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RENORMALIZATION OF THE HUTCHINSON OPERATOR

YANN DEMICHEL

Abstract. One of the easiest and common ways of generating fractal sets in RD is as
attractors of affine iterated function systems (IFS). The classic theory of IFS’s requires that
they are made with contractive functions. In this paper, we relax this hypothesis considering
a new operator Hρ obtained by renormalizing the usual Hutchinson operator H. Namely,
the Hρ-orbit of a given compact set K0 is built from the original sequence (Hn(K0))n by
rescaling each set by its distance from 0. We state several results for the convergence of
these orbits and give a geometrical description of the corresponding limit sets. In particular,
it provides a way to construct some eigensets for H. Our strategy to tackle the problem
is to link these new sequences to some classic ones but it will depend on whether the IFS
is strictly linear or not. We illustrate the different results with various detailed examples.
Finally, we discuss some possible generalizations.

1. Introduction and notation

The theory and the use of fractal objects, introduced and developed by Mandelbrot (see e.g.
[19]), still play an important role today in scientific areas as varied as physics, medicine or
finance (see e.g. [12] and references therein). Exhibit theoretical models or solve practical
problems requires to produce various fractal sets. There is a long history of generating
fractal sets using Iterated Function Systems. After the fundamental and theoretical works
by Hutchinson (see [17]), this method was popularized and developed by Barnsley in the 80s
(see [2, 1]). Since these years very numerous developments and extensions were made (see e.g.
[4]) making even more enormous the literature related to these topics. Indeed, the simplicity
and the efficiency of this approach have contributed to its success in a lot of domains, notably
in image theory (see e.g. [13]) and shape design (see e.g. [15]).

1.1. Background.
Let us recall the mathematical context and give the main notation used throughout the paper.
Let (M,d) be a metric space. For any map f : M → M , we define the f -orbit of a point
x0 ∈M as the sequence (xn)n given by

xn = (f ◦ · · · ◦ f)(x0) = fn(x0),

where fn is the nth iterate of f with the convention that f0 is the identity function Id. In
particular, one has xn+1 = f(xn) hence, if f is continuous and if (xn)n converges to z ∈ M ,
then z is an invariant point for f i.e. f(z) = z.
We denote by KM the set of all non-empty compact subsets of M . We obtain a metric space
endowing it with the Hausdorff metric dH defined by

∀K,K ′ ∈ KM , dH(K,K ′) = inf
{
ε > 0 | K ⊂ K ′(ε) and K ′ ⊂ K(ε)

}
where K(ε) is the set of points at a distance from K less than ε.
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For every K ⊂M we define the set f(K) = {f(x) : x ∈ K} and we will assume in the sequel
that f(K) ∈ KM .

Let p > 1 maps f1, . . . , fp : M →M . Then we can define a new map H : KM → KM setting

∀K ∈ KM , H(K) =

p⋃
i=1

fi(K). (1)

We say that H is the Hutchinson Operator associated with the Iterated Function System (IFS
in short) {f1, . . . , fp} (see e.g. [17, 1, 12]).

Basic questions about an IFS are the following: Does the orbit (Hn(K0))n converge for any
compact set K0? Does its limit depend on K0? What are the geometrical properties of the
limit sets?

The classic theory of IFS’s is based on the Contractive Mapping Principle (see e.g. [17, 1, 12]).
Let us recall that a map f : M →M is contractive if

λf = sup

{
d(f(x), f(y))

d(x, y)
: x, y ∈M with x 6= y

}
< 1.

Let us assume that (M, d) is a complete metric space. Then, any contractive map is continu-
ous, has a unique invariant point z ∈M , and the f -orbit of any x0 ∈M converges to z with
the basic estimate

∀n > 0, d(fn(x0), z) 6 λ
n
f d(x0, z).

If f1, . . . , fp are contractive then the associated Hutchinson operator H is also contractive
because of

λH = max
16i6p

{λfi}.

