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Abstract—Formal specification and verification support of
time-related constraints constitute fundamental challenges for
any Business Process Management (BPM) system. Reluctantly,
the literature on the subject of formal specification and verifica-
tion of advanced temporal constraints such as absolute temporal
constraints associated with relative temporal constraints is scarce.
In this paper, we propose a novel approach enabling the formal
specification and verification of advanced temporal constraints
of business processes. The particularity of our approach is that
it caters for relative and absolute related temporal constraints
while relying on the dependencies that can exist between theses
constraints. In fact, it is important to deal with such dependencies
to handle the violations that can arise as soon as possible at
design step. To do so, we propose a formal approach which relies
on the timed automata formalism. In this context, we propose
a set of mapping rules and algorithms where the semantic of
timed automata is preserved even if we deal with absolute and
relative temporal constraints. Using the defined formal model,
we investigate a model checking based verification process that
aims at validating business processes against their absolute and
relative temporal constraints.

Index Terms—Temporal constraints; BPM; Formal specifica-
tion; Formal verification

I. INTRODUCTION

Business globalization highly urges collaborations among

organisations with complementary skills to form an Inter-

Organizational Business Process (IOBP). In this context, busi-

ness processes should adhere to a wide range of temporal

requirements which rise from legal, regulatory, and managerial

rules. For the collaboration of such business processes, it

is necessary that temporal constraints of the model can be

verified. Failing to manage advanced temporal constraints in

business processes turns out in higher process execution costs.

Although time dimension has been highly addressed in the

literature [1], [2], [3], [4], [5], temporal constraints need to

be viewed from multiple perspectives namely, the relative and

absolute temporal constraints.

A relative temporal constraint refers to a constraint using

relative time, i.e., with measurements of the time that passes

between two observable events. An absolute temporal con-

straint refers to a constraint using time stamped in absolute

time, measured from a global time clock which is never

reset [6]. Generally, temporal constraints and especially abso-

lute temporal constraints are used at run-time for monitoring

purposes allowing thus for efficient time management and

avoiding temporal failures [7], [8]. Nevertheless, before the

execution stage, detecting and correcting temporal violations

of the model as early as possible (i.e. from the specification

stage), in order to guarantee the trustiness of process models

has multiple of benefits. Indeed, it has the potential for avoid-

ing considerable loss in time, human resources and revenue of

the organisation. Even though many research approaches [1],

[2], [3], [8], [4], [9], [5] have tackled the problem of temporal

constraints specification and verification at process design

time, they do not consider advanced temporal constraints.

Furthermore, most of them stick to a strong assumption that

temporal constraints of the model are always relative. This

assumption is too restrictive.

Only few works [6], [8] have focused on the formal spec-

ification of absolute temporal constraints in business process

models. But, these works do not propose reasoning mecha-

nisms to handle the problem of formal verification. However,

in most real scenarios, the definition of automatic formal ver-

ification of expressive timed business processes specification

is crucial. This, in turn, has led to an increasing demand for

innovative mechanisms and technologies that support the time

management in the process lifecycle.

In this paper, our goal is to handle the problem of automatic

verification of BPMN process models [10], [11] where we

cater for advanced temporal constraints which rely on relative

and absolute time and their dependencies. To do so, we first

propose a formal model based on timed automata. Based on

the defined formal model, we propose a model checking based

mechanism to enable the formal verification we intend. It is

worth noting that the particularity of our proposed approach is

to enable absolute temporal constraints associated with relative

temporal constraints of business processes to be modeled

as timed automata. This is made without hampering their

efficient analysis and mainly permitting their later verification

to cater for these constraints and the dependencies that can

exist through existing model checking tools. At the best of

our knowledge, this is the first work that shows how to model

and verify absolute temporal constraints associated to relative

temporal constrains and which allows to define a relationship

between them using the formalism of timed automata.

This paper is organized as follows. Section II provides

an overview of the proposed approach. Section III presents

the different temporal constraints we consider in this paper.



Section IV outlines the proposed mapping of timed proecesses

into timed automata. Section V outlines the proposed formal

verification approach to detect the temporal violations of

process models. A review of related literature is given in

Section VI. Finally, Section VII concludes.

II. THE PROPOSED APPROAH IN A NUTSHELL

Figure 1 gives an overview of our approach which consists

of four steps.

