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Null twisted geometries

Simone Speziale and Mingyi Zhang
Centre de Physique Théorique, CNRS-UMR 7332, Aix-Marseille Univ, Luminy Case 907, 13288 Marseille, France

Abstract

We define and investigate a quantization of null hypersurfaces in the context of loop quantum gravity on a
fixed graph. The main tool we use is the parametrization of the theory in terms of twistors, which has already
proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The
classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra
replaced by null polyhedra with spacelike faces, and SU(2) by the little group ISO(2). The main difference
is that the simplicity constraints present in the formalism are all first class, and the symplectic reduction
selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the
polyhedra is lost, and the result is a much simpler, Abelian geometric picture. It can be described by a
Euclidean singular structure on the two-dimensional spacelike surface defined by a foliation of space-time
by null hypersurfaces. This geometric structure is naturally decomposed into a conformal metric and scale
factors, forming locally conjugate pairs. Proper action-angle variables on the gauge-invariant phase space
are described by the eigenvectors of the Laplacian of the dual graph. We also identify the variables of the
phase space amenable to characterize the extrinsic geometry of the foliation. Finally, we quantize the phase
space and its algebra using Dirac’s algorithm, obtaining a notion of spin networks for null hypersurfaces.
Such spin networks are labeled by SO(2) quantum numbers, and are embedded nontrivially in the unitary,
infinite-dimensional irreducible representations of the Lorentz group.

1 Introduction

Null hypersurfaces play a pivotal role in the physical understanding of general relativity. We are interested
in understanding how null hypersurfaces can be described within loop quantum gravity (LQG), and their
dynamical properties. Research in the dynamics of loop quantum gravity is mostly concerned with the evolution
of spacelike hypersurfaces, in the spirit of the ADM (Arnowitt-Deser-Misner) canonical approach it is rooted
on. It is commonly described by the spin foam formalism, or its embedding in group field theory. One considers
transition amplitudes between fixed graphs, then refines or sums over the graphs. The boundary data assigned
on the graphs are typically taken to be spacelike, however, the spin foam formalism is completely covariant, and
in principle one can consider arbitrary configurations. Some results on timelike boundaries have appeared in
[1, 2], but null configurations have received little attention so far.1 To extend the description to null boundary
data, the first step is to understand what null data mean from the viewpoint of LQG variables on a fixed graph.
In this paper, we point out a natural answer suggested by the recent description of LQG in terms of twistors
and twisted geometries [4, 5, 6, 7, 8, 9, 10, 11, 12].

Twistors describing LQG in real Ashtekar-Barbero variables satisfy a certain incidence relation [11], deter-
mined by the timelike vector used in the 3 + 1 splitting of the gravitational action. Such constrained incidence
relation is the twistor’s version of the discretized (primary) simplicity constraints presenting in the Plebanski
action for general relativity. The idea of this paper is to describe discrete null hypersurfaces by taking the
vector appearing in the incidence relation to be null. The first consequence of this choice is that the usual group
SU(2) is replaced by ISO(2), the little group of a null vector. Furthermore, the primary simplicity constraints
are all first class, and only the SO(2) helicity subgroup survives the symplectic reduction: the translations are
pure gauge. This fact has an appealing counterpart in particle theory: as well-known, the representations of
massless particles only depend on the spin quantum number, the translations being redundant gauges. In our
setting, the gauge orbits have the geometric interpretation of shifts along the null direction of the hypersurface.

In the next section, we briefly review polyhedra with spacelike faces in null hypersurfaces, and how they can
be described in terms of bivectors satisfying the closure and simplicity constraints. In particular, we provide a
gauge-invariant set of variables allowing us to reconstruct a unique null polyhedron starting from its bivectors.

1For instance, a discussion of admissible null boundaries for spin foams has appeared in [3].
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Because of the special isometries present due to the existence of null directions, such gauge-invariant variables
are a little more subtle than the scalar products that one may immediately think of by analogy with the
Euclidean case. In Sec. 3, we describe the phase space of Lorentzian spin foam models with the null simplicity
constraints and its description in terms of twistors, and show how the null polyhedra are endowed in this way
with a symplectic structure. We then proceed to study the symplectic reduction, interpret geometrically the
orbits of the simplicity constraints and identify the global isometries as well as the transformations changing
the shapes of the polyhedra. The latter are also first class; thus the reduced phase describes only an equivalence
class of null polyhedra, determined only by the areas and their time orientation.

The geometry of the two-dimensional spacelike surface can be parametrized in purely gauge-invariant terms,
and describes a Euclidean singular structure (see e.g. [13]) with scale factors associated with the faces of the
graph, instead of the nodes. These data are less than those characterizing a two-dimensional Regge geometry,
again a peculiarity of the large amount of symmetry in the system. For planar graphs, the reduced Poisson
brackets evaluate to the Laplacian matrix of the dual graph. Therefore proper gauge-invariant action-angle
variables can be identified in terms of its eigenvectors. For nonplanar graphs the situation is slightly more
complicated, as the matrix of Poisson brackets has off-diagonal elements of both signs. Finally, we comment on
the possible role played by secondary constraints that future studies of the dynamics may unveil, in particular,
we identify the kinematical degrees of freedom amenable to describing the extrinsic geometry of the foliation.

In Sec. 5, we quantize the system and find an orthonormal basis for the reduced Hilbert space. Such null
spin networks are labeled by SO(2) quantum numbers, and are naturally embedded in the lightlike basis of
homogeneous functions used for the unitary, infinite-dimensional representations of the Lorentz group. The
basis diagonalizes the oriented areas, and the (complex exponentials of the) deficit angles act as spin-creation
operators. This paper is only a first, preliminary step toward understanding the dynamics of null surfaces in
loop quantum gravity, and in the conclusions we comment on some next steps in the program, as well as desired
applications. Finally, the Appendix contains details and conventions on the Lorentz algebra and its ISO(2)
subgroup.

2 Simple bivectors and null polyhedra

In this section, we describe how null polyhedra can be described in terms of bivectors. By null polyhedra, we
will mean polyhedra with spacelike faces living in a three-dimensional null hypersurface of Minkowski spacetime.
Consider a bivector BIJ in Minkowski spacetime, orthogonal to a given direction N I ,

NIB
IJ = 0. (1)

The condition implies that the bivector is simple; namely it can be written in the form BIJ = 2u[IvJ]. The
proof is straightforward, and valid for any signature of N I .2 Provided u and v are linearly independent, the
simple bivector identifies a plane, as well as a scale B2 := BIJBIJ/2. When N I is null, the two vectors u and
v can then be either null or spacelike. If they are both null, they both must be proportional to N I , and thus
the bivector is “degenerate” and does not span a plane. In this paper we focus our attention on the case of
spacelike bivectors.

Such simple bivectors can always be parametrized as

BIJ =
1

2
εIJKLN

KbL, b2 = 0, B2 = (b ·N)2. (2)

We further denote A := |B|, and b ·N = −εA, with ε = ±.
Next, take a collection of bivectors Bl, all lying in the same hypersurface determined by N I , and further

constrained by the closure condition ∑
l

Bl = 0. (3)

In the case of a timelike N I , a theorem by Minkowski proves that the set defines a unique, convex and bounded
polyhedron, with areas Al and dihedral angles determined by the scalar products among the bivectors. This
fact plays a key role in the interpretation of loop quantum gravity in terms of twisted geometries. See [7] for
details and the explicit reconstruction procedure. An application of the same theorem to the case of null N I

implies that the polyhedron now lies in the null hypersurface orthogonal to N I , which includes N I itself. A null

2An arbitrary bivector BIJ can be written as BIJ = a[IbJ]−c[IdJ]. If (1) holds, then (a ·N) b−(b ·N) a−(c ·N) d+(d ·N) c = 0,
which implies that the four vectors are linearly dependent. Simplicity immediately follows, independent of the signature of NI .
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hypersurface has a degenerate induced metric, with signature (0,+,+), and therefore the metric properties of
the polyhedron are entirely determined by its projection on the spacelike 2d surface.3 In fact, one can arbitrarily
translate the vertices of the polyhedron along the null direction without changing its intrinsic geometry. Using
this symmetry, the polyhedron can always be “squashed” on the two-dimensional spacelike surface, where it will
look like a degenerate case of a Euclidean polyhedron. It is indeed often helpful to visualize a null polyhedron
as an ordinary polyhedron in coordinate space, endowed with a degenerate metric.

Using the parametrization (2) of simple bivectors, the closure condition can be equivalently rewritten as

V I :=
∑
l

bIl = αN I , α ∈ R. (4)

These are three independent equations, since α is arbitrary, and therefore the space of F simple, closed bivectors
has 3F − 3 dimensions. In particular, contracting both sides with NI we obtain the “area closure”,

−N · V =
∑
l

εlAl = 0. (5)

This condition is also satisfied by a degenerate Euclidean polyhedron squashed on a 2d plane, and it allows
us to identify Al with the areas of the null polyhedron’s faces. Furthermore, assuming once and for all N I to
be future pointing, and the normals outgoing to the faces, the sign εl measures whether the face l is future or
past pointing. While (5) plays a predominant role, one should not forget that the complete closure condition
satisfied by the bivectors has two extra equations, contained in (3) or (4). It is also interesting to note that (4)
allows us to map the space of null polyhedra with F faces to the space of null polygons with F + 1 sides, with
one direction held fixed, but we will not further pursue this interpretation here.