Since (KM ,dH) inherites the completeness of (M, d), the map H has then a unique invariant
point L ∈ KM , called the attractor of H, and for all K0 ∈ KM the sequence (Hn(K0))n
converges to L. One of the interests is that such sets L are generally fractal sets.

In the sequel, the space M will be essentially RD, D > 1, endowed with the metric induced
by the Euclidean norm ‖ · ‖. Writing simply K for KM , a subset K ⊂ RD belongs to K if and
only if it is closed and bounded. In particular, the closed ball with center x ∈ RD and radius
r > 0 will be denoted by B(x, r).

In this paper, we are interested in affine IFS’s i.e. when fi is defined by fi(x) = Aix + Bi
with Ai a D ×D matrix and Bi ∈ RD a vector. Such a map satisfies λfi = ‖Ai‖ where ‖Ai‖
is the norm of Ai given by

‖Ai‖ = sup
{
‖Aix‖ : x ∈ RD with ‖x‖ = 1

}
= inf

{
r > 0 | ∀x ∈ RD, ‖Aix‖ 6 r‖x‖

}
.

In particular, classic IFS’s consist of transformations involving rotations, symmetries, scalings
and translations. In this case, if H is contractive, the corresponding attractor L is called a
self-affine set. One obtains a nice subclass of such IFS’s when the fi’s are homotheties i.e.
when fi(x) = αix + Bi with αi > 0. Indeed, contrarily to general affine maps, fi contracts
the distances with the same ratio αi in all directions. This enables a precise description
of L. For example, if the sets fi(K0) are mutually disjoints then L is a Cantor set whose
fractal dimension is the solution of a very simple equation (see [12, 21]). Cantor sets are
fundamental and come naturally when one studies IFS’s. A simple family of Cantor sets in
R is {Γa : 0 < a < 1

2} where Γa is the attractor of the IFS {f1, f2} with f1(x) = ax and
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f2(x) = ax+(1−a). For example, Γ 1
3

is the usual triadic Cantor set (see [17, 10, 12]). When
1
2 6 a < 1, the attractor of the previous IFS becomes the whole interval [0, 1]. These basic
examples will be extensively used in the sequel.

1.2. Motivation.
Let us point out two specific situations:

− When λH > 1 the previous results become false: typical orbits fail to converge. Basically,
the orbits of some points x0 ∈ K0 may then satisfy ‖fni (x0)‖ → ∞ for some i, preventing
the sequence (Hn(K0))n from being bounded.

− When all the fi’s are contractive linear maps, the attractor of H is always {0} so does
not depend on the fine structure of the Ai’s but only on their norms.

However, in these two degenerate situations we can observe an intriguing geometric structure
of the sets Hn(K0). For example, let us consider the IFS {f1, f2} where the fi : R2 → R2 are
the linear maps given by their canonical matrices

A1 =

[
a a

a 0

]
and A2 =

[
a −a
−a 0

]
with a > 0. We focus on the H-orbit of the unit ball B(0, 1). For all a large enough we
have ‖A1‖ = ‖A2‖ > 1 and the sequence (Hn(B(0, 1)))n is not bounded: the diameter dn
of Hn(B(0, 1)) grows to infinity. At the contrary, for all a small enough we have ‖A1‖ =
‖A2‖ < 1. Thus H is now contractive and (Hn(B(0, 1)))n converges to {0}: dn vanishes to 0.
Nevertheless, whatever is a, one can observe that the sets Hn(B(0, 1)) tend to a same limit
shape looking like a ‘sea urchin’-shaped set (see Figure 1). So one can wonder if there exists
a critical value a for which dn do not degenerate so makes possible to observe this asymptotic
set.

(a) n = 2 (b) n = 5 (c) n = 10

Figure 1. Three sets of the H-orbit of B(0, 1) where H is the Hutchinson operator associ-
ated with the IFS {f1, f2}. Maps f1, f2 are given above. Since the maps are linear, changing
the parameter a gives the same sets for each n up to a scaling factor. Thus an adequate
renormalization should reveal a common asymptotic limit-shape.

