable to consider only tests—i.e., strategies using
uniform sampling—rather than general sequential sampling strategies. Second, using a sequential
stopping rule in this context is mostly of interest because it does not requires prior knowledge of
the complexity of the problem. It should however not be expected to reduce the (average) running
time of the experiment for a given probability of error. This leads to the third message regarding the
utmost importance of using proper (i.e., provably δ-PAC but not too conservative) exploration rates
when using a sequential stopping rule.
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O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz. Kullback-Leibler upper confidence
bounds for optimal sequential allocation. Annals of Statistics, 41(3):1516–1541, 2013.

T. Cover and J. Thomas. Elements of Information Theory (2nd Edition). Wiley, 2006.

E. Even-Dar, S. Mannor, and Y. Mansour. Action Elimination and Stopping Conditions for the
Multi-Armed Bandit and Reinforcement Learning Problems. Journal of Machine Learning Re-
search, 7:1079–1105, 2006.

V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best Arm Identification: A Unified Approach to
Fixed Budget and Fixed Confidence. In Neural Information and Signal Processing (NIPS), 2012.

J. Honda and A. Takemura. An asymptotically optimal policy for finite support models in the
multiarmed bandit problem. Machine Learning, 85(3):361–391, 2011.

K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. lil’UCB: an optimal exploration algorithm for
multi-armed bandits. arXiv:1312.7308, 2013.

C. Jennison, I.M. Johnstone, and B.W. Turnbull. Asymptotically optimal procedures for sequential
adaptive selection of the best of several normal means. Statistical Decision Theory and Related
Topics III, 2:55–86, 1982.

S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. PAC subset selection in stochastic multi-
armed bandits. In International Conference on Machine Learning (ICML), 2012.

14



ON THE COMPLEXITY OF A/B TESTING

E. Kaufmann and S. Kalyanakrishnan. Information complexity in bandit subset selection. In Con-
ference On Learning Theory (COLT), 2013.
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Appendix A. Proof of Lemma 8: Changes of Distributions

Under the identifiability assumption, there exists a common measure λ such that for all ν = (ν1, ν2),
for all a ∈ {1, 2} νa has a density fa with respect to λ.

Let ν ∈ M be a bandit model, and consider an alternative bandit model ν ′ ∈ M. fa, f ′a are the
densities of νa, ν ′a respectively and one can introduce the log-likelihood ratio of the observations up
to time t under an algorithm A:

Lt :=

t∑
s=1

1(As=1) log

(
f1(Zs)

f ′1(Zs)

)
+

t∑
s=1

1(As=2) log

(
f2(Zs)

f ′2(Zs)

)
.

The key element in a change of distribution is the following classical lemma (whose proof is omit-
ted) that relates the probabilities of an event under Pν and Pν′ through the log-likelihood ratio of
the observations. Such a result has often been used in the bandit literature for ν and ν ′ that differ
just from one arm (either ν1 = ν ′1 or ν2 = ν ′2), for which the expression of the log-likelihood ratio
is simpler. As we will see, here we consider more general changes of distributions.

Lemma 10 Let σ be any stopping time with respect to Ft. For every event A ∈ Fσ (i.e. A such
that A ∩ (σ = t) ∈ Ft),

Pν′(A) = Eν [1A exp(−Lσ)]
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Let τ be the stopping rule of algorithm A. We start by showing that for all A ∈ Fτ , Pν(A) = 0
if and only if Pν′(A) = 0. Thus, if 0 < Pν(A) < 1 one also has 0 < Pν′(A) < 1 and the
quantity d(Pν(A),Pν′(A)) in the statement of Lemma 8 is well defined. Let A ∈ Fτ . Lemma 10
yields Pν′(A) = Eν [1A exp(−Lτ )]. Thus Pν′(A) = 0 implies 1A exp(−Lτ ) = 0 Pν − a.s. As
Pν(τ < +∞) = 1, Pν(exp(Lτ ) > 0) = 1 and Pν′(A) = 0 ⇒ Pν(A) = 0. A similar reasoning
yields Pν(A) = 0⇒ Pν′(A) = 0.

We now prove Lemma 8. Let A ∈ Fτ be such that 0 < Pν(A) < 1. Then 0 < Pν′(A) < 1.
Lemma 10 and the conditional Jensen inequality leads to

Pν′(A) = Eν [exp(−Lτ )1A] = Eν [Eν [exp(−Lτ )|1A]1A]

≥ Eν [exp (−Eν [Lτ |1A])1A] = Eν [exp (−Eν [Lτ |A])1A]

= exp (−Eν [Lτ |A])Pν(A).