Fig. 1. Overview of the proposed approach

Firstly, the modelling step depicted by label ❶ in Fig. 1,

enables the designer to specify the temporal constraints of

the process using the defacto industrial standard for process

modelling, BPMN.
Second, based on these extensions, absolute temporal con-

straints of the process are the unique concern of the preveri-
fication step depicted by label ❷ in Fig. 1. This latter helps
the designer to uncover subtle mistakes in specification, early
on, even before conducting the formal verification step. A set
of rules have been proposed to prevent the designer to specify
some faulty temporal combinations of constraints. An example
of such faulty constraints can be :

1) A given activity, say A1, must finish its execution on 10 AM,
while a successive activity following it, say A2 must start on
8 AM.

2) A given activity, say A1, must finish its execution no earlier
than 10 AM, while a successive activity following it, say A2

must start no later than 9 AM .

The aim behind the preverification step is to enable, when

possible, a direct mapping of timed processes to valid timed

automata (i.e. with positive clock values). Space limitations

prevent a detailed exhibition of the modelling ❶ and the

preverification ❷ steps. Further details can be found in [12].

Next, enriched process models are mapped into timed au-

tomata with the help of the formal specification step (depicted

by label ❸ in Fig. 1). The particularty of this latter is to enable

a large set of absolute temporal constraints of processes to be

modeled as timed automata.

Finally, the fourth step, formal verification (depicted by la-

bel ❹ in Fig. 1), provides a model checking based verification

process to detect possible temporal violations enabling thus

to react to them predictively. The verification process outlined

in this paper goes far beyond the simple verification of the

structural properties of the model (eg. deadlock). Precisely, it

enables the verification of user-defined absolute and relative

temporal constraints. The formal specification ❸ and formal

verification ❹ steps are the focus of this paper.

III. TIMED BUSINESS PROCESS SPECIFICATION

Before explaining the steps of the formal specification of

temporal constraints in business processes, we consider some

assumptions and introduce some definitions.

Assumption: We assume a structured representation of pro-

cess models. The fact that it is possible to represent unstruc-

tured models in the BPMN notation does not limit the scope

of our work. Indeed, as shown in [13], most of unstructured

process models can be automatically translated into structured

ones.

In essence, a process model is represented as a tree whose

leaves represent activities and whose internal nodes represent

either events (eg. Start Event SE) or gateways (eg. sequence

(SEQ), parallel (PAR)). We formally capture the structured

process models as follows.

Definition 1. (Process Graph)

Let Γ be a set of types of nodes. A Process Graph P is a tuple

(N,E,τ ,γ), in which:

-N is the set of nodes;

-E ⊆ N ∗N is the set of edges; and

- τ : N→ Γ is a function that maps nodes to their types

- γ is the set of temporal constraints labels of the process.

Note : γRel(Ni) (resp. γAbs(Ni)) denotes the relative (resp.

absolute) temporal constraints of the node Ni.

Actually, Γ supports the following types of nodes : activities

(Activity), events (i.e. Start Event(SE) and End Event(EE)) and

gateways (i.e. sequence(SEQ), parallel(PAR), inclusive(INCL)

and exclusive(EXCL)). Hereafter, we present the temporal

constraints we consider. Particularly, we present relative then

absolute temporal constraints.

- Relative temporal constraints: We consider intra-activity

and inter-activity temporal constraints. Intra-activity temporal

constraints are those associated to one activity within the

process model, such as:

• Duration : a given activity has minimum and maximum

execution times.

• Temporal Constraint Over Cardinality (TCOC) : a given

activity can be executed successively at most N times

whithin a time period T.

The duration constraint is defined as follows. Let s(A) (resp.

e(A)) be the starting (resp. the ending time) of the activity A.

Let MinA and MaxA be two relative time values representing

respectively the minimum and maximum durations of an ac-

tivity A. The Duration constraint Duration(A,MinA,MaxA)

is defined as :

MinA ≤ e(A) - s(A) ≤ MaxA

Inter-activity temporal constraints are constraints crossing the

boundary of an activity in the process model, such as:



• Start-to-Finish (SF): A2 can not finish until A1 has started

within a given time interval

• Start-to-Start (SS) : A2 can not begin before A1 starts

within a time interval

• Finish-to-Start (FS) : A2 can not begin before A1 ends

within a time interval

• Finish-to-Finish (FF) : A2 can not finish until A1 has

finished within a time interval.