In this paper, we aim to modify the original Hutchinson operator to annihilate these two
degenerate behaviors. We wish to obtain a limit set even if the IFS is not contractive, and a
non zero limit set for contractive linear IFS’s. Moreover, we would like this new operator to
exhibit the typical ‘limit shape’ observed above.
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1.3. Renormalization with the radius function.
Our strategy is to rescale each set Hn(K0) by dividing it by its size. The idea of rescale a
sequence of sets (Kn)n to get its convergence to a non degenerate compact limit is not new
and is particularly used in stochastic modeling (see e.g. [22, 8] for famous examples of random
growth models and more recently [20, 18] in the context of random graphs and planar maps).
Probabilists usually consider the a posteriori rescaled sets 1

dn
Kn where dn estimates the size

of Kn, often its diameter.

Here we proceed differently. First, in order to keep dealing with the orbit of an operator, we
will do an a priori renormalization. Secondly, we will measure the size of a compact set with
its distance from 0. Precisely, we consider the radius function ρ defined on K by

∀K ∈ K, ρ(K) = sup{‖x‖ : x ∈ K} (2)

and we denote by Hρ the operator defined by

∀K ∈ K, Hρ(K) =
1

ρ(H(K))
H(K). (3)

The radius function ρ satisfies the three following basic properties:

− continuity : ρ is continuous with respect to dH;
− monotonicity : If K ⊂ K ′ then ρ(K) ⊂ ρ(K ′);
− homogeneity : For all α ∈ R, ρ(αK) = |α|ρ(K).

Actually ρ is a very nice function because it enjoys an additional stability property:

∀K,K ′ ∈ K, ρ(K ∪K ′) = max{ρ(K), ρ(K ′)}. (4)

The subject of interest of the paper is then the Hρ-orbit of sets K0 ∈ K. For simplicity, we
will write in the sequel Kn = Hn

ρ (K0) so that

∀n > 0, Kn+1 =
1

dn

p⋃
i=1

fi(Kn) (5)

with

dn = ρ

( p⋃
i=1

fi(Kn)

)
= max

16i6p
ρ(fi(Kn)). (6)

We will assume that dn > 0, i.e. Kn 6= {0}.

Observe that ρ(Kn) = 1 for all n > 1, thus:

− Kn ⊂ B(0, 1) so that the orbit of any set K0 is bounded;
− There exist at least one xn ∈ Kn such that ‖xn‖ = 1 so that (Kn)n cannot vanish to {0}.

In particular, if (Kn)n converges to a set K then ρ(K) = 1 and K 6= {0}.

This new operator Hρ is then a good candidate to solve the problems discussed in Section 1.2.
It will act by freezing the geometrical structure of Hn(K0) at each step n of the construction
of the orbit.

1.4. Eigen-equation problem.
Let us point out a very strong connection with the ‘eigen-equation problem’ recently studied
in [3] for affine IFS’s. Indeed, if (Kn)n converges to a set K then (dn)n converges to d > 0
and taking the limit in (5) leads to H(K) = dK. Hence d is an eigenvalue of H and K
a corresponding eigenset. Existence of solutions for this equation is discussed and proved
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in [3]. The values for d are closely related to the joint spectral radius σM of the Ai’s (see
(7)). In particular, for linear IFS’s, σM was interpreted as a transition value for which
exists a corresponding eigenset K whose structure is similar to the one described in Section
1.2. Unfortunately, these results don’t hold for every IFS. In particular it rules out simple
IFS’s only made up with homotheties or some more interesting ones made up with stochastic
matrices. However, the results stated in [3] provide important clues to determine and study
the possible limits of both sequences (dn)n and (Kn)n.

When studying the eigen-equation problem, an interesting question is to approximate any
couple (d,K) of solutions of equation H(K) = dK. Let us look at the special case when the
IFS consists in only one linear map with matrix A and set K0 = {x0}. Then Kn = {xn} with

∀n > 0, xn+1 =
1

‖Axn‖
Axn.