Another peculiarity of null polyhedra is to have a larger isometry group than their Euclidean brothers.
Clearly, global (i.e. acting on all bivectors) Lorentz transformations belonging to the little group of N I , which
is the Lie group ISO(2), do not affect the intrinsic geometry. But there is an additional isometry due to the
degeneracy of the induced metric: boosts along the N I direction do not change the intrinsic geometry of the
polyhedron, because the induced metric is degenerate along that direction. Therefore, the isometry group has
four dimensions, and the space of shapes of null polyhedra has 3F − 7 dimensions.

An interesting question is how to parametrize the intrinsic shapes of null polyhedra. In the Euclidean case,
we are used to do so using the scalar products between the normals within the hypersurface, which fully respect
the isometries. However, this is not the case for null polyhedra, where it is the common normal N I to lie in the
hypersurface, while the null normals bIl characterizing the individual faces do not lie in the hypersurface, and
need not respect the isometries. For instance, translating a vertex of the polyhedron along the null direction is an
isometry, but this transformation does not preserve the scalar product between the null normals bIl . Conversely,
while individual simple bivectors define planes, the intersection of planes cannot be defined in a degenerate
metric. Therefore, the characterization of the intrinsic shapes cannot be done solely in terms of the bl; one
must resort to the full Minkowski spacetime and its nondegenerate metric. To fix ideas, consider the foliation of
Minkowski spacetime generated by N and N̂ , the null hypersurfaces defined , respectively by N I and its parity
transformed N̂ I = PN I , satisfying N̂ ·N = −1. See Fig. 1.

NR
NL

S0

NR

NL

Figure 1: A foliation of spacetime by null hypersurfaces.

Using both normals, one can make sense of the intersection of two faces, say l and l′, within N , and
characterize it by the (pseudo)vector

ẼIll′ = εIJKLNJ(εKMPQN̂
MBPQl )(εLRST N̂

RBSTl′ ). (6)

3This does not mean that the null direction never plays a geometric role: it will acquire a geometrical meaning, if ones embeds
the three-dimensional null hypersurface in a nondegenerate ambient space-time.
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With this formula, one can explicitly reconstruct the intrinsic shape of the null polyhedron starting from the
bivectors. To show this, let us first consider the case of a tetrahedron, and then a general polyhedron.

The simplicity of the tetrahedral case lies in its trivial adjacency matrix: any two faces identify an edge of
the tetrahedron, and the intrinsic shapes can be described by any three edge vectors meeting at one vertex, by
providing the lengths and the angles among them. The existence of a null direction will show up explicitly in
the fact that only two of the angles are linearly independent, thus the intrinsic shape is characterized by only
five quantities. Consider then three faces, say l = 1, 2, 3, and the three edges determined by their intersections.
Let us first assume that the three edge vectors are not coplanar in N (the degenerate case will be dealt with
later). Then, we define

Vc(B)4 := − 1

64
εIJKLN̂

IẼJ13(B)ẼK21(B)ẼL32(B). (7)

The right-hand side is always positive, and defines a coordinate volume of the tetrahedron, analogous to the
definition of the Euclidean volume in terms of the triple product. We can then normalize (6) and obtain the
proper edge vectors of the tetrahedron as

EIll′ :=
1

6Vc
ẼIll′ = − 1

6Vc
εIJKLN

JbKl b
L
l′ , (8)

where we used (2). Finally, the edge lengths and angles of the triple evaluate to

E2
ll′ = − 2

(6Vc)2
(bl ·N) (bl′ ·N) (bl · bl′), (9a)

Ell′ · El′l′′ =
1

(6Vc)2

[
(bl ·N) (bl′ ·N) (bl′ · bl′′) + (bl′ ·N) (bl′′ ·N) (bl · bl′) + (bl′ ·N)2 (bl · bl′′)

]
. (9b)

It is easy to check that we can always consistently pick BIJl = 2E
[I
ll′E

J]
l′′l, and that the triangles’ areas computed

from the edge vectors coincide with Al. Furthermore, the oriented sum of the angles defined by (9b) vanishes,
so that only five quantities out of the six defined in (9) are independent.

The formulas (9) provide the intrinsic shape of the null tetrahedron in terms of simple bivectors. They
are valid for any time orientation of the faces and, as promised, are left invariant when any of the vectors is
translated along the null direction N I . In particular, this makes the expressions for edges and angles valid also
in the special case when the isometry is used to “squash” the tetrahedron down to the spacelike surface S0.
When this happens, the bIl are all parallel, so their scalar products vanish, but also Vc vanishes, and the ratio
(bl · bl′)/V 2

c remains finite. Hence (9) are well defined also in the limit case when the edge vectors are coplanar.
We conclude that the intrinsic geometry can be characterized in terms of the null vectors bIl , using the scalar
products bl ·N as well as the ratios (bl · bl′)/V 2

c , of which only two out of three are independent. On the other
hand, notice that the scalar products bl · bm are not good variables: they are not preserved by the isometries,
and different values can correspond to the same intrinsic geometry.

The main difficulty to extend this construction to higher polyhedra comes from the fact that the adjacency
matrix is not trivial anymore: the explicit values of the bivectors themselves will determine whether two faces are
adjacent or not. A strategy to deal with this case is to use the reconstruction algorithm already developed for the
Euclidean signature. To that end, we work in light-cone coordinates defined by N I and N̂ I . In these coordinates,
the closure constraint (13) identifies a closure condition for 3d vectors in a space with a degenerate metric of
signature (0,+,+). If we replace this metric by an auxiliary Euclidean metric, we can apply the reconstruction
procedure of [7] to the resulting Euclidean polyhedron. In particular, compute its adjacency matrix, and once
this is known, apply (9) to the existing edges to determine the null geometry of the polyhedron. It would be
interesting to know whether the adjacency matrix of a null polyhedron can be reconstructed directly from the
bIl , without passing through the auxiliary Euclidean reconstruction, but this is not needed for the rest of the
paper, and we leave it as an open question.

Finally, recall that the space of shapes of 3d Euclidean polyhedra has dimensions 3F − 6, and the 2F − 6
space of shapes at fixed areas is a phase space [14], a result used in the twisted geometry parametrization [7].
This turns out not to be the case for null polyhedra, because as we show below, the closure condition does not
generate all the isometries. While it is an interesting open question to construct a phase space of shapes for
null polyhedra, we will see below that the phase space of loop gravity on a null hypersurface does include a
description of polyhedra, but rather as equivalence classes, defined by their areas only.
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3 Null simplicity constraints in LQG

Spin foams are based on the nonchiral Plebanski action for general relativity,

S(ωIJ , B, ψ) =

∫
Tr
(
?+

1

γ

)
B ∧ F (ωIJ) + ψIJKLB

IJ ∧BKL, (10)

where the fundamental variables are a Lorentz connection ωIJµ , and a 2-form valued in the Lorentz algebra

BIJ , constrained by ψIJKL to be simple, that is BIJ = eI ∧ eJ . Here γ is the Immirzi parameter, and we
assumed a vanishing cosmological constant. The canonical analysis of this action has been studied in a number
of papers (e.g. [15]), and we refer the reader to the living review [16] for details and an introduction to the
spin foam formalism. The phase space is described by the pullback of the Lorentz connection and its conjugate
momentum, that is the pullback of the 2-form

M IJ =
(
?+

1

γ

)
BIJ , BIJ =

γ

γ2 + 1

(
1− γ ?

)
M IJ . (11)

In the following, we are interested in a discretized version of this canonical structure, which is commonly
used in the construction of spin foam models [16]. The discrete variables are distributional smearings along an
oriented graph Γ, say with L links and N nodes, where the gravitational connection is replaced by holonomies
hl along the links, and the conjugate momentum by algebra elements Ml, referred to as fluxes. The phase space
associated with a graph is

PΓ = T ∗SL(2,C)L, (Ml, hl) ∈ T ∗SL(2,C), (12)

which notably comes with a noncommutativity of the fluxes. This kinematical phase space appears in Lorentzian
spin foam models [17], as well as in covariant loop quantum gravity [18]. We then consider two sets of constraints
on the B variables. The first is a discrete Gauss law, or closure condition,

GIJn =
∑
l∈n

BIJl = 0. (13)

It is local on the nodes of the graph, and it imposes gauge invariance. The second is a discrete version of the
simplicity constraints,

SJnl = NnIB
IJ
l = 0, ∀l ∈ n, (14)

where N I
n is a unit vector assigned independently to each node n. This linear version of the discrete simplicity

constraints was introduced in [19], with N I timelike and related to the hypersurface normal used in the 3 + 1
decomposition of the action. We denote SΓ the reduced phase space obtained imposing the constraints (13) and
(14),

SΓ = T ∗SL(2,C)L//Fnl//Gn. (15)

When N I is timelike, it was shown in [11] that SΓ ≡ T ∗SU(2)L//SU(2)N , where for any finite γ 6= 0, the
relevant SU(2) subgroup is not the canonical subgroup of the Lorentz group, but a group manifold nontrivially
embedded in T ∗SL(2,C), capable in particular of probing boosts degree of freedom. The interpretation of SΓ

is that of a truncation of general relativity to a finite number of degrees of freedom [20], whose geometry can
be described by twisted geometries [4].