Writing the same for the event A yields Pν′(A) ≥ exp
(
−Eν [Lτ |A]

)
Pν(A) and finally

Eν [Lτ |A] ≥ log
Pν(A)

Pν′(A)
and Eν [Lτ |A] ≥ log

Pν(A)

Pν′(A)
.

Therefore one can write

Eν [Lτ ] = Eν [Lτ |A]Pν(A) + Eν [Lτ |A]Pν(A)

≥ Pν(A) log
Pν(A)

Pν′(A)
+ Pν(A) log

Pν(A)

Pν′(A)
= d(Pν(A),Pν′(A)). (8)

Introducing (Ya,t), the sequence of i.i.d. samples successively observed from arm a, the log-
likelihood ratio Lt can be rewritten

Lt =

2∑
a=1

Na(t)∑
t=1

log

(
fa(Ya,t)

f ′a(Ya,t)

)
; and Eν

[
log

(
fa(Ya,t)

f ′a(Ya,t)

)]
= KL(νa, ν

′
a).

Applying Wald’s Lemma (see for example Siegmund (1985)) to Lτ =
∑2

a=1

∑Na
t=1 log

(
fa(Ya,t)
f ′a(Ya,t)

)
,

where Na = Na(τ) is the total number of draws of arm a, yields

Eν [Lτ ] = Eν [N1]KL(ν1, ν
′
1) + Eν [N2]KL(ν2, ν

′
2),

which concludes the proof together with inequality (8).

Appendix B. Proof of Lemma 9: An Optimal Confidence Region

We start by stating three technical lemmas, whose proofs are partly omitted.

Lemma 11 For every η > 0, every positive integer k, and every integer t such that (1 + η)k−1 ≤
t ≤ (1 + η)k, √

(1 + η)k−1/2

t
+

√
t

(1 + η)k−1/2
≤ (1 + η)1/4 + (1 + η)−1/4 .

16



ON THE COMPLEXITY OF A/B TESTING

Lemma 12 For every η > 0,

A(η) :=
4(

(1 + η)1/4 + (1 + η)−1/4
)2 ≥ 1− η2

16
.

Lemma 13 Let t be such that (1+η)k−1 ≤ t ≤ (1+η)k. Then, if λ = σ−1
√

2zA(η)/(1 + η)k−1/2,

σ
√

2z ≥ A(η)z

λ
√
t

+
λσ2
√
t

2
.

Proof:

A(η)z

λ
√
t

+
λσ2
√
t

2
=
σ
√

2zA(η)

2

(√
(1 + η)k−1/2

t
+

√
t

(1 + η)k−1/2

)
≤ σ
√

2z

according to Lemma 11.

�

An important fact is that for every λ ∈ R, because the Xi are σ-subgaussian, Wt = exp(λSt −
tλ

2σ2

2 )) is a super-martingale, and thus, for every positive u,

P

⋃
t≥1

{
λSt − t

λ2σ2

2
> u

} ≤ exp(−u). (9)

Let η ∈]0, e− 1] to be defined later, and let Tk = N ∩
[
(1 + η)k−1, (1 + η)k

[
.

P

⋃
t≥1

{
St

σ
√

2t
>
√
x+ β log log(et)

} ≤ ∞∑
k=1

P

⋃
t∈Tk

{
St

σ
√

2t
>
√
x+ β log log(et)

}
≤
∞∑
k=1

P

⋃
t∈Tk

{
St

σ
√

2t
>
√
x+ β log (k log(1 + η))

} .

We use that η ≤ e− 1 to obtain the last inequality since this condition implies

log(log(e(1 + η)k−1) ≥ log(k log(1 + η)).

For a positive integer k, let zk = x+β log (k log(1 + η)) and λk = σ−1
√

2zkA(η)/(1 + η)k−1/2.
Lemma 13 shows that for every t ∈ Tk,{

St

σ
√

2t
>
√
zk

}
⊂
{
St√
t
>
A(η)zk

λk
√
t

+
σ2λk

√
t

2

}
.

17
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Thus, by inequality (9),

P

⋃
t∈Tk

{
St

σ
√

2t
>
√
zk

} ≤ P

⋃
t∈Tk

{
St√
t
>
A(η)zk

λk
√
t

+
σ2λk

√
t

2

}
= P

⋃
t∈Tk

{
λkSt −

σ2λ2
kt

2
> A(η)zk

}
≤ exp (−A(η)zk) =

exp(−A(η)x)

(k log(1 + η))βA(η)
.