One recognizes the famous Power Iteration Algorithm. With suitable assumptions it gives a
simple way to approximate the unit eigenvector associated with the dominant eigenvalue σM
of A, this eigenvalue being the limit of dn = ‖Axn‖. Therefore, iterating the operator Hρ

from a set K0 is nothing but a generalization of this algorithm and then provides a natural
procedure to approximate both an eigenvalue of H and one of its associated eigenset.

From now on we are then interested in the convergence of (Kn)n and the geometric properties
of its limit. Typically, Hρ is not contractive and the classic theory may not be applied. In
particular, Hρ may have different invariant points so that the limit of (Kn)n may be no
longer unique but deeply depend on K0. Furthermore, it is clear that the Hρ-orbits of K0

may diverge for some K0 (for example when the Ai’s are only rotations). We will expose
different ways to state the convergence of (Kn)n depending on whether the IFS is affine
(Section 2) or strictly linear (Section 3). Finally, some generalizations will be shown in the
last section (Section 4).

2. Results for affine IFS’s

We suppose in this section that the IFS consists in p > 1 affine maps fi : RD → RD defined
by fi(x) = Aix + Bi. We denote by M = {A1, . . . , Ap} the set of their canonical matrices.
Let us recall that the joint spectral radius of M is defined by

σM = lim sup
n→∞

(
sup

16i1,...,in6p
{α(Ai1 · · ·Ain)}

) 1
n

= lim sup
n→∞

(
sup

16i1,...,in6p
{‖Ai1 · · ·Ain‖}

) 1
n

(7)

where α(M) denotes the usual spectral radius of the matrix M (see [24]).

2.1. Strategy: a general result.
Our strategy consists in linking the convergence of (Kn)n to the asymptotic behavior of the
sequence of positive numbers (dn)n. If (Kn)n converges to a set K then (dn)n converges to
d > 0 and the eigen-equation H(K) = dK shows that K may be seen as an invariant set
of the classical Hutchinson operator Hd = 1

dH associated with the IFS {1df1, . . . ,
1
dfp}. In

particular, if d > λH then K is unique: it is the attractor Ld of this contractive operator Hd.
Conversely, if (dn)n is a constant sequence, say dn = d, one has Kn = Hn

d (K0) so that (Kn)n
converges to Ld if d > λH . Actually, when (dn)n is no longer constant, but converges to a
positive number d > λH , then the convergence of (Kn)n to Ld still happen.
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Theorem 2.1. Assume that the sequence (dn)n converges to a positive number d > λH . Then,
for all K0 ∈ K, the sequence (Kn)n converges to the attractor Ld of the IFS {1df1, . . . ,

1
dfp}.

Proof. Let us set K ′n = Hn
d (K0). We have to prove that εn = dH(Kn,K

′
n) converges to 0.

We can write

dH(Kn+1,K
′
n+1) 6 dH

(
1
dn
H(Kn), 1

dn
H(K ′n)

)
+ dH

(
1
dn
H(K ′n), 1dH(K ′n)

)
6
λH
dn

dH(Kn,K
′
n) +

∣∣∣∣ 1

dn
− 1

d

∣∣∣∣ ρ(H(K ′n)).

Since (K ′n)n converges, there exists B ∈ K such that K ′n ⊂ B for all n > 0. Let us then
fix η > 0 and N > 0 such that 0 < λH < d − η 6 dn 6 d + η for all n > N . We obtain
0 6 εn+1 6 µεn +mn where µ = λH

d−η and mn = | 1dn −
1
d |ρ(H(B)). It follows that

∀n > N, 0 6 εn 6 µ
n−NεN +

n−N−1∑
k=0

µkmn−1−k.

Since µ ∈ [0, 1) and mn → 0 it follows that εn → 0. �

Let us emphasize that we did not use the definition of (dn)n nor the fact that the fi’s are
affine. Hence the result is valid for any pairs of sequences (Kn)n and (dn)n satisfying (5).
If d 6 λH , the asymptotic behavior of (Kn)n is more delicate to derive directly from the one
of (dn)n.