In this paper we investigate the consequences of taking vector N I in (14) to be null, and derive a geometric
description for the reduced space (15), in the spirit of twisted geometries. Ideally, this should be related to
a formulation of the Plebanski action in which we perform a standard 3 + 1 splitting, and use the internal
Minkowski space to induce a noninvertible 3d metric with signature (0 + +). The continuum canonical analysis
of (10) in this null setup, as well as studying the resulting dynamical structure, will be investigated elsewhere.4

Our goal here is simply to study (15) when N2 = 0, its geometrical interpretation, and its quantization.
We will proceed in two steps, motivated by the structure of (15). First, we focus on a single link, studying

the phase space T ∗SL(2,C) and the pair of simplicity constraints (14), which are local on the links. At a second
stage, we consider the full graph structure and the closure condition (13).

4In particular, the analysis is expected to reveal the presence of secondary constraints, which should play an important role in
the identification of the extrinsic geometry, as we will discuss below.
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3.1 Phase space structure

We saw in Sec. 1 that a set of bivectors satisfying closure and simplicity defines polyhedra. The polyhedra can
be endowed with the symplectic structure of T ∗SL(2,C) via (11) and (12), as follows. Picking a specific time
direction tI = (1, 0, 0, 0), we identify boosts, rotations and chiral left-handed generators, respectively, as

Ki := M0i, Li = −1

2
εijkM

jk, Πi =
1

2
(Li + iKi) = iσiABΠB

A.

Here A,B = 0, 1 are spinorial indices, raised and lowered with the antisymmetric symbol εAB , and σAB the Pauli
matrices. See Appendix for a complete list of conventions, notations and background material. We parametrize
T ∗SL(2,C) via the pair (ΠA

B , h
A
B), with h a group element in the fundamental (1/2,0) representation, and

symplectic potential Θ = Tr(Πhdh)+cc. The Π are left-invariant vector fields, and Π̃ = −hΠh−1 right-invariant

ones. We can equivalently use the parametrization (Π, Π̃) and the complex angle Tr(h). In this way, we can
associate a generator, and thus a bivector B through (11), with both source and target nodes of a link. Hence,
we can consider the topological polyhedra defined by a cellular decomposition dual to the graph, and associate
a bivector B with each face within each frame. By construction, a face inherits two bivectors, and unique norm,
B2 = B̃2, and we notice that the closure condition (13) is equivalent to closure for the generators.

The simplicity conditions (1) introduce a preferred direction via N I , thus reducing the initial Lorentz
symmetry to its little group. For a null vector, the Lie group ISO(2). To fix ideas, we take from now on the
specific null vector N I = (1, 0, 0, 1)/

√
2, with the normalization chosen for later convenience. Its little group

ISO(2) is generated by
L3, P 1 := L1 −K2, P 2 := L2 +K1,

and the simplicity constraints (14) read

γL3 +K3 = 0, P a = 0, a = 1, 2. (16)

There are two important differences with respect to the timelike case. First of all, the constraints impose
the vanishing of part of the little group itself, thus effectively selecting its helicity SO(2) subgroup. Second,
by themselves they form a completely first class system, unlike in the timelike case, as can be verified trivially.
These facts have important consequences for the geometric interpretation of the reduced phase space. To study
the symplectic reduction and its geometric interpretation, we use the twistorial parametrization introduced and
studied in [5, 8, 9, 10, 11].

3.2 Twistorial description

A twistor can be described as a pair of spinors,5 Zα = (ωA, iπ̄Ȧ) ∈ C2 ⊕ C̄2∗ =: T. The space then carries
a representation of the Lorentz algebra, which preserves the complex bilinear πAω

A ≡ πω. To describe the
symplectic manifold T ∗SL(2,C) on an oriented link, we consider a pair (Z, Z̃) associated , respectively, with the
source and target nodes of the link, and equip each twistor with canonical Poisson brackets,

{πA, ωB} = δBA = {π̃A, ω̃B}. (17)

We then impose the following area-matching condition,

C = πω − ω̃π̃ = 0. (18)

This is a first class complex constraint generating the scale transformations (ω, π, ω̃, π̃) 7→ (ezω, e−zπ, ezω̃, e−zπ̃).
The 12d manifold obtained by symplectic reduction by (18) coincides with T ∗SL(2,C), with holonomies and
fluxes that can be parametrized as

ΠAB =
1

2
ω(AπB), hAB =

ω̃AπB + π̃AωB√
πω
√
ω̃π̃

, (19)

and

Π̃A
B =

1

2
ω̃(Aπ̃B) ≡ −hACΠC

Dh
−1D

B . (20)

5The presence of an i differs from the standard Penrose notation, and it is just a matter of convenience to bridge with the
conventions used in loop quantum gravity.
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As it is apparent from (19), the parametrization is valid provided πω and π̃ω̃ do not vanish. The submanifold
where this occurs can be safely excluded: it would correspond to null bivectors, whereas we are restricting
attention to spacelike bivectors. Notice also that the parametrization is 2-to-1, as it is invariant under the
exchange of spinors,

(ω, π, ω̃, π̃) 7→ (π, ω, π̃, ω̃). (21)

See [11] for further details.6 To write the simplicity constraints, we introduce a canonical basis in C2, (oA =

δA0 , ι
A = δA1 ). The chosen null vector reads NAȦ = ioAōȦ, and (1) becomes

NAȦΠABεȦḂ = eiθNAȦε
ABΠ̄ȦḂ , eiθ ≡ (γ + i)/(γ − i). (22)

Notice that the matrix δoAȦ := oAōȦ defines an Hermitian scalar product, ||ω||2 = |ω1|2, preserved by the little
group ISO(2). The above conditions can be conveniently separated as

F1 = Re(πω)− γ Im(πω) = 0, F2 = oAōȦω
Aπ̄Ȧ = ω1π̄1 = 0, (23)

where F1 is real and Lorentz invariant, whereas F2 is complex and only ISO(2) invariant. In particular, F2

imposes P a = 0, and on-shell of this condition F1 reduces to the first condition in (16). The structure is very
similar to the timelike case of [11]: in particular, the Lorentz-invariant part F1 is the same, and can be solved
posing

πω = (γ + i)εj, ε = ±, j ∈ R+. (24)

With this parametrization, ε determines the sign of the twistor’s helicity: ε = + for positive helicity. Notice
that the Z2 symmetry (21) of the twistorial parametrization flips this sign, therefore it is possible to fix ε = 1
without loss of generality in parametrizing T ∗SL(2,C). F2 = 0 has two solutions, ω1 = 0 and π1 = 0. Both
branches are needed to describe the reduced phase space, introducing a slightly awkward notation, where the
reduced phase space is parametrized partly by ωA and partly by πA. It is convenient to avoid this by exploiting
the Z2 symmetry, since (21) switches between the two branches. It then turns out to be convenient to keep the
ε sign in (24) free, and pick a single branch of F2 = 0. Let us assume ω1 6= 0, and pick the solution π1 = 0.

The five-dimensional surface of simple twistor solutions of (23) can be parametrized by (ωA, j), and

πA = −rei θ2 δoAȦω̄Ȧ, r =
εj
√

1 + γ2

||ω||2 . (25)

On this surface, the simplicity constraints generate the following gauge transformations,

{F1, ω
A} =

1 + iγ

2
ωA, {F2, ω

A} = 0, {F̄2, ω
A} = −δA0 ω̄1, {F1, j} = {F2, j} = 0. (26)

For the nontivial ones, the finite action is

e{αF1,·}ωA = e
1+iγ

2 αωA, e{αF̄2,·}ωA = ωA − αδA0 ω̄1. (27)

We see that ω0 is pure gauge and that ω1 contains a dependence on the gauge generated by F1. The gauge
invariant reduced space has two dimensions, and can be parametrized by the following complex variable,

z =

√
2j

||ω||iγ+1
ω1, |z|2 = 2j, (28)

plus the sign ε. Notice that shifting the phase of z by π has the same effect as switching the sign of ε. Hence, with
our choice of parametrization arg(z) ∈ [0, π), to avoid covering twice the same space. In this way we identify
the positive complex half-plane with positive helicities, and the negative half-plane with negative helicities. The
reduced symplectic potential evaluates to

Θred = − i
2
εzdz̄ + cc, {z, z̄} = iε, (29)

6Note however that the conventions here are slightly different. This change, consistent with other upcoming papers [21, 22], is
motivated by the desire of having the same Poisson brackets for source and target twistors. The burden of keeping track of the link
orientation is put on the holonomy, which transforms the basis with a minus sign, hω = ω̃, hπ = −π̃. This conveniently “flips” the
orientation of the C2 basis in a way consistent with the usual convention of orienting all normals as locally outgoing.
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so the sign of the helicity determines the sign of the Poisson brackets. In conclusion, the symplectic reduction
gives T//F = T ∗S1, with the circle parametrized by two half-circles via arg(z) ∈ [o, π), ε = ±.