One chooses η2 = 8/x for x such that x ≥ 8
(e−1)2

(which ensures η ≤ e−1). Using Lemma 12,
one obtains that exp(−A(η)x) ≤

√
e exp(−x). Moreover,

1

log(1 + η)
≤ 1 + η

η
=

√
x

2
√

2
+ 1 .

Thus,

P

⋃
t∈Tk

{
St

σ
√

2t
>
√
zk

} ≤ √
e

kβA(η)

( √
x

2
√

2
+ 1

)βA(η)

exp(−x) ≤
√
e

kβA(η)

( √
x

2
√

2
+ 1

)β
exp(−x)

and hence,

P

⋃
t≥1

{
St

σ
√

2t
>
√
x+ β log log(et)

} ≤ √eζ (βA(η))

( √
x

2
√

2
+ 1

)βA(η)

exp (−x)

≤
√
eζ

(
β

(
1− 1

2x

))( √
x

2
√

2
+ 1

)β
exp (−x) ,

using the lower bound on A(η) given in Lemma 12 and the fact that A(η) is upper bounded by 1.

Appendix C. Proof of Theorem 4

Letα = σ1/(σ1 + σ2). We first prove that with the exploration rate β(t, δ) = log(t/δ)+2 log log(6t)
the algorithm is δ-PAC. Assume that µ1 > µ2 and recall τ = inf{t ∈ N : |dt| >

√
2σ2

t (α)β(t, δ)}.
The probability of error of the α-elimination strategy is upper bounded by

Pν
(
dτ ≤ −

√
2σ2

τ (α)β(τ, δ)
)
≤ Pν

(
dτ − (µ1 − µ2) ≤ −

√
2σ2

τ (α)β(τ, δ)
)

≤ Pν
(
∃t ∈ N∗ : dt − (µ1 − µ2) < −

√
2σ2

t (α)β(t, δ)

)
≤

∞∑
t=1

exp (−β(t, δ)) ,

18



ON THE COMPLEXITY OF A/B TESTING

by an union bound and Chernoff bound applied to dt − (µ1 − µ2) ∼ N
(
0, σ2

t (α)
)
. The choice of

β(t, δ) mentioned above ensures that the series in the right hand side is upper bounded by δ, which
shows the algorithm is δ-PAC:
∞∑
t=1

e−β(t,δ) ≤ δ
∞∑
t=1

1

t(log(6t))2
≤ δ

(
1

(log 6)2
+

∫ ∞
1

dt

t(log(6t))2

)
= δ

(
1

(log 6)2
+

1

log(6)

)
≤ δ.

To upper bound the expected sample complexity, we start by upper bounding the probability
that τ exceeds some deterministic time T :

Pν(τ ≥ T ) ≤ Pν
(
∀t = 1 . . . T, dt ≤

√
2σ2

t (α)β(t, δ)

)
≤ Pν

(
dT ≤

√
2σ2

T (α)β(T, δ)

)
= Pν

(
dT − (µ1 − µ2) ≤ −

[
(µ1 − µ2)−

√
2σ2

T (α)β(T, δ)

])
≤ exp

(
− 1

2σ2
T (α)

[
(µ1 − µ2)−

√
2σ2

T (α)β(T, δ)

]2
)
.

The last inequality follows from Chernoff bound and holds for T such that

(µ1 − µ2) >
√

2σ2
T (α)β(T, δ). (10)

Now, for γ ∈]0, 1[ we introduce

T ∗γ := inf

{
t0 ∈ N : ∀t ≥ t0, (µ1 − µ2)−

√
2σ2

t (α)β(t, δ) > γ(µ1 − µ2)

}
.

This quantity is well defined as σ2
t (α)β(t, δ) →

t→∞
0. We then upper bound the expectation of τ :

Eν [τ ] ≤ T ∗γ +
∑

T=T ∗γ+1

P (τ ≥ T )

≤ T ∗γ +
∑

T=T ∗γ+1

exp

(
− 1

2σ2
T (α)

[
(µ1 − µ2)−

√
2σ2

T (α)β(T, δ)

]2
)

≤ T ∗γ +

∞∑
T=T ∗γ+1

exp

(
− 1

2σ2
T (α)

γ2(µ1 − µ2)2

)
.