The Finish-to-Start Temporal Dependency constraint of two

activities A1, A2, denoted TD(FS,A1,A2,MinD,MaxD), is

defined as :

MinD ≤ s(A2) - e(A1) ≤ MaxD

The latter definition denotes that the activity A2 should starts

its execution no later than MaxD time units and no earlier

than MinD time units after the activity A1 ends. For more

details on the different temporal constraints we consider, we

refer the reader to [11].

- Absolute temporal constraints: We now turn our attention

to the specification of absolute temporal constraints of the

process model. The succeeding listing summarizes the set of

absolute temporal constraints that we consider in our specifi-

cation approach. They are intra-activity temporal constraints

focusing particularly on controling the start and finish times

of process activities. We refer the reader interested in the

semantics of the following constraints to [11]:

• Must Start On (MSO)/ Must Finish On (MFO)

• Start No Earlier Than (SNET)/ Finish No Earlier Than

(FNET)

• Start No Later Than (SNLT)/ Finish No Later Than

(FNLT)

An absolute temporal constraint is formally denoted as

AbsTC(N, t, T, v) where N is the concerned node by the

temporal constraint of type t (S: for start or E: for end) and T

(ON: for on, NET: for not earlier than or NLT: not later than)

and of value v. AbsTC(A,S,ON, 8) to denote that A Must

Start On 8 AM/ PM.

IV. TIMED FORMAL MODEL: MAPPING OF TIMED

BUSINESS PROCESS SPECIFICATION

After presenting the different temporal constraints we con-

sider, in this section we present how we map timed business

processes into timed automata. Indeed, our goal is to verify

and to detect temporal violations that can arise. A timed

automaton is an automaton where transitions are labelled by

an alphabet and temporal constraints, called guards , and resets

of clocks. The former represent simple conditions over clocks,

and the latter are used to reset values of certain clocks to zero.

The guards specify that a transition can be fired only if the

corresponding guards are satisfiable.

A temporal constraint is a conjunction of expressions that

compares the value of a clock x ∈ X , to a positive real

constant a ∈ R+. Let X be a set of clocks. The set of

constraints over X , denoted Ψ(X), is defined as follows:

true | x ⊲⊳ a | ψ1 ∧ ψ2, where ⊲⊳∈ {≤, <,=, 6=, >,≥},

x ∈ X , ψ1, ψ2 ∈ Ψ(X) and a ∈ R+. Clock constraints will

be used as guards and invariants for timed automata.

Definition 2. (Timed Automata)

Recall [14] that a timed automaton (or TA for short) is a

tuple A = (L,X, l0, A, T, Inv), where L is a finite set of

locations (or nodes), X is a finite set of clocks, l0 ∈ L is an

initial location, A is a finite alphabet, standing for actions,

T ⊆ L×A×Ψ(X)× 2X ×L is a set of transitions between

locations with an action, a guard and a set of clocks to be

reset, and Inv : L→ Ψ(X) assigns invariants to locations.

We notice that we use the syntax and semantic of timed

automata as used in the model checker Uppaal. Given t =

(l, α, ψ, r, l′) ∈ T , l is the source location, α is the label; ψ

is the guard; r is the set of clocks to reset and l′ is the target

location. We use Lu to denote the subset of urgent locations in

L (Lu ⊆ L). An urgent location is a location where no delay

is allowed.

For more readability, we shall write l
α,ψ,r
−−−→ l′ when

(l, α, ψ, r, l′) ∈ T . To note transitions, we write only non-

empty sets (i.e. l
∅,∅,∅
−−−→ l′ is denoted l −→ l′).

As in verification tools, we assume that invariants are either

true or conjunctions of simple constraints of the form x ⊲⊳ a

where ⊲⊳∈ {≤, <}, x ∈ X and a ∈ N.

Definition 3. (Union of Timed Automata)

The union of two tuples is defined as (L,X, l0, A, T, Inv) ⊎
(L′, X ′, l′0, A

′, T ′, Inv′) = (L′′, X ′′, l′′0 , A
′′, T ′′, Inv′′) with

L′′ = L ∪ L′ ,X ′′ = X ∪ X ′ ,l′′0 = l0 ∪ l′0 ,A′′ = A ∪ A′

,T ′′ = T ∪ T ′ , Inv′′ = Inv ∪ Inv′, and L′′u = Lu ∪ L′u.