To better understand the geometric meaning of the orbits of the simplicity constraints, it is useful to look
at the bivectors BIJ . These are given by (11) in terms of the algebra generators M IJ , whose spinorial form

reads, from (19), M IJ = −ω(AπB)εȦḂ + cc. Introducing the following doubly null reference frame,

`I = iωAω̄Ȧ, kI = iπAπ̄Ȧ, mI = iωAπ̄Ȧ, m̄I = iπAω̄Ȧ, ` · k = −|πω|2 = −m · m̄, (30)

we can rewrite the bivectors as

BIJ =
γ

1 + γ2

2

|πω|2
[
(γI −R)`[IkJ] + i(γR+ I)m[Im̄J]

]
≈ 2iεγ

j(1 + γ2)
m[Im̄J], (31)

where ≈ means that the equality holds on the constraint surface. The last equation defines a spacelike plane,
and a scale B2 = γ2j2, which represent the spacelike projection of the polyhedron’s face. Comparing (31) and
(2), we derive a parametrization of the normal null vector bI in terms of spinors,

bI =
εγj

‖ω‖2 `
I , b ·N = −εγj. (32)

Hence, we can also identify the helicity sign in (24) with the sign of the time component of the face normal in
(5), and since we are doing this identification for the “untilded” variables, it means that it holds provided the
link is oriented outgoing from the node.

It is straightforward to see that the orbits of F1 leave the bivector BIJ as well as bI invariant. On the other
hand, F2 changes bI , and its action can be used to always align this null vector with N̂ I = 1/

√
2(1, 0, 0,−1).

Hence, the orbits of F2 allow us to project the face on the spacelike surface S0 orthogonal to both N I and N̂ I .
This action becomes even clearer if we look at the spacelike vectors spanning the triangle,

e{−αF̄2−ᾱF2,·}Re(m)I ≈ Re(m)I + εj[γRe(α) + Im(α)]N I , (33a)

e{−αF̄2−ᾱF2,·}Im(m)I ≈ Im(m)I + εj[Re(α)− γIm(α)]N I . (33b)

If we do this globally on all links around a node, that is we take αl ≡ α, ∀l, we obtain the isometry corresponding
to shifting the vectors along the null direction, and this action can be used to project all the faces to S0. On
the other hand, acting independently on each link will genuinely deform the polyhedron, and can in principle
break it open. We will come back to this important point below in Sec. 4. The geometric meaning of the action
of F1 will become clear next, when we discuss the reduction on the holonomy.

Let us conclude this section with a side comment, on the exact relation between the null simplicity con-
straints, and the usual twistor incidence relation. To that end, it is more convenient to look at the other solution
of F2 = 0, that is ω1 = 0. This solution is equivalent to the one π1 = 0 in the sense that this solution can be
obtained from the Z2 symmetry 21. In this case, the simplicity conditions can then be packaged as the following
constrained incidence relation,

ωA = iXAȦπ̄γ
Ȧ
, XAȦ = −εj

√
1 + γ2

||π||2 nAȦ, π̄γ
Ȧ

= ei
θ
2 π̄Ȧ. (34)

From the point of view of twistor theory, (34) implies that (i) the twistor is γ-null [21], namely that it is
isomorphic to a null twistor, the γ-dependent isomorphism being (ω, π) 7→ (ω, πγ := e−iθ/2π); and that (ii) the

null ray XAȦ described by the associated null twistor is aligned with nI and “truncated”: a simple twistor
describes a specific null vector, and not anymore a null ray.

3.3 Symplectic reduction, T ∗ISO(2) and T ∗SO(2)

To study the symplectic reduction on the link phase space, we consider two twistors Z and Z̃, and impose the
simplicity constraints (23) on both, in agreement with (14), as well as the area-matching condition (18). The

complete system is first class, and partially redundant: C = 0 = F1 implies F̃1 = 0. The simplicity constraints
in the “tilded” sector can be solved in the same way,

π̃A = −r̃ei θ2 δoAȦ ¯̃ωȦ, r̃ =
ε̃̃
√

1 + γ2

||ω̃||2 . (35)
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The area matching (18) then imposes ε̃̃ = −εj, which we solve fixing ̃ = j and ε̃ = −ε. The opposite sign

between ε and ε̃ keeps track of the sign difference between Π and Π̃ in (20). As a consequence, a face which is
future pointing in the frame of the source node is past pointing in the frame of the target node: following the
same steps leading to (32), we find b̃ · Ñ = −ε̃γj = εγj. In other words, ε coincides with the time orientation
in the frame of the source node, and with its opposite in the frame of the target node.

On the seven-dimensional surface C ⊂ T ∗SL(2,C), where the simplicity constraints hold, fluxes and holonomies
are

ΠA
B ≈

(γ + i)εj

4

(
−1 2ω0/ω1

0 1

)
, Π̃A

B ≈ −
(γ + i)εj

4

(
−1 2ω̃0/ω̃1

0 1

)
, (36a)

hAB ≈
(
ω1/ω̃1 ω̃0/ω1 − ω0/ω̃1

0 ω̃1/ω1

)
. (36b)

As expected, the generators are restricted to those of the little group (up to the phase introduced by the Immirzi
angle). The group element is also restricted, to a form which includes the little group ISO(2) as well as the extra
isometry generated by a boost along the null direction (K3 with our gauge choice for N I). We can conveniently
parametrize it as

h ≈ e 1
2 Ξσ3 u, u = e

1
2 Ξσ3 e−i 1

2 (ξ−γΞ)σ3 T (ω0, ω̃0) ∈ ISO(2), (37)

where the boost rapidity is

Ξ := ln
||ω||2
||ω̃||2 , (38)

and we also defined
ξ := −2 arg(z)− 2 arg(z̃) ∈ [0, 4π). (39)

Finally, the translational part

T (ω0, ω̃0) =

(
1 ω̃0/ω1 − ω0/ω̃1

0 1

)
(40)

vanishes when ω0 and ω̃0 do, a fact that plays an important role below.
A key aspect of this result is that the boost rapidity Ξ enters also the rotational part of h. This is a

consequence of the mixing between rotations and boosts introduced by the Immirzi parameter [see (11)], and
it is presented also in the timelike case [11]: it is the discrete equivalent of the mixing in the real Ashtekar-
Barbero connection defined by Aia = ωia+(γ− i)Ki

a, where ωia is the anti-self-dual part of the Lorentz connection
and Ki

a the (triad projection of the) extrinsic curvature. Loosely speaking, the mixing allows us to probe the
Lorentzian phase space through a smaller subgroup, SU(2) in the timelike case and ISO(2) here. But while in
the timelike case the holonomy on the constraint surface is still a generic SL(2,C) element [11], in the present

null case it is a restricted group element, missing the algebra directions P̂ a capable of changing the direction
of the vector N I , a fact whose consequences will show up below. Concerning the Poissonian structure of C,
the symplectic potential of T ∗SL(2,C) restricted by the simplicity constraints contains a piece generating the
canonical Poisson brackets of T ∗ISO(2) between Π and u, and a degenerate direction. Therefore, C contains a
proper symplectic submanifold, and can be identified at least locally with the Cartesian product T ∗ISO(2)×R,
where the additional dimension corresponds to boosts along N I . The cotangent bundle of the little group thus
appears at the level of the constraint surface. However, a good part of it is just gauge, as we now show.

The next stage of the symplectic reduction is to divide by the gauge orbits. The gauge orbits of F1 and F2

have been studied in the previous sections: they amount to linear shifts of ‖ω‖ and ω0 , respectively. The latter
are thus good coordinates along the orbits, and the gauge invariant part is the complex variable z introduced
in (28). The situation is analogous for the tilded variables, corresponding to the twistor associated with the
second half of the link. In this case, we parametrize the reduced variable as

¯̃z =

√
2j

||ω̃||iγ+1
ω̃1, |z̃|2 = 2j, {z̃, ¯̃z} = iε. (41)

Notice the extra complex conjugation appearing here, a convention taken to preserve the same sign of the
brackets of z̃ as for z. Proceeding in this way we have reduced by both F1 and F̃1, and thus by part of the
area-matching constraint (18). The remaining part is Cred := |z|2 − |z̃|2 = 0, which is already satisfied by the
fact that we took in (41) the same j as in (28). Its gauge transformations generate opposite phase shifts,

{Cred, arg(z)} = −ε = −{Cred, arg(z̃)}. (42)
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Hence, arg(z)− arg(z̃) is a good coordinate along the orbits, and ξ = −2 arg(z)− 2 arg(z̃) previously defined is
gauge invariant. The two-dimensional reduced phase space on a link is thus spanned by the pair (εj, ξ), which
turns out to be canonical,

{εj, ξ} = 1. (43)

Eliminating the gauges from (36), we see that the reduced link phase space coincides with T ∗SO(2),

XA
B =

(γ + i)εj

4

(
−1 0
0 1

)
, gAB =

(
e−iξ/2 0

0 eiξ/2

)
, X̃A

B = − (γ + i)εj

4

(
−1 0
0 1

)
. (44)

We notice that the translations are removed dividing by the F2 orbits. The same happens in the representation
of massless particles, and here it has the nice geometric interpretation of being shifts along a null direction. The
remaining algebra consists of the helicity generator L3, which coincides with the oriented area of the bivector,

L3 = εj = −L̃3, {L3, ξ} = 1 = −{L̃3, ξ}. (45)

We conclude that T2//C//F = T ∗SO(2), parametrized by its holonomies and fluxes, or directly by (εj, ξ).
After symplectic reduction, the initial Lorentz algebra has collapsed to the helicity subgroup SO(2) of N I . In
particular, ε is the sign of the helicity, consistent with its initial twistorial definition, (24).