For all t ∈ N∗, it is easy to show that the following upper bound on σ2
t (α) holds:

∀t ∈ N, σ2
t (α) ≤ (σ1 + σ2)2

t
×

t− σ1
σ2

t− σ1
σ2
− 1

. (11)

Using the bound (11), one has

Eν [τ ] ≤ T ∗γ +

∫ ∞
0

exp

(
− t

2(σ1 + σ2)2

t− σ1
σ2
− 1

t− σ1
σ2

γ2(µ1 − µ2)2

)
dt

= T ∗γ +
2(σ1 + σ2)2

γ2(µ1 − µ2)2
exp

(
γ2(µ1 − µ2)2

2(σ1 + σ2)2

)
.
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We now give an upper bound on T ∗γ . Let r ∈ [0, e/2 − 1]. There exists N0(r) such that for
t ≥ N0(r), β(t, δ) ≤ log(t1+r/δ). Using also (11), one gets T ∗γ = max(N0(t), T̃γ), where

T̃γ = inf

{
t0 ∈ N : ∀t ≥ t0,

(µ1 − µ2)2

2(σ1 + σ2)2
(1− γ)2t >

t− σ1
σ2
− 1

t− σ1
σ2

log
t1+r

δ

}
.

If t > (1+γ σ1σ2 )/γ one has (t− σ1
σ2
−1)/(t− σ1

σ2
) ≤ (1− γ)−1. Thus T̃γ = max((1+γ σ1σ2 )/γ, T ′γ),

with

T ′γ = inf

{
t0 ∈ N : ∀t ≥ t0, exp

(
(µ1 − µ2)2

2(σ1 + σ2)2
(1− γ)3t

)
≥ t1+r

δ

}
.

The following Lemma, whose proof can be found below, helps us bound this last quantity.

Lemma 14 For every β, η > 0 and s ∈ [0, e/2], the following implication is true:

x0 =
s

β
log

(
e log (1/(βsη))

βsη

)
⇒ ∀x ≥ x0, e

βx ≥ xs

η
.

Applying Lemma 14 with η = δ, s = 1 + r and

β =
(1− γ)3(µ1 − µ2)2

2(σ1 + σ2)2

leads to

T ′γ ≤
(1 + r)

(1− γ)3
× 2(σ1 + σ2)2

(µ1 − µ2)2

[
log

1

δ
+ log log

1

δ

]
+R(µ1, µ2, σ1, σ2, γ, r),

with

R(µ1, µ2, σ1, σ2, γ, r) =
1 + r

(1− γ)3

2(σ1 + σ2)2

(µ1 − µ2)2

[
1 + (1 + r) log

(
2(σ1 + σ2)2

(1− γ)3(µ1 − µ2)2

)]
.

Now for ε > 0 fixed, choosing r and γ small enough leads to

Eν [τ ] ≤ (1 + ε)
2(σ1 + σ2)2

(µ1 − µ2)2

[
log

1

δ
+ log log

1

δ

]
+ C(µ1, µ2, σ1, σ2, ε),

where C is a constant independent of δ. This concludes the proof.

�

Proof of Lemma 14 Lemma 14 easily follows from the fact that for any s, η > 0,

x0 = s log

e log
(

1
η

)
η

 ⇒ ∀x ≥ x0, e
x ≥ xs

η
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Indeed, it suffices to apply this statement to x = xβ and η = ηβs. The mapping x 7→ ex − xs/η is
increasing when x ≥ s. As x0 ≥ s, it suffices to prove that x0 defined above satisfies ex0 ≥ xs0/η.

log

(
xs0
η

)
= s log

(
s log

(
e log 1

η

η

))
+ log

1

η

= s

(
log(s) + log

[
log

1

η
+ log

(
e log

1

η

)])
+ log

1

η

≤ s

(
log(s) + log

[
2 log

1

η

])
+ log

1

η

where we use that for all y, log(y) ≤ 1
ey. Then

log

(
xs0
η

)
≤ s

(
log(s) + log(2) + log log

1

η
+ log

1

η

)
.

For s ≤ e
2 , log(s) + log(2) ≤ 1, hence

log

(
xs0
η

)
≤ s

(
1 + log log

1

η
+ log

1

η

)
= s log

e log
(

1
η

)
η

 = x0,

which is equivalent to ex0 ≥ xs0
η and concludes the proof.

Appendix D. An Optimal Static Strategy for Bernoulli Bandit Models

Bounding the probability of error of a static strategy using n1 samples from arm 1 and n2 samples
from arm 2 relies on the following Lemma, that applies more generally to exponential families.

Lemma 15 Let (X1,t)t∈N and (X2,t)t∈N be two independent i.i.d sequences, such that X1,1 ∼ νθ1
and X2,1 ∼ νθ2 belong to an exponential family. Assume that µ(θ1) > µ(θ2). Then

P

(
1

n1

n1∑
t=1

X1,t <
1

n2

n2∑
t=1

X2,t

)
≤ exp(−(n1 + n2)gα(θ1, θ2)), (12)

where α = n1
n1+n2

and gα(θ1, θ2) := αK(αθ1 + (1− α)θ2, θ1) + (1− α)K(αθ1 + (1− α)θ2, θ2).