A. Mapping of relative temporal constraints

Fig. 2 depicts the mapping that we propose from BPMN tasks,

events, and gateways to timed automata. Fig. 2(a) shows the

mapping of the BPMN start and end events.
The automatic mapping of these constructs is ensured by the

help of the Create Automaton function. Create Automaton
is an elementary function that, according to its input
parameteres, creates the suitable timed automaton. Given
an activity A, which is provided with a duration temporal
constraint Duration(A,MinA,MaxA), the output of
the Create Automaton function is a timed automaton
A = (L,X, l0, A, T, Inv) (see Fig. 2(c)) such as :

L = {AReady, AWorking, AFinish}
X = {x}
Lu = {AReady, AFinish}
Inv(AWorking) = x ≤MaxA

T = {AReady
∅,∅,x
−−−→ AWorking, AWorking

∅,x≥MinA∧x≤MaxA,∅
−−−−−−−−−−−−−−−→

AFinish}

If additional relative temporal constraints such as temporal
constraint over cardinality (TCOC) should be considered (see
Fig. 2(d)), the Create Automaton returns a timed automaton
A as follows :



Fig. 2. Mapping of BPMN into timed automata

L = L ∪ {AReady ,AWorking ,AFinish, ASuccess, AfailureNbexec,
AfailureTimeElapsed}
X = X ∪ {x}
Lu = Lu ∪{AReady ,AFinish,ASuccess,
AfailureNbexec,AfailureTimeElapsed}
Inv(AWorking) = x ≤MaxA

T = {AReady

∅,∅,{x,nbexec}
−−−−−−−−−→ AWorking ,

AWorking
∅,x≥MinA∧x≤MaxA,∅
−−−−−−−−−−−−−−−→ AFinish,

AFinish
nbexec++,x≤T∧nbexec≤N,∅
−−−−−−−−−−−−−−−−−−−→ AWorking ,

AFinish
∅,x≤T∧nbexec≥N,∅
−−−−−−−−−−−−−→ ASuccess,

AFinish
∅,x≤T∧nbexec≥N,∅
−−−−−−−−−−−−−→ AfailureNbexec,

AFinish
∅,x≥T,∅
−−−−−→ AfailureTimeElapsed}

Due to space limitations, we have confined the definition of the
Create Automaton algorithm to [12]. Fig. 2 (e) (resp. (f)) outlines
the proposed mapping of exclusive (resp. parallel) gateways.

Algorithm 1; the From Timed Process to Timed Automata

algorithm; is the main function of the formal specification step.

The main goal of this function, as its name suggests, is to

return a timed automaton from a timed process graph. As local

variables of this function, we notice the lcurrent and Ref . The

variable Ref is used to save the system state.

lcurrent ∈ L is a variable of type location used to distinguish

the location used to ensure the union of automata. Obviously,

the location needed for the transition linking two tuples must

be precised each time. At first, the algorithm populates the

set of urgent locations by two locations, namely the SProcess
and EProcess. SProcess is the initial location. Afterward,

lcurrent is initialized to SProcess. The main function calls

the Spec Rel Abs TC procedure given by the Algorithm 2,

which constructs the timed automaton of the whole process

considering both its relative and absolute temporal constraints.



Algorithm 1 From Timed Process to Timed Automata

1: function From Timed Process to Timed Automata

2: Input P (N,E, τ, γ)
3: Output A = (Lu ∪ Lc, X, l0, A, T, Inv)
4: local lcurrent,Ref

5: Lu = {SProcess, EProcess}
6: lcurrent ← SProcess

7: l0 ← SProcess

8: Ref(∅, ∅, ∅)
9: Reach the first node of the process graph Ni

10: Spec Rel Abs TC (Ni,P,A,lcurrent,Ref)
11: T = T ∪ lcurrent −→ EProcess

12: end function

Finally, the first location of the constructed automaton will

be linked to the SProcess location and its last location will be

respectively linked to the EProcess location.

In the Spec Rel Abs TC procedure, we differenciate be-

tween four major parts of this algorithm. The first one (lines

5-8) is devoted to nodes which are in a sequential process

flow. The second part (lines 9-18) deals with nodes in ex-

clusive gateways. The third part (lines 19-25) is dedicated

to nodes in parallel or inclusive gateways. In this latter, the

Max Duration and Min Duration functions are used to

calculate the minimum and maximum durations of the gateway

while considering the delays caused by relative as well as

absolute temporal constraints.