Notice that the sequence (dn)n depends on the set K0. Therefore, in view of Theorem 2.1,
we ask the following questions: Does the sequence (dn)n always converge? Does its limit may
be smaller than λH?

2.2. Convergence of (dn)n.
Except for very special cases it is impossible to obtain the exact expression of dn. Therefore
we rather seek for bounds for dn and d. Let us begin with a basic result.

Lemma 2.2. Let (dn)n be the sequence defined in (6). Then,

∀n > 1, max
16i6p

{‖Bi‖ − ‖Ai‖} 6 dn 6 max
16i6p

{‖Ai‖+ ‖Bi‖}. (8)

In particular, if (dn)n converges to d, then d also satisfies (8).

Proof. Let n > 1. One has fi(Kn) ⊂ fi(B(0, 1)) ⊂ B(Bi, ‖Ai‖) for all i ∈ {1, . . . , p}. Thus,
any x ∈ fi(Kn) satisfies |‖x‖ − ‖Bi‖| 6 ‖x−Bi‖ 6 ‖Ai‖, that is

‖Bi‖ − ‖Ai‖ 6 ‖x‖ 6 ‖Ai‖+ ‖Bi‖.
Since dn = max16i6p max{‖x‖ : x ∈ fi(Kn)} we obtain (8). �

The next result provides non trivial bounds for the possible limit d.

Proposition 2.3. If (dn)n converges to d, then

∀ i ∈ {1, . . . , p}, 0 6 ‖Bi‖ 6 ‖d Id−Ai‖. (9)

Moreover, if i ∈ {1, . . . , p} is such that d /∈ Spec(Ai), then

0 6 ‖(d Id−Ai)−1Bi‖ 6 1. (10)

In particular, if d > λH then

max
16i6p

{‖(d Id−Ai)−1Bi‖} 6 1. (11)
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Proof. Let i ∈ {1, . . . , p} and consider the sequence (xn)n>1 defined by x1 ∈ K1 and xn+1 =
1
dn

(Aixn +Bi). One has xn ∈ Kn and Bi = dnxn+1 −Aixn. By sommation we get

nBi = (dnxn+1 −Aix1) +
n−1∑
k=1

(dk Id−Ai)xk+1. (12)

Therefore, for all n > 1,

‖Bi‖ 6
1

n
‖dnxn+1 −Aix1‖+

1

n

n−1∑
k=1

‖(dk Id−Ai)xk+1‖

6
2

n

(
dn + ‖Ai‖

)
+

(
1

n− 1

n−1∑
k=1

‖dk Id−Ai‖
)
.

The first term in the sum above goes to 0 when n → ∞ and Cesàro’s Lemma implies that
the term into brackets goes to ‖d Id−Ai‖. That gives (9).
Now assume that i is such that d /∈ Spec(Ai). Then the matrix Mi = d Id−Ai is invertible
and (12) yields

n(M−1i Bi) = M−1i (dnxn+1 −Aix1) +
n−1∑
k=1

M−1i (dk Id−Ai)xk+1.

Thus we obtain in a similar way

‖M−1i Bi‖ 6
2

n
‖M−1i ‖

(
dn + ‖Ai‖

)
+

(
1

n− 1

n−1∑
k=1

‖M−1i (dk Id−Ai)‖
)
.

We conclude as above using that ‖M−1i (dk Id−Ai)‖ → ‖ Id ‖ = 1 as k →∞.
Finally, if d > λH then d /∈ ∩pi=1 Spec(Ai), which concludes the proof. �

We will now show that (11) is an equality when the Ai’s are homotheties. Actually, we will
prove again (11) but with a very different approach which can be generalized (see Theorem
4.1 (i)). We need the following result. We denote by ch(K) the convex hull of a non-empty
set K.