Let us also discuss the covariance of our construction. Above we have fixed the same null vector for both
source and target nodes, N I = Ñ I = (1, 0, 0, 1)/

√
2, and the reduction has led to the canonical little group.

Any different choice, say for the source, can be written as V N , where V is a group element in the complement
of the little group, and similarly Ṽ Ñ for the target normal. In this general case, the resulting reduced phase
space would be of the form (V XV −1, V gṼ −1), that is the canonical little group embedded by the conjugate
action. In this sense, our construction is completely covariant.

4 Null twisted geometries

We have so far described the constraint structure and the symplectic reduction on a given link. We now
move on to consider the full graph, and include the closure condition (13) in the analysis. For simplicity, we
take the same canonical null vector N I on each node. The case of arbitrary N I can be dealt with via the
adjoint action as explained above, and does not change the geometric interpretation which is covariant by
construction. The results of the previous section show that the twistor phase space on the graph, reduced by
the null simplicity conditions (14) and the area matching (18), is T2L//Cl//Fnl = T ∗SO(2)L, a phase space of
dimensions 2L, parametrized by (εljl, ξl). This result used the fact that the simplicity constraints are all first
class by themselves. The situation slightly changes when the closure condition(13) is included. On shell of the
simplicity and area-matching constraints, (13) reduces to

Gn =
∑
l∈n

L3 = 0, Îan =
∑
l∈n

P̂ a = 0, a = 1, 2. (46)

Here P̂ a are the translation generators of the little group of N̂ I = PN I , the only generators changing N I .
These three conditions are equivalent to (4), in particular the first is the area closure (5), as follows imme-

diately from (32) and (45). Taking into account the link orientations, we have

Gn =
∑
l+∈n

L3 +
∑
l−∈n

L̃3 =
∑
l+∈n

εljl −
∑
l−∈n

εljl = 0, (47)

where l+ are the links outgoing from the node, and l− the incoming ones. This expression coincides with the
area closure (5), once we take into account that εl coincides with the time orientation for an outgoing link, and
its opposite for an incoming link, as discussed below (35). Therefore, we can interpret the reduced phase space
as a collection of null polyhedra, dual to the nodes of the graph. The polyhedra are glued along faces, sharing
the same area Al ∝ jl, and with opposite time orientation.

Notice that out of the closure conditions (46), only Gn generates an isometry of the null plane. The other
isometries of the null hypersurface are not generated by the closure condition, but by combinations of the
simplicity constraints, as can be deduced from their action investigated in the previous section, and to which we
will come back below. As it turns out, Îa do not generate symmetries at all, as they form a second class system

10



with part of the F2 simplicity constraints.7 To study the structure of the constraints and bring this fact to
the surface, we compute the Dirac matrix associated with the graph. As variables on different links commute,
the matrix has a block structure, in which each block is associated with a node. Since the Lorentz-invariant
constraints F1 commute with everything, we leave them out of the analysis. Then for a node of valence m, the
F2 and closure constraints form a (2m + 3)-dimensional system. On shell of the F1 constraints, it is possible
and convenient to replace for each link the complex F2 constraints by the two real P a. We then take the basis
of node constraints

φµ = {P 1
1 , P

2
2 , . . . , P

1
m, P

2
m, Î

1, Î2, G}. (48)

On the constraint surface, the node’s block of the Dirac matrix evaluates to

Dµν ≡ {φµ, φν} ≈



0 0 · · · 0 0 −2γL3
1 2L3

1 0
0 0 · · · 0 0 −2L3

1 −2γL3
1 0

...
...

. . .
...

...
...

...
...

0 0 · · · 0 0 −2γL3
m 2L3

m 0
0 0 · · · 0 0 −2L3

m −2γL3
m 0

2γL3
1 2L3

1 · · · 2γL3
m 2L3

m 0 0 0
−2L3

1 2γL3
1 · · · −2L3

m 2γL3
m 0 0 0

0 0 · · · 0 0 0 0 0


(49)

The rank of this matrix is always 4, independent of the valence of the node. Hence, the node algebra contains
2m− 1 first class constraints and two pairs of second class constraints. Using this result, and reintroducing the
F1’s (one independent first class constraint per link), the counting of dimensions of the reduced phase space SΓ

defined in (15) gives

12L− 2L− 4N − 2
∑
n

(2 valencen − 1) = 2L− 2N. (50)

It is much smaller than in the timelike case, where one obtains 6L− 6N , which we recall to the reader that it
represents a collection of Euclidean polyhedra plus an angle (ξ in the literature) associated with each shared
face. In the null case, the reduced space is much smaller. Since we proved at the beginning of the paper that
a geometric interpretation in terms of null polyhedra is still possible, we must conclude that information on
the intrinsic shapes of the polyhedra is being lost in the reduction. In fact, recall from (33) that on each face
the orbit of F2 changes the value of bI . These transformations can be distinguished in three types. First,
those corresponding to translations of the vertices in the null direction, which correspond to isometries. Second,
those corresponding to translations of the vertices changing the reconstructed angles (9b), and thus the intrinsic
geometry of the polyhedron. Third, those incompatible with the closure condition (46) and thus breaking the
polyhedron apart. The first two types turn out to be first class, while the third type is second class. Therefore,
while the interpretation in terms of closed polyhedra is valid, because of the closure condition, the intrinsic
shapes at fixed areas are pure gauge, the variables ω0

l drop out, and the reduced phase space contains only the
conjugated variables (εljl, ξl), constrained by the first class constraint Gn. Hence,

SΓ = T ∗SO(2)L//Gn. (51)

We now prove these statements.
To diagonalize the Dirac matrix on each node, we first observe that the combinations

Caij := L3
iP

a
j − L3

jP
a
i = 0, (52)

Ia :=
∑
l∈n

P a = 0 (53)

are first class. Second, the set

Ca1i, i = 2, 3, · · · ,m− 1, P am, Ia (54)

is equivalent to all of the F2’s. Therefore, we can take out of (48) the two pairs (P am, Î
a) as the four second

class constraints, and the rest are first class, with P a1 , . . . , P
a
m−1 replaced by (52) and (53). In particular, the

7Notice that in the timelike case, the covariant closure condition is a first class constraint in the discrete theory, whereas the
continuous Gauss law in the time gauge has a second class part corresponding to the complement to the little group. In this sense,
the null case considered here bears some interesting similarities with the continuum theory.
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first class constraints contain the global isometry ISO(2) generated by Ia and Gn,8 as well as 2m− 4 additional
first class constraints. Their orbits can be used, together with the four second class constraints, to eliminate all
of the ω0

l from the reduced phase space.
To see this explicitly, we compute the action of the first class generators on the spinors, obtaining

e{−αj(iC
1
1j−C

2
1j),•}ω0

i = ω0
i + δijλjω

1
i , λi := αi(γ + i)εiji, i = 2, · · · ,m− 1, (55)

and
e{−β(iI1−I2),•}ω0

i = ω0
i + βω1

i . (56)

Therefore, we can always set to zero all ω0
l , except when l = m. The remaining variable is, however, constrained

by the second class closure constraint in (46),

ω0
m = −zm|ω

1
m|iγ+1

εmj
3/2
m

m−1∑
i=1

εij
3/2
i

ω0
i

zi|ω1
i |iγ+1

, (57)

and it is thus automatically vanishing with the previous gauge choice.
Going back to the picture of the null tetrahedron, we see that there are some constraints which generate the

global isometries, and others which can arbitrarily move around the vertices of the polyhedron, while preserving
the closure and the individual areas. In doing so, we can squash the polyhedron on the spacelike surface and
wash away as gauge all information on the intrinsic shapes. This becomes manifest if we rewrite the null
polyhedra in terms of the reduced variables. To see this, we fix the F1 gauge |ω1| = 1 and write the spinors in
terms of zl and the orbits of Ca1i and Ia,

ωAi =
(

(λi + β)ei arg(zi), ei arg(zi)
)
, i 6= 1,m, (58)

and the πAi are given by (25), assuming all the links are outgoing. Let us consider the case of a 4-valent node,
so we do not have to deal with the reconstruction procedure, and we can immediately apply the formulas (9).
A straightforward calculation then gives

E2
12 = γ

j1j2
3j3

|2λ2 + λ3|2
Im(λ2λ̄3)

, E12 · E23 = −2γε1ε3j2
|λ2|2 + |λ3|2 + Reλ2λ̄3

Im(λ2λ̄3)
. (59)

The intrinsic shape of the null tetrahedron is determined by the independent areas and also the gauge orbits of
C1i, while being invariant under action of the isometries, in particular β drops out.

4.1 Intrinsic geometry: Euclidean singular structures

We have seen above that the first-class constraints eliminate the intrinsic shapes at fixed areas and we are left
with an Abelian reduced phase space T ∗SO(2). The remaining closure condition (47) can be solved explicitly,
and we are able to provide a complete set of gauge-invariant observables, unlike in the non-Abelian case. This
leads to a very simple geometric picture, where the polyhedra give way to a continuous, albeit singular, metric
structure.