Finally, the fourth part (lines 26-44) deals with activity

nodes and resorts to the Create Automaton function to

create the appropriate automaton depending on the intra-

activity relative temporal constraints set of the activity (i.e.

Duration or TCOC). Throughout the execution of algorithm

2, each time, it calls the Create Automaton function, a

new automaton is generated. Next, the algorithm ensures the

union of the automata and draws a new transition linking the

location lcurrent to the corresponding newly-created location

depending on the output of the Create Automaton function.

Obviously, the lcurrent is updated accordingly.

Lines 35-37 focus on the formal specification of temporal

dependencies (i.e. SS/SF/FS/FF) which are inter-activity rel-

ative temporal constraints. Indeed, it is the aim of the called

Spec Rel TD procedure to check even the given activity

node is a source or destination of the temporal dependency

constraint in order to add whether the required update or

guard for the appropriate location of the timed automaton.

Due to space limitations, we have confined the definition of

the Spec Rel TD algorithm to [12]. The rest of algorithm 2

(lines 38-43) is detailed in the succeeding subsection.

B. Mapping of absolute temporal constraints

As said previously, the goal of our approach is to propose

timed automata based formal specification to capture in ad-

dition to relative temporal constraints, absolute temporal con-

straints features and to enable their verification at design time.

This is ensured by establishing clear relation dependencies

between clocks of the process timed automaton. Obviously,

Algorithm 2 Specification Relative Absolute Temporal Constraints

1: procedure Spec Rel Abs TC

2: Input Ni,P (N,E, τ, γ)
3: Input/Output A = (L,X, l0, A, T, Inv),lcurrent,Ref

4: local A′ = (L′, X ′, l′0, A
′, T ′, Inv′)

5: if τ(Ni, P ) = SEQ then
6: for all nodeNj of the sequence flow do
7: Spec Rel Abs TC (Nj , P,A,lcurrent,Ref)
8: end for
9: else if τ(Ni, P ) = EXCL then
10: Lu = Lu ∪ {ORiSplit, ORiJoin}
11: T = T ∪ lcurrent −→ ORiSplit

12: lcurrent ← ORiSplit

13: Ref ′ ← Ref

14: for all nodeNj of the exclusive gateway do
15: Spec Rel Abs TC (Nj , P,A,lcurrent,Ref ′)
16: T = T ∪ lcurrent −→ ORiJoin

17: end for
18: lcurrent ← ORiJoin

19: else if τ(Ni, P ) ∈ (PAR, INCL) then
20: MinD ←Min Duration(Ni, P )
21: MaxD ←Max Duration(Ni, P )
22: A′ = Create Automaton(Ni, PAR,Duration(Ni,MinD,MaxD))
23: A = A ⊎A′

24: T = T ∪ lcurrent −→ ANDiSplit

25: lcurrent ← ANDiJoin

26: else/*τ(Ni, P ) = Activity */
27: A′ = Create Automaton(Ni, Activity, γRel(Ni))
28: A = A ⊎A′

29: T = T ∪ lcurrent −→ AiReady

30: if TCOC is a temporal constraint for the node Ni then
31: lcurrent ← AiSuccess

32: else
33: lcurrent ← AiF inish

34: end if
35: for all Temporal Dependency TDk of the node Ni do
36: Spec Rel TD(TDk,Ni,P,A)
37: end for
38: for all Absolute Temporal constraint AbsTCk of the node Ni do
39: if Ref 6= (∅, ∅, ∅) then
40: Spec Abs TC(AbsTCk,Ni,Ref)
41: end if
42: Update Ref(AbsTCk,Ref)
43: end for
44: end if
45: end procedure

if we consider the two following temporal constraints : A

given activity, say A1, must finish its execution on 5 AM (i.e.,

(AbsTC(A1, F,ON, 5)) ), while a successive activity following

it, say A2 must start on 8 AM (i.e., (AbsTC(A2, S,ON, 8))) .

Our approach considers the first absolute temporal constraint

(AbsTC(A1, F,ON, 5)) as a timed reference to subsequently

specify that exactly 3 hours must separate the starting time of

A2 and the finishing time of A1. In other words, we capture the

relation between absolute temporal constraints using relative

clocks.