Lemma 2.4. Assume that ‖Ai‖ < 1 for all i ∈ {1, . . . , p}. Denote by zi the unique invariant
point of fi and by L the attractor of the IFS {f1, . . . , fp}. If fj(zi) ∈ ch({z1, . . . , zp}) for all
i, j ∈ {1, . . . , p}, then the convex hull of L is the polytope ch({z1, . . . , zp}).
Proof. Let us write C = ch({z1, . . . , zp}). Let i ∈ {1, . . . , p}. Since fi(zi) = zi, one has
zi ∈ L ⊂ ch(L) and then C ⊂ ch(L). To prove the reverse inclusion we have to state that
L ⊂ C. It is enough to prove that H(C) ⊂ C, i.e. that fi(C) ⊂ C. So let z =

∑p
j=1 tjzj ,

tj > 0 and
∑p

j=1 tj = 1, a point in C. We have

fi(z) =

p∑
j=1

tj
(
Aizj +Bi

)
=

p∑
j=1

tjfj(zi),

thus fi(z) ∈ C. �

Proposition 2.5. If (dn)n converges to d with d > λH then d satisfies the inequality

ρ({(d Id−A1)
−1B1, . . . , (d Id−Ap)−1Bp}) 6 1. (13)

Moreover, if Ai = αi Id with αi > 0 for all i ∈ {1, . . . , p}, then (13) is an equality. In this
case, there is at least one Bi 6= 0.
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Proof. Let i ∈ {1, . . . , p}. First, d > λH implies that d Id−Ai is invertible and zi =
(d Id−Ai)−1Bi is the unique invariant point of 1

dfi. Secondly, d > λH implies that (Kn)n con-
verges to Ld so zi ∈ Ld. Therefore {z1, . . . , zp} ⊂ Ld, and, by monotonicity, ρ({z1, . . . , zp}) 6
ρ(Ld) = 1. That gives (13).
Now, if all the Ai’s are homotheties, one has

∀ j ∈ {1, . . . , p}, fj
d

(zi) =
αj
d
zi +

(
1− αj

d

)
zj .

Since 0 6 αj < d, one has
fj
d (zi) ∈ ch({z1, . . . , zp}). Thus, it follows from Lemma 2.4 applied

to the IFS {1df1, . . . ,
1
dfp} that ch({z1, . . . , zp}) = ch(Ld). Since ρ(ch(K)) = ρ(K) for all

K ∈ K, we obtain

1 = ρ(Ld) = ρ(ch(Ld)) = ρ(ch({z1, . . . , zp})) = ρ({z1, . . . , zp}),
hence (13) becomes an equality. Finally, if Bi = 0 for all i ∈ {1, . . . , p} then the lhs of (13)
is zero, hence a contradiction. �

Notice that using the stability property of ρ, (13) gives (11).

We conclude now by giving another non trivial bounds for d valid for a particular class of
IFS’s. The next result is only a rephrasing of Theorems 2 and 3 in [3].

Proposition 2.6. Assume that the Ai’s have no common invariant subspaces except {0} and
RD. If (Kn)n converges to K ∈ K, then (dn)n converges to

d = max
16i6p

ρ(fi(K)) > σM

and equality holds if Bi = 0 for all i ∈ {1, . . . , p}.

The determination of σM is delicate but the basic estimates

max
16i6p

{α(Ai)} 6 σM 6 max
16i6p

{‖Ai‖} = λH

always hold (see [24]). In particular for homotheties, i.e. when Ai = αi Id with αi > 0,
one obtains σM = λH = max16i6p{αi}. Unfortunately, this simple case does not fulfill the
hypotheses of Proposition 2.6.

2.3. Case of homotheties.
We can give a complete answer when all the Ai’s are homotheties: the sequence (Kn)n always
converges and its limit may be explicited. First, we show that (dn)n converges and we give
the possible value for its limit d.

Lemma 2.7. Assume that Ai = αi Id with αi > 0 for all i ∈ {1, . . . , p}. Let j be an index
such that αj = λH = max16i6p{αi}. Then (dn)n converges to a number d > 0. If d = αj
then Bj = 0 else d 6= αj and satisfies

d =

 max
16i6p

{αi + ‖Bi‖} if d > αj

αj − ‖Bj‖ if d < αj.