Consider a closed graph, the extension to an open graph being straightforward. The dimension of the reduced
phase space is 2(L − N + 1), where we took into account the fact that on a closed graph one of the closure
conditions is redundant. The gauge invariant information can be associated with the faces of the graph, up to
moduli taking into account the possible nonplanarity of the graph. Consider first a planar graph. Its genus
being zero, 2(L−N + 1) = 2(F − 1), so it is enough to remove the pair of variables associated with a specified
face, say for instance the external one in the Schlegel representation of the graph. Denoting f = 1, . . . F − 1,
we trade the ξl for the gauge-invariant traces of the holonomies,

Φf := 2 arccos

[
1

2
Tr

( ∏
l∈∂f

hl

)]
≈
∑
l∈∂f

ηlξl, {Gn,Φf} = 0, (60a)

where ηl = ± depending on the consistency of the orientation between the face and the link. The same faces
can be used to define an independent set of spins,

Jf :=
∑
l∈∂f

ηljl. (60b)

8The remaining isometry of the null hypersurface, the boosts
∑

lK
3
l , is generated by the F1’s.
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The reason to weigh the sum with the same signs is to have a nice Poisson structure. In fact, for a planar
graph the faces can be consistently oriented so that each link is traversed in opposite directions by the sharing
faces. A moment of reflection then reveals that the coordinates (60) of the gauge-invariant phase space satisfy
the brackets

{Jf ,Φf ′} = Lff ′ , (61)

where Lff ′ is the Laplacian of the dual graph.9 Proper action-angle variables can then be readily found
diagonalizing the Laplacian.

z1

z̃n

z̃1

z̃2

z̃3
z̃4

z2

z3

z4

f

l1
l2

l3

l4

f

l1
l2

l3

l4

(j1, ξ1)
(j2, ξ2)

(j3, ξ3)

(j4, ξ4)

f

l1
l2

l3

l4

(Jf ,Φf )

Cl
red = 0 Gn = 0

Figure 2: From half links (z, z̃) to links (j, ξ) and to loops (J,Φ)

Since the intrinsic shapes of the polyhedra have been gauged away, the reduced variables describe equivalence
classes characterized uniquely by the areas. However, the same variables can be given a simpler and more direct
geometric interpretation. Recall that the intrinsic geometry is fully determined by the projection on S0. One
can then describe a spacelike 2d geometry using the reduced variables. First of all, we observe that the reduced
gauge-invariant holonomies describe an SO(2) transformation on each face. For simplicity, consider first the case
of a trivalent graph dual to a triangulation. This structure alone defines the conformal structure of a 2d Regge
geometry, that is a collection of deficit angles 2π−Φf associated with the vertices dual to the faces. Then, the
positive real number Jf associates a scale with each face, thus picking a representative of the conformal class. If

Φ

E

hE

2π − Φ
E

j1 j2

j3

j4j5

⇒

J

bJ

⇒

Φ

Figure 3: The deficit angle (2π − Φ) and the scale J of the cone

we pick a local complex coordinate on each face, say ζf , chosen so that the origin is the location of the vertex,
we can write the face metric as

ds2 = Jf |ζf |−Φf/π dζ ⊗ dζ̄. (62)

The resulting geometry is a singular Euclidean structure (e.g. [13]) on S0.
Notice that by assigning these variables we are specifying fewer data than those required by a 2d Regge

triangulation, which would be L = 3(F − 2). A Regge geometry would be specified uniquely if instead of
assigning a scale factor to each dual face, we would do so to each triangle. Since a triangulation has more
triangles than vertices, our data are fewer and do not specify a unique 2d Regge geometry. On the other hand,
it is more general than a Regge geometry in the sense that it can be extended to any graph and not just a dual
to a triangulation, and furthermore because the special case Φf = 2π, which in Regge would be a pathological

9Notice that this graph is open, because of the redundancy of a global closure condition and associated gauge.
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infinite spike, is a perfectly regular configuration, which can be interpreted as hyperbolic triangles [13]. Finally,
the description has the pleasant features of a natural split into a conformal metric plus scale factors, locally
conjugated.

For non-planar graphs, the situation is slightly different, because more than the faces, one should look at
the independent cycles, and these cannot be oriented in such a way that each link is traversed at most twice, in
opposite directions. Therefore evaluation of Poisson brackets gives a matrix whose off-diagonal entries can have
both signs. This can a priori still be interpreted as a weighted Laplacian of some dual graph, but one in which
the weights have indefinite signature. For instance, in the case of the 4-simplex, the six independent cycles can
be chosen so that there is a single −1 entry in the adjacency matrix.10

4.2 Extrinsic geometry: Ξ and the role of the embedding

The above description concerns the intrinsic geometry of the hypersurface, which being null is equivalent to a
2d one. However the 3d nature should show up in the study of the extrinsic geometry. As the reader familiar
with loop quantum gravity knows, information on the extrinsic geometries is also contained in the reduced
phase space, but it is mixed with the intrinsic one. This is the trade-off for the use of real Ashtekar-Barbero
variables. It can be extracted once the solution to the secondary simplicity constraint is known, for this provides
a specific (in general, nontivial) embedding of the reduced phase space into the Lorentzian one. The same has
been argued to happen in the discrete theory in [11], and indeed shown at least for flat dynamics [22]. A similar
situation should happen in the present null case, and in order to talk about extrinsic geometry, we need to first
understand the dynamics of our null twisted geometries, which we plan to do in future work.

Here we limit ourselves to characterizing the kinematical degrees of freedom suitable to describing the
extrinsic geometry. In the timelike case, this was identified on the constraint surface as the (boost) dihedral
angle between the normals N I in adjacent nodes. However, as we stressed above in (36b), in the null case the
holonomy is a restricted group element already at the level of the constraints surface, and as a consequence, the
angle between the normals N I and Ñ I on adjacent nodes vanishes,

Ñ · Λ(h)N = 0. (64)

The vanishing of this scalar product is consistent with the fact that we are dealing with a null hypersurface,
and in order to specify a notion of extrinsic geometry, we need an embedding in some nondegenerate four-
dimensional spacetime. Indeed, considering also the null hypersurface spanned by the parity transformed vector
N̂ I , we can evaluate a nonzero scalar product, given by

PÑ · Λ(h)N = −eΞ, (65)

where Ξ is the boost rapidity previously defined, and Λ(h)N = eΞN . The equation above suggests that Ξ
should be related to a discretization of a certain free coordinate (denoted λ in [23]) used in the null formulation
of general relativity [24, 23, 25]. We postpone the comparison of our discrete data to a discretization thereof to
future work.

We expect that Ξ plays an important role in characterizing the extrinsic geometry, as well as possibly the
intrinsic shapes of the null polyhedra. The fact that these quantities have disappeared from the reduced phase
space has do to with the fact that in the constrained system considered so far, the simplicity constraints were
all first class. Future studies of the dynamics may reveal the presence of secondary constraints, that could
turn some or all of the simplicity constraints into second class, e.g. [26]. If that happens, the solutions to
the secondary constraints can be interpreted as providing specific, nontivial gauge fixing for the orbits, thus
restoring a geometric interpretation for Ξ and the intrinsic shapes through the dynamical embedding.

10The cycles are e.g. 012, 103, 132, 402, 430, 413, and the Poisson brackets evaluate to the following matrix,
3 −1 −1 −1 0 0
−1 3 −1 0 −1 −1
−1 −1 3 0 0 1
−1 0 0 3 −1 0
0 −1 0 −1 3 −1
0 −1 1 0 −1 3

 . (63)

It can still be casted in the form D−A of a certain dual graph, where D and A are respectively the degree and weighted adjacency
matrix, with the latter having also negative entries.
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5 Quantization and null spin networks

Quantizing the above phase space and its Poisson algebra introduces a notion of spin networks for null hyper-
surfaces. The reduced phase space T ∗SO(2) with its canonical algebra {m, ξ} = 1, m = εj, can immediately be
quantized on the Hilbert space L2[SO(2)], the space of SO(2) unitary irreducible representations with eigenvalues
m ∈ Z/2, and operator algebra

ψ[ξ], [m̂, eiξ̂/2] =
1

2
eiξ̂/2. (66)

Since ξ ∈ [0, 4π), the eigenvalues of m̂ are half-integers, and eiξ̂ acts as a raising operator,

m̂|m〉 = m|m〉, eiξ̂/2|m〉 = |m+ 1/2〉, (67)

the Abelian version of the holonomy-flux algebra. Finally, a basis is given by Fourier modes on the (double
cover of the) circle,

ψm[ξ] = 〈ξ|m〉 = eimξ. (68)

This Hilbert space bears similarities with the more familiar one of the harmonic oscillator in action-angle
variables, the main difference being that the “Hamiltonian” m̂ is not bounded from below, and m ∈ Z/2.

The gauge-invariant Hilbert space HΓ, corresponding to SΓ, is obtained by taking the tensor product of the
states on the links and imposing the closure condition (47) on the nodes. The results are Abelian SO(2) spin
networks, with trivial intertwiners and flux conservation on the nodes,

ΨΓ,ml [ξl] = ⊗lψml [ξl]
∏
n

δ
( ∑
l+∈n

ml −
∑
l−∈n

ml

)
. (69)

To appreciate how these simple states can represent quantized null hypersurfaces, it is instructive to derive
HΓ following Dirac’s procedure, starting from a Hilbert space for the twistor phase space and its algebra, and
then implement the quantized constraints. This procedure will show how such Abelian spin networks are to be
embedded in the Lorentz group, and identify m as the helicity quantum number. While being necessary for
future studies of dynamics, it will also expose some of the covariance properties of the states, as well as their
integrability properties with respect to the SL(2,C) Haar measure. As in the classical reduction, we proceed in
two steps: we first consider the quantization of a single twistor phase space, and the simplicity constraints it
satisfies; then, we look at the link phase space and impose the area-matching condition.