Since dependencies can exist between a set of absolute



temporal constraints, and in order to capture all dependencies,

we explore combinations of absolute constraints pairs. We

establish, a relation between each absolute temporal constraint

with the identified timed reference.

In the following, we show the details of how we map

absolute temporal constraints using timed automata. We note

that a reference vector Ref(ONRef , NETRef , NLTRef ) con-

sists of three timed references as follows ONRef , NETRef
and NLTRef , where every reference is an absolute temporal

constraint. This latter is the focus of lines (38-43) of algorithm

2 in which the update of the reference vector is made by

the help of the Update Ref procedure. A detailed version

exhibiting the Update Ref function can be found in [12].

We consider now the Spec Abs TC procedure presented

in Algorithm 3, which ensures the specification of absolute

temporal constraints of the model.

Given an absolute temporal constraint

AbsTCi(Ai, ti, Ti, vi), and depending on the constraint

type Ti, lines (4-22) are devoted to the MSO/ MFO

constraints (i.e. Ti = ON ), lines (22-37) deal with the

SNET/ FNET constraints (i.e. Ti = NET ) and finally, lines

(38-50) are dedicated to the SNLT/ FNLT constraints (i.e.

Ti = NLT ). Each time, the Spec Abs TC procedure,

computes the required updates and guards needed for the

enrichement of the timed automaton. Furthermore, it calls

the add Update and add Guard functions, which, according

to the Ref vector, place the updates and guards properly on

the automaton. The details of the add Update and add Guard

functions are omitted to facilitate the readability of the

algorithm. For more details, we refer the reader to [12].

We note that, there are some cases where our approach can

not add details to timed automata. Our algorithms do not add

any details for the specification of some constraints if :

• The succession of such constraints can never cause vio-

lations. For instance, a given activity, say A1, must finish its

execution on 10 AM, while a successive activity following it,

say A2 must start no earlier than 8 AM. This is implicitly

ensured by the structure of the process which oblige that

A2 follows in the sequence flow the activity A1.
• Or, even though the succession of such constraints can

cause violations, our approach is unable to help the de-
signer by adding the needed specification details. Indeed,
we are unable to establish a relation (in the temporal
space) between activities with illimited starting/ firing
time (i.e. tends to −∞ or +∞). For example, a given
activity, say A1, must start its execution no earlier than 5 AM,
while a successive activity following it, say A2 must start its
execution no earlier than 8 AM.

Example 1. (A purchase order process mapping)

For illustration purposes, we consider particularly an excerpt

from the BPMN diagram of the purchase order process in a

manufacturing organisation depicted in Fig.3.

The process is triggered when a customer submits a pur-

chase order (Receive order). Then, the organisation checks

whether the ordered articles are available or not (Check

availability). Following that, the customer is asked for fi-

nancial settlement (Receive settlement) and the goods are

Algorithm 3 Adding Absolute Temporal Constraints to the Specification

1: procedure Spec Abs TC

2: InputAbsTCi(Ai, ti, Ti, vi), Ref(ONRef , NETRef , NLTRef )
/*Ref(ONRef (NON , tON , TON , vON ), NETRef (NNET , tNET , TNET , vNET ),

NETRef (NNLT , tNLT , TNLT , vNLT ))*/
3: Input/Output A = (L,X, l0, A, T, Inv)
4: if Ti = ON then
5: if ONRef 6= ∅ then
6: X = X ∪ {xON i}
7: add Update(xON i, NON ,tON )
8: v = vi − vON

9: add Guard(xON i, Ai, ti, v)
10: else if NETRef 6= ∅ then
11: X = X ∪ {xNET i}
12: add Update(xNET i, NNET , tNET )
13: v = vi − vNET

14: add Guard(xNET i, Ai, ti, v)
15: else if NLTRef 6= ∅ then
16: if vi ≥ vNLT then
17: X = X ∪ {xNLT i}
18: add Update(xNLT i, NNLT , tNLT )
19: v = vi − vNLT

20: add Guard(xNLT i, Ai, ti, v)
21: end if
22: end if
23: else if Ti = NET then
24: if ONRef 6= ∅ then
25: if vi ≥ vON then
26: X = X ∪ {xON i}
27: add Update(xON i, NON , tON )
28: v = vi − vON