Proof. For all n > 1 we can find yn ∈ Kn and in ∈ {1, . . . , p} such that dn = ‖αinyn +Bin‖.
Then, un = 1

dn
(αinyn +Bin) satisfies un ∈ Kn+1 and ‖un‖ = 1. Since ‖yn‖ 6 1 we obtain

dn+1 > ‖αinun +Bin‖ > ‖αinun + dnun‖ − ‖dnun−Bin‖ = (αin+ dn)‖un‖ − αin‖yn‖ > dn.
Thus (dn)n>1 is increasing and bounded (see (8)), so it converges. Let d be its limit.
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For all n > 1, choosing xn ∈ Kn such that ‖xn‖ = 1 we get

d > dn > ‖αjxn +Bj‖ > ‖αjxn‖ − ‖Bj‖ = αj − ‖Bj‖. (14)

Inequality (9) with i = j writes ‖Bj‖ 6 |d − αj | so d = αj implies Bj = 0. If d < αj then
d 6 αj − ‖Bj‖. In addition with (14) we obtain d = αj − ‖Bj‖.
If d > αj , it follows from Proposition 2.5 that d is a solution of max16i6p

‖Bi‖
|t−αi| = 1. We

can consider only the Bi 6= 0. Then, since d > λH and the functions t 7→ ‖Bi‖
|t−αi| are strictly

decreasing on (λH ,+∞), the unique solution is max16i6p{αi + ‖Bi‖}. �

We can state now the precise result. We denote by cl(K) the closure of a non-empty set K.

Theorem 2.8. Assume that Ai = αi Id with αi > 0 for all i ∈ {1, . . . , p}. Let j, k two indices
such that αj = max16i6p{αi} and αk + ‖Bk‖ = max16i6p{αi + ‖Bi‖}. Then, for all K0 ∈ K,
the sequence (Kn)n converges to a set K ∈ K. Precisely,

(i) If Bj 6= 0 then

(a) Either αj − ‖Bj‖ > 0, fi(− 1
‖Bj‖Bj) = (αj − ‖Bj‖)(− 1

‖Bj‖Bj) for all i ∈ {1, . . . , p}
and K0 = H−1ρ ({− 1

‖Bj‖Bj}) : in this case K = {− 1
‖Bj‖Bj},

(b) Or else K does not depend on K0 : it is the attractor Ld with d = αk + ‖Bk‖ and
1
‖Bk‖Bk ∈ Ld ;

(ii) If Bj = 0 then

(a) Either αj > αk + ‖Bk‖ and then K = cl
(⋃

n>1
Kn

)
,

(b) Or else αj < αk + ‖Bk‖ and then K does not depend on K0 : it is the attractor Ld
with d = αk + ‖Bk‖ and 1

‖Bk‖Bk ∈ Ld.

Proof. (i) Assume that Bj 6= 0. Hence by Lemma 2.7 we have d 6= αj .
(a) Suppose first that d < αj . Then, use of Lemma 2.7 again shows that d = αj − ‖Bj‖. In
particular αj−‖Bj‖ 6= 0 and αj 6= 0. Moreover, it follows from (14) that dn = d for all n > 1.
Let xn ∈ Kn and consider the sequence (xn+k)k defined by xn+k+1 = 1

dn+k
(αjxn+k + Bj) =

1
dfj(xn+k) for all k > 0. Notice that xn+k ∈ Kn+k so in particular ‖xn+k‖ 6 1. Let us

introduce u = − 1
‖Bj‖Bj the unique point such that fj(u) = du. Noticing that xn+k+1 − u =

αj
d (xn+k − u) we obtain by induction that

∀ k > 0, 2 > ‖xn+k − u‖ =

(
αj
d

)k
‖xn − u‖ > 0.