For the twistorial Hilbert space we take wave functions f(ω) ∈ L2[C2,d4ω], where

d4ω =
1

16
dωA ∧ dωA ∧ cc, (70)

and a Schrödinger representation of the canonical Poisson algebra (17),

[π̂A, ω̂
B ] = −i~δBA , (ω̂Af)(ωA) = ωAf(ωA), (π̂Af)(ωA) = −i~

∂

∂ωA
f(ωA). (71)

A convenient basis for these is provided by homogeneous functions, since they diagonalize the dilatation operator
appearing in F1, and carry a unitary, infinite-dimensional representation of the Lorentz group. In particular,
since the simplicity constraints are the vanishing of the ISO(2) translation generators P a, it is convenient to
take a basis diagonalizing the latter, called the null basis, instead of the canonical basis labeled by the rotational
subgroup SU(2). Denoting pa the eigenvalues, and p := −p2 + ip1, the null basis element are the wave functions

f (ρ,k)
p (ωA) =

1

2π
(ω1)−k−1+iρ(ω̄1̇)k−1+iρ exp

[
i

2

(
ω̄0̇

ω̄1̇
p+

ω0

ω1
p̄

)]
(72)

where (ρ ∈ R, k ∈ Z/2). Details about the SL(2,C) and ISO(2) representations can be found in the Appendix.
To represent quadratic operators, we introduce the normal ordering

: π̂ω :=
1

2
(π̂Aω̂

A + ω̂Aπ̂A) = −i~
(
ωA

∂

∂ωA
+ 1

)
. (73)

With this ordering, the spinorial simplicity constraints (23) read

F̂1 =
~
2

(
(γ − i)ωA

∂

∂ωA
− (γ + i)ω̄Ȧ

∂

∂ω̄Ȧ
− 2i

)
, F̂2 = i~ω̄1 ∂

∂ω0
, ˆ̄F2 = F̂ †2 = i~ω1 ∂

∂ω̄0
. (74)
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Since on each link these constraints are first class, they can be imposed as operator equations on states. An
immediate calculation then gives

F̂1f
(ρ,k)
p (ωA) = 0 ⇒ ρ = γk, (75)

F̂2f
(ρ,k)
p (ωA) = ˆ̄F2f

(ρ,k)
p (ωA) = 0 ⇒ p = 0, (76)

so the solutions are the functions

fk(ωA) ≡ f (γk,k)
0 (ωA) =

1

2π
(ω1)(iγ−1)k−1(ω̄1)(iγ+1)k−1. (77)

The formula (77) defines a state also for k = 0, but this case corresponds classically to πω = 0, for which the
twistorial description of T ∗SL(2,C) breaks down. To complete the quantization, we need to provide indepen-
dently the missing state. If we extrapolate (77) to k = 0 we get a nontivial state, |ω1|−2, which could pose
problems with cylindrical consistency. Hence, we fix instead

f0(ωA) = 1. (78)

The first thing to notice is that in the p = 0 sector P a and L3 commute, thus these functions are also
eigenfunctions of L3, with

L̂3fk(ωA) = ~kfk(ωA), (79)

and thus k is the helicity eigenvalue. Next, the solutions can be expressed in terms of the reduced phase space
variable z using (28), obtaining

fk(ωA) =
1

2π|ω1|2
( z̄
z

)k
. (80)

Notice the leftover dependence on the non-F1-invariant term |ω1|. As the action generated by F1 is noncompact,
Dirac’s quantization does not lead to a proper subspace of functions on the reduced phase space, but rather
distributions. Proper function can be defined taking into account the reduced measure.

The reduced measure can be obtained starting from (70), imposing the constraints and dividing by the gauge
orbits generated by their Hamiltonian vector fields hFi ,

dµ(z) := 4πi ιhFi (d
4ω)
∣∣
Fi=0

, (81)

where ι denotes the interior product and 4πi is a normalization motivated a posteriori. The Hamiltonian vector
fields are

hF1 := {F1, •} ≈
1

2
(1 + iγ)ω0 ∂

∂ω0
+ iγω1 ∂

∂ω1
+ cc. hF2

:= {F2, •} ≈ −2ω1 ∂

∂ω0
. (82)

Evaluating the interior products gives

ιhF2
ιhF̄2

[(dωA ∧ dωA) ∧ cc.] ≈ −4|ω1|2 dω1 ∧ dω̄1, (83)

and
ιhF1

(dω1 ∧ dω̄1) ≈ iγ(ω1dω̄1 − ω̄1dω1). (84)

Putting these results together, and reintroducing z, we get

dµ(z) = −πi|ω1|4
(

dz̄

z̄
− dz

z

)
. (85)

Notice that the dependence on γ has disappeared, and the measure factor |ω1|4 perfectly compensates the one
in the reduced functions (80).

Denoting arg(z) = −2φ, we have dµ(z) = 4π|ω1|4dφ, and the proper reduced Hilbert space is given by

fk(φ) = 〈φ|k〉 =
1

2π
e2ikφ, 〈k′|k〉 =

1

π

∫ π

0

dφ e2i(k−k′)φ = δkk′ , (86)

with k ∈ Z/2. This half-link Hilbert space already coincides with L2[SO(2)], with operator algebra

m̂|k〉 = k|k〉, exp

(
i
φ̂

2

)
|k〉 = |k +

1

2
〉. (87)
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The next step is to consider the two copies of this Hilbert space associated with a link, and impose the
area-matching condition, but this procedure will lead trivially to an equivalent Hilbert space.11 In fact, the
quantum version of the area-matching condition on one link corresponding to (18) is

Ĉ ≡: π̂ω : + : ̂̃πω̃ : (88)

and imposing it strongly on a tensor product state fk(ωA) ⊗ fk̃(ω̃A) gives immediately k = −k̃. The state
simplifies to

Fk(ξ) =
1

(2π)2
eikξ, ξ ∈ [0, 4π). (89)

The appropriate link measure is also obtained trivially. We have thus recovered the initial L2[SO(2)], with
holonomy-flux algebra (66), and further we can identify the oriented area operator m̂ with the helicity and its
eigenvalues with the label k of the Lorentz irreps.

Finally, gauge invariance can easily be implemented, and the results are the Abelian spin networks (69).
Just as ordinary SU(2) spin networks can be interpreted as quantized twisted geometries, the null spin networks
represent quantized null twisted geometries.12

The embedding allows us to define and evaluate generic Lorentz operators on the reduced Hilbert space. For
instance, the first Casimir, classically the oriented area

A2 =
1

2
BIJB

IJ =
γ2

2(γ2 + 1)2

[
(γ − i)2(πω)2 + (γ + i)2(π̄ω)2

]
≈ γ2j2, (90)

is the last equality holding onto the constraint surface. The corresponding operator is

Â2 ≡ −γ2~2

2(γ2 + 1)2

[
(γ − i)2

(
ωA

∂

∂ωA
+ 1

)2

+ (γ + i)2

(
ω̄Ȧ

∂

∂ω̄Ȧ
+ 1

)2
]
, (91)

and on the solution space spanned by (89) gives

Â2Fk = ~2γ2k2Fk. (92)

6 Discussion

In this paper, we have exploited the parametrization of LQG on a fixed graph in terms of twistors to describe
null hypersurfaces and their quantization in terms of spin networks. Our construction is based on the fact that
the twistors appearing in LQG satisfy a restricted incidence relation, in turn determined by the timelike vector
appearing in the 3 + 1 decomposition of the Plebanski action. Taking this vector to be null forces the geometric
interpretation of the theory to lie on a null hypersurface, and the result is a collection of null polyhedra with
spacelike faces.

The first result of our paper concerns properties of the geometry of null polyhedra. We provided a char-
acterization of the intrinsic shapes in terms of simple bivectors, and showed that the space of shapes at fixed
external areas is not a phase space obtained from bivectors and the action generated by the closure constraint,
as it is the case for spacelike and timelike polyhedra, because in the null case the reduced closure condition does
not generate all of the isometries, but only the helicity part of it. The rest of the closure is second class. The
remaining isometries are in turn generated by the (global) action of the simplicity constraints around a node.
However, all the simplicity constraints (compatible with the closure condition) are first class, not just their total
sum on a node, and their action changes the intrinsic shapes of the null polyhedron. Therefore, the phase space
obtained by symplectic reduction is much smaller, algebraically described just by the helicity subgroup, and
geometrically an equivalence class of null polyhedra determined only by the areas and their time orientation.

The second result concerns the description of the gauge-invariant phase space. As the helicity subgroup is
Abelian, the remaining closure condition can be solved explicitly, and proper action-angle variables given. For
planar graphs, these are given by the eigenvectors of the Laplacian of the dual graph. The action-angle variables
have a compelling geometric interpretation, as a Euclidean singular structure on the two-dimensional spacelike

11This should not come as a surprise: the whole point of the twistorial parametrization is to encode a nonlinear space (the group
manifold) into the solution to a quadratic equation of a linear space (twistor space). But if the starting point is already linear, as
in this Abelian case, the procedure is clearly trivial.