29: add Guard(xON i, NON , tON )
30: else if NLTRef 6= ∅ then
31: if vi ≥ vNLT then
32: X = X ∪ {xNLT i}
33: add Update(xNLT i, NNLT , tNLT )
34: v = vi − vNLT

35: add Guard(xNLT i, Ai, ti, v)
36: end if
37: end if
38: else/‘*Ti = NLT */
39: if ONRef 6= ∅ then
40: X = X ∪ {xON i}
41: add Update(xON i, NON , tON )
42: v = vi − vON

43: add Guard(xON i, Ai, ti, v)
44: else if NETRef 6= ∅ then
45: X = X ∪ {xNET i}
46: add Update(xNET i, NNET , tNET )
47: v = vi − vNET

48: add Guard(xNET i, Ai, ti, v)
49: end if
50: end if
51: end if
52: end procedure

Fig. 3. The purchase order process enriched with temporal constraints

subsequently delivered (Deliver goods). By the reception of

the order, the process meets its end. Fig.3 exhibit moreover,



Fig. 4. Mapping of the purchase order process into Timed Automata

the relative temporal constraints of the process model. We can

notice that each activity of the process is provided with a

Duration temporal constraints. For instance, Duration(Deliver

goods,MinD,MaxD) with MinD= 31hours and MaxD=

61hours, is the selected notation to precise the minimum and

maximum execution times of the activity Deliver goods. Fur-

thermore, the process is provided by a temporal dependency

Finish to Start (FS) as follows:

TD(FS,Check availability,Receive settlement,MinD,MaxD)

with MinD = 0hours and MaxD = 2 hours. Further

absolute temporal constraints of the model are depicted to

precise that the activity Check availability has to start no later

than 8 H (SNLT 8) and that the activity Deliver goods must

start exactly on 18 H (MSO 18).

Figure 4 depicts the timed automata resulting from the appli-

cation of our main algorithm (From Timed Process to Timed

Automata) to the process 3. The Spec Rel Abs TC procedure

detects that this is a sequential process flow. Afterward, it will

be executed recursively until processing the activity Deliver

goods. Subsequently, the algorithm Create Automaton is run

thrice (once for each activity of the process model). It is

hence the role of the Spec Rel Abs TC procedure to link each

time the newly constructed automaton (i.e. the output of the

Create Automaton function) to the main automaton. The FS

temporal dependency of the process model is tackled by the

Spec Rel TD procedure which adds the update (t3 = 0)

and the guard (t3 ≥ 0 && t3 ≤ 2) in the appropriate place.

We deal now with the two absolute temporal constraints of

the model. Initially, all references are set to the emptyset

Ref(∅, ∅, ∅). With the meeting of the first absolute constraint

of the process model, (i.e. the first SNLT 8), the value NETRef
is settled by the help of the Update Ref procedure. With

the meeting of the second absolute constraint of the process

model (i.e. the MSO 18), the Spec Abs TC procedure adds

the update (t4 = 0) for the appropriate activity automaton

according to the reference. Here the update will concern

the activity Check availability. And it will be placed exactly

between the CheckAvail Ready and the CheckAvail Working

locations since this is a start temporal constraint (i.e. SNLT 8

and not FNLT 8). Consequently, the Spec Abs TC procedure

calculates the real bounds of the guard (i.e. 18 - 8 = 10 hours)

in order to affect (t4 ≥ 10) in the appropriate place in the

automaton (see Fig. 4).

V. FORMAL CHECKING

The definition of temporal constraints allows to specify

constrained process models that may encounter a deadlock

situation due to inconsistencies between nested temporal con-

straints. Our approach allows the verification of deadlock

freedom. Moreover, our work goes far beyond the simple

verification of the structural properties of the process (eg.

deadlock). Precisely, we ensure the verification of user-defined

temporal constraints such as deadlines. For instance, the de-

signer can verify delays between two activities A1 and A2 of a

process or between the start of the process and its end. In this

context, we use the real-time model checker UPPAAL for the

formal verification of timed processes. The UPPAAL model

checker ensures the verification of systems, modelled as timed

automata (TA) against a desired set of properties defined using

a rich subset of CTL (Computation Tree Logic) formulas.