The function α 7→ gα(θ1, θ2), can be maximized analytically, and the value α∗ that realizes the
maximum is given by

K(α∗θ1 + (1− α∗)θ2, θ1) = K(α∗θ1 + (1− α∗)θ2, θ2)

α∗θ1 + (1− α∗)θ1 = θ∗

α∗ =
θ∗ − θ2

θ1 − θ2

where θ∗ is defined by K(θ∗, θ1) = K(θ∗, θ2) = K∗(θ1, θ2). More interestingly, the associated rate
is such that

gα∗(θ1, θ2) = α∗K(θ∗, θ1) + (1− α∗)K(θ∗, θ2) = K∗(θ1, θ2),

which leads to Proposition 6.
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Remark 16 When µ1 > µ2, applying Lemma 15 with n1 = n2 = t/2 yields

P
(
µ̂1,t/2 < µ2,t/2

)
≤ exp

−K
(
θ1,

θ1+θ2
2

)
+ K

(
θ2,

θ1+θ2
2

)
2

t

 = exp
(
− I∗(ν)t

)
,

which shows that uniform sampling matches the lower bound of Theorem 2.

Proof of Lemma 15 The i.i.d. sequences (X1,t)t∈N and (X2,t)t∈N have respective densities fθ1
and fθ2 where fθ(x) = A(x) exp(θx− b(θ) and µ(θ1) = µ1, µ(θ2) = µ2. α is such that n1 = αn
and n2 = (1− α)n. One can write

P

(
1

n1

n1∑
t=1

X1,t −
1

n2

n2∑
t=1

X2,t < 0

)
= P

(
α

n2∑
t=1

X2,t − (1− α)

n1∑
t=1

X1,t ≥ 0

)
.

For every λ > 0, multiplying by λ, taking the exponential of the two sides and using Markov’s
inequality (this technique is often referred to as Chernoff’s method), one gets

P

(
1

n1

n1∑
t=1

X1,t −
1

n2

n2∑
t=1

X2,t < 0

)
≤
(
Eν [eλαX2,1 ]

)(1−α)n (
Eν [eλ(1−α)X1,1 ]

)αn
= exp

([
(1− α)φX2,1(λα) + αφX1,1(−(1− α)λ)

]︸ ︷︷ ︸
Gα(λ)

n

)

with φX(λ) = logEν [eλX ] for any random variable X . If X ∼ fθ a direct computation gives
φX(λ) = b(λ+ θ)− b(θ). Therefore the function Gα(λ) introduced above rewrites

Gα(λ) = (1− α)(b(λα+ θ2)− b(θ2)) + α(b(θ1 − (1− α)λ)− b(θ1)).

Using that b′(x) = µ(x), we can compute the derivative of G and see that this function as a unique
minimum in λ∗ given by

µ(θ1 − (1− α)λ∗) = µ(θ2 + αλ∗)

θ1 − (1− α)λ∗ = θ2 + αλ∗

λ∗ = θ1 − θ2,

using that θ 7→ µ(θ) is one-to-one. One can also show that

G(λ∗) = (1− α)[b(αθ1 + (1− α)θ2)− b(θ2)] + α[b(αθ1 + (1− α)θ2)− b(θ1)].

Using the expression of the KL-divergence between νθ1 and νθ2 as a function of the natural param-
eters: K(θ1, θ2) = µ(θ1)(θ1 − θ2)− b(θ1) + b(θ2), one can also show that

αK(αθ1 + (1− α)θ2, θ1)

= −α(1− α)µ(αθ1 + (1− α)θ2)(θ1 − θ2) + α[−b(αθ1 + (1− α)θ2) + b(θ1)]

(1− α)K(αθ1 + (1− α)θ2, θ2)

= α(1− α)µ(αθ1 + (1− α)θ2)(θ1 − θ2) + (1− α)[−b(αθ1 + (1− α)θ2) + b(θ2)]
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Summing these two equalities leads to

G(λ∗) = − [αK(αθ1 + (1− α)θ2, θ1) + (1− α)K(αθ1 + (1− α)θ2, θ2)] = −gα(θ1, θ2).

Hence the inequality P
(

1
n1

∑n1
t=1X1,t <

1
n2

∑n2
t=1X2,t

)
≤ exp(G(λ∗)n) is exactly (12).
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