12In other words, coherent states of (69) are peaked on a null twisted geometry.
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surface determined by a null foliation of spacetime. In particular, it is naturally decomposed into deficit angles
and scale factors, locally conjugated. We are not in a condition to discuss the extrinsic geometry and thus
the three-dimensional picture of the null twisted geometries, because this requires the discrete analogue of the
secondary simplicity constraints, and it is thus referred to future work on the dynamics. However, we identified
the variables in the phase space susceptible of carrying such information.

Finally, we quantized the phase space and its algebra, introducing a notion of null spin networks. They
are Abelian spin networks, whose embedding the Lorentz group permits one to identify the Abelian quantum
number with the helicity along the null direction of the hypersurface. We derived the spin networks by directly
quantizing the reduced phase space, and also by following Dirac’s procedure starting from a Hilbert space for
twistors. Notice that a loop-inspired quantization of null hypersurfaces has appeared some time ago in [27]. The
main difference is that the approach of [27] is based on asymptotic quantities defined at null infinity, whereas
here we look at local quantities associated with a fixed graph. Notwithstanding this important difference, a
comparison of the two approaches would be valuable.

As such, our result are only a first, kinematical step toward our goal of understanding the dynamics of
null surfaces in LQG. The applications are many and furnish important motivations to our research program,
from the possibility of including dynamical effects in black hole physics and isolated horizons [28], describing
the near horizon quantum geometry, to the use in the constraint-free formulation of general relativity on null
hypersurfaces. To that end, many nontivial steps are needed. First of all, our analysis needs to be complemented
with a continuum canonical analysis of the Plebanski action on a null hypersurface [29]. Second, our geometric
description should be compared with the null formulations of general relativity [23, 24, 25, 30], and suitable
discretizations thereof, in particular, identifying the shear degrees of freedom, and completing the geometric
picture developed here with its extrinsic geometry. On a complementary level, one should also investigate what
type of spin foams can support the boundary data here studied (see e.g. [3]). We expect this line of research to
bring new tools and results to LQG, and to show us how deep the connection with twistors goes.
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Appendix

A Conventions

We use A,B,C, . . . for spinor indices in the left-handed representation; Ȧ, Ḃ, Ċ, . . . in the right-handed represen-
tation; I, J,K, . . . the Minkowski indices; and i, j, k, . . . space indices running from 1 to 3. A bijection between
Minkowski space and spinors is given by

MAȦ =
i√
2
M IσAȦI , (93)

where σAȦI = (1, ~σ) and σAjB = σAȦj δBȦ are Pauli matrices. Notice that we are mapping vectors to anti -
Hermitian matrices consistently with Minkowski metric signature (−,+,+,+). The normalization of the Levi-
Civita tensor is ε0123 = 1. We raise and lower spinor indices with

εAB =

(
0 1
−1 0

)
= εAB , εABεAC = δBC , ωA = εABωB , ωA = εBAω

B . (94)

For the Lorentz algebra, we define

[Li, Lj ] = −iεijkLk, [Li,Kj ] = −iεijkKk, [Ki,Kj ] = iεijkLk (95)

in terms of rotations Li ≡ − 1
2ε

0i
jkM

jk and boosts Ki ≡M0i. We also introduce left-handed (−, anti-self-dual)
and right-handed (+, self-dual) projectors P(±), as

P IJ(±)KL =
1

2

(
δ

[I
Kδ

J]
L ∓

i

2
εIJKL

)
, (96)
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and the left-handed generators are defined as

Πi := iP 0i
(−)IJM

IJ =
1

2
(Li + iKi). (97)

In general the spinorial form of a bivector is

BIJ = BABεȦḂ + cc, (98)

where the left-handed and right-handed parts are

Bi = P 0i
(−)IJB

IJ =
1

2
BABσiAB , B̄i = P 0i

(+)IJB
IJ =

1

2
B̄ȦḂσ̄i

ȦḂ
. (99)

In terms of the self-dual quantities, the Immirzi shift (11) reads

Πi =
γ + i

γ
Bi, ΠAB = −1

2

γ + i

iγ
BAB . (100)

B Null little group

The group ISO(2), sometimes denoted as E(2), is the symmetry group of two-dimensional Euclidean space R2.
It is not compact, nor semisimple. Its Lie algebra iso(2) has three generators, J , P 1 and P 2, satisfying

[J, P a] = iεabP b, [P a, P b] = 0, (a, b = 1, 2). (101)

J is the generator of rotations in R2, and P a generate the translations.
This Lie group appears as the little group of a null direction N I in Minkowski space, with generators related

to the Lorentz generators M IJ by

XI =
1√
2
εIJKLN

JMKL (102)

Two canonical choices are N I
± = (1, 0, 0,±1)/

√
2. In this two cases, the generators are,

L3, P 1
+ ≡ P 1 = L1 −K2, P 2

+ ≡ P 2 = L2 +K1, (103)

L3, P 1
− ≡ P̂ 1 = L1 +K2, P 2

− ≡ P̂ 2 = L2 −K1, (104)

and satisfy
[L3, P a±] = iεabP b±, [P a±, P

b
±] = 0, [P a±, P

b
∓] = 2i(εabL3 ± δabK3). (105)

On the fundamental representation (1/2,0) of sl(2,C), the generators are

L3 =
1

2

(
1 0
0 −1

)
, P 1 =

(
0 −1
0 0

)
, P 2 =

(
0 i
0 0

)
, P̂ 1 =

(
0 0
−1 0

)
, P̂ 2 =

(
0 0
−i 0

)
(106)

Exponentiating the generators we get the respective group elements,

gAB =

(
e

i
2 θ −p
0 e−

i
2 θ

)
, ĝAB =

(
e

i
2 θ 0

p̄ e−
i
2 θ

)
, p := −p2 + ip1. (107)

C Unitary irreducible representation of ISO(2) and SL(2,C)

Unitary irreducible representations (irreps) of ISO(2) are complex function f on C, with basis labeled by the
eigenvalues pa ∈ R of P a,

fp(z) =
1

2π
e

i
2 (z̄p+zp̄), z = −z2 + iz1, p ≡ −p2 + ip1 (108)

[P a ◦ fp](z) = pafp(z), [L3 ◦ fp](z) = (z∂z − z̄∂z̄)fp(z) (109)

The basis is orthogonal,

〈fp, fp′〉 =
i

2

∫
C

dz ∧ dz̄ fp(z)fp′(z) =
i

8π2

∫
C

dz ∧ dz̄ e
i
2 z̄(p

′−p)−cc. = δC(p′ − p), (110)
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and complete,
i

2

∫
C

dp ∧ dp̄ fp(z)fp(z
′) =

i

8π2

∫
C

dp ∧ dp̄ e
i
2 p̄(z

′−z)−cc. = δC(z′ − z). (111)

Thanks to these properties, and the induced representations theorem, irreps of SL(2,C) can be spanned by
irreps of ISO(2), with a faithful one-to-one map.

To make the map explicit, recall that irreps of SL(2,C) are built from homogeneous functions on C2,
f : C2 → C. For the principal series, the homogeneity weights can be conveniently parametrized by the pair
(ρ, k) ∈ (R,Z/2) as follows:

∀λ ∈ C/{0}, f(λωA) = λ−k−1+iρλ̄k−1+iρf(ωA), (112)

and the unitary irrep D(g) of gAB =
(
a b
c d

)
∈ SL(2,C) is given by

[D(g) ◦ f (ρ,k)](ωA) = f (ρ,k)(gABω
B). (113)

Then, we define ω = ω0/ω1, and

f (ρ,k)(ω) := f (ρ,k)

(
ω0

ω1
, 1

)
= (ω1)k+1−iρ(ω̄1̄)−k+1−iρf (ρ,k)(ωA). (114)

By inverting this relation, each homogeneous function f (ρ,k)(ωA) ∈ H(ρ,k)(ωA) is uniquely determined by a
f (ρ,k)(ω), and picking in particular the basis (108) for the latter, we find

f (ρ,k)
p (ωA) = (ω1)−k−1+iρ(ω̄1̄)k−1+iρf (ρ,k)

p (ω) =
1

2π
(ω1)−k−1+iρ(ω̄1̄)k−1+iρe

i
2

(
ω̄0̄

ω̄1̄
p+ω0

ω1 p̄
)
. (115)

This defines the null basis for the principal series of SL(2,C) irreps.
The SL(2,C) action is

[D(g) ◦ f (ρ,k)](ω) = (cω + d)−k−1+iρ(cω + d)
k−1+iρ

f (ρ,k)

(
aω + b

cω + d

)
, (116)

and the inner product

〈f, h〉(ρ,k) =
i

2

∫
C
f (ρ,k)(ω)h(ρ,k)(ω)dω ∧ dω̄ =

i

2

∫
PC2

f (ρ,k)(ωA)h(ρ,k)(ωA)ωAdωA ∧ ω̄Ādω̄Ā. (117)

In particular,

〈f (ρ,k)
p , f

(ρ,k)
p′ 〉 = δC(p′ − p). (118)
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