Given the generated timed automata (see Fig.4) corresponding

to business processes described in example1 (see Fig.3) , we

propose to verify the following CTL properties:

A[] not deadlock: to ensure deadlock freeness of the

process,

A[] (Process.Eprocess imply t0 ≤ 100): to verify the

process deadline is met.

Afterward, both timed automata models and queries for tem-

poral constraints are input into the UPPAAL model checking

engine.

Example 2. In this example, we first handle the verification

of the purchase order process without considering its absolute

temporal constraints (without considering the guards and

updates relating to clock t4 of Fig.4).

The verification results show that the corresponding process

model is deadlock free and meets the deadline (i.e. both CTL

properties are verified).

To show the value of our approach, let’s consider now the

automaton enriched with absolute temporal constraints (while

considering the guards and updates relating to clock t4 of

Fig.4). While verifying the same CTL properties, UPPAAL

reports that the first property is satisfied (i.e. the process

is deadlock free), but the second property is not (i.e. the

process does not meet the deadline). The returned results from

UPPAAL shows the usefulness of our solution. Indeed, it helps

business analysts to detect temporal violations resulting from

absolute temporal constraints at process design time. It is

clear that manually considering the combination of absolute

temporal constraints of the example while respecting the

process deadline is a fastidious and error prone task. Failing to

manage absolute temporal constraints in processes turns out in

higher process execution costs, either by loss of productivity

or lack of coordination. Indeed, it is difficult to detect their

inconsistencies, especially in complicated business processes.

Our approach enables the verification of these constraints ex-

haustively and effectively by using model checking techniques.



VI. RELATED WORK

Modeling and managing temporal constraints in business

processes has long been a topic of intensive researches [1],

[2], [3], [8], [4], [9], [5].

The work presented in [9] proposes a formal specification

of BPMN [10] with timed automata. First, the authors extend

BPMN to handle temporal constraints as the minimum and

maximum execution times of activities. Second, they provide

an automatic mapping of the extended BPMN into timed

automata. CTL formulas are used to verify some features,

such as deadlock and bottlenecks. The scope of this paper is

limited to a small subset of BPMN elements. Additionnally,

this BPMN extension permits to specify temporal constraints

related to only one activity within the process model and does

not consider timed properties related to a set of activities, such

as inter-activity temporal constraints.

In [2], the author uses temporal properties in order to

analyze the timed compatibility in Web service composition.

A formal model based on timed automata is proposed. The

UPAAL model checker was used to detect some structural

problems due to temporal conflicts. The clock ordering process

is used to verify deadlock freeness due to time constraints

conflicts. Nevertheless, the scope of this paper is limited to

the verification of time constraints only caused by message

interaction between services of the process.

Regarding the concept of absolute temporal constraints

specification, two approaches [6], [8] may be relevant.

The approach proposed in [8] covers the specification of

temporal constraints for the web service domain using a new

proposed language, XTUS-Automata. This latter combines

timed automata (TA) and extends time unit system (XTUS) to

allow specifying temporal properties involving relative time as

well as absolute time. It is worth noting that this paper offers

interesting specification patterns. Nevertheless, it is restricted

to the formal verification of deadlock using the model checker

UPAAL while considering only relative temporal constraints.

The rich specification of absolute temporal constraints has no

impact on the verification step.

The approach presented in [6] has accordingly attempted

to address the need to model absolute temporal constraints on

timed automata. Compared to our work, it does neither provide

algorithms to automatically specify temporal constraints of the

process nor consider rich absolute temporal constraints (Eg.

MSO, SNET and FNLT).

As argued earlier, existing research approaches either targets

a limited set of relative temporal constraints or, the abso-

lute temporal constraints are only considered at specification

step [11], [6].

VII. CONCLUSION

In this paper, we handled the verification problem of timed

business processes. In this context, we have presented a

novel model checking based verification approach. Particu-

larly, we handled the problem of verification while consider-

ing advanced relative and absolute temporal constraints. To

capture these constraints and their emerging dependencies,

we proposed a mapping step whose aim is to map timed

business processes into timed automata. Finally, we used the

model checker UPPAAL to validate timed business processes

and a set of requirements. Since business processes can be

involved in collaborative environnements, it is worthwhile

to handle temporal violations occuring during inter-business

collaborations. We intend to further investigate on this problem

to enhance the specification and verification of relative and

absolute temporal constraints in concurrent processes sharing

resources and exchanging messages.
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