Since d < αj we must have ‖xn − u‖ = 0. It follows that Kn = {u} for all n > 1. Thus
fi(u) = du for all i ∈ {1, . . . , p} and K = {u}. Therefore conditions of (a) are all fulfilled.
Conversely, if they are satisfy we have obviously Kn = K1 for all n > 0 and the result.
(b) Suppose now that d > αj . Then Lemma 2.7 implies that d = αk + ‖Bk‖. Since d >
λH the convergence to Ld follows from Theorem 2.1. Since Ld is the attractor of the IFS
{1df1, . . . ,

1
dfp}, it contains the invariant point zk of 1

dfk which is zk = 1
‖Bk‖Bk.

(ii) Assume that Bj = 0. Hence by (14) we have d > αj .
(a) Suppose first that αj > αk + ‖Bk‖. Then it follows from Lemma 2.2 that d = αj and
then by (14) that dn = d. Therefore, for all n > 1,

Kn+1 =
1

αj

p⋃
i=1

fi(Kn) = Kn ∪
p⋃
i 6=j

fi(Kn).
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Thus (Kn)n>1 is increasing. Since it is bounded it converges to cl(
⋃
n>1Kn).

(b) Suppose now that αj < αk + ‖Bk‖. Assume that d = αj . Then inequality (9) with i = k
yields either d > αk + ‖Bk‖ or d 6 αk − ‖Bk‖. This latter being the unique possibility we
obtain αk 6 αj 6 αk − ‖Bk‖. Thus Bk = 0 and αj = αk which is a contradiction. Therefore
d > αj and we conclude along the same lines as for (i)(b). �

Let us note that, when D = 1, the unit sphere being finite, we can prove that (dn)n is always
stationary.

Example 2.9. Let us consider the IFS {f1, f2, f3} where the fi : R2 → R2 are given by
fi(x) = 2x+Bi with

B1 =

[
0

0

]
, B2 =

[
2

0

]
and B3 =

[
0

2

]
.

Then, for allK0 ∈ K, the sequence (Kn)n converges to the attractor of the IFS {14f1,
1
4f2,

1
4f3}.

It is a classical Sierpinski gasket (see Figure 2 (a)).

Proof. We apply Theorem 2.8 with max16i63{αi + ‖Bi‖} = 4 and max16i63{αi} = 2 (notice
here that indices k and j are not unique). Whatever is the choice of k and j, we are here in
the case (b). We have d = 4 and (1, 0) ∈ Ld, (0, 1) ∈ Ld. �

Example 2.10. Let us consider the IFS {f1, f2, f3} where the fi : R2 → R2 are given by
f1(x) = 6x+B1, f2(x) = 4x+B2 and f3(x) = 3x+B3 with

B1 =

[
0

0

]
, B2 =

[
0

1

]
and B3 =

[
−2

2

]
.

Then, for all K0 ∈ K, the sequence (Kn)n is increasing and converges to the set cl(
⋃
n>1Kn)

(see Figure 2 (b) for K0 = {0} × [0, 1]).

Proof. We apply Theorem 2.8 with max16i63{αi + ‖Bi‖} = 5 and max16i63{αi} = 6. Thus
we are here in the case (ii) (a). �

(a) A classical Sierpinski gasket. (b) A union of vertical segments.

Figure 2. The limit set K obtained by renormalizing the IFS {f1, f2, f3} with the radius
function ρ. Maps f1, f2, f3 are given in Example 2.9 for (a) and Example 2.10 for (b).
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We can observe that in the previous theorem the asymptotics of (dn)n was given by the
points of B(0, 1) whose image by the fi’s have the largest norm. Exploiting this remark we
can obtain a more general result assuming only one function fi has a homothety linear part
but which is responsible of large norms.

Proposition 2.11. Assume that fp(x) = αx+B with α > 0 and that

∀ i ∈ {1, . . . , p− 1}, fi(B(0, 1)) ⊂ B(0, |α− ‖B‖|).

Then, for all K0 ∈ K, the sequence (Kn)n converges to a set K ∈ K. Precisely,

(i) If B 6= 0 then

(a) Either α − ‖B‖ > 0, fi(− 1
‖B‖B) = (α − ‖B‖)(− 1

‖B‖B) for all i ∈ {1, . . . , p} and

K0 = H−1ρ ({− 1
‖Bj‖Bj}) : in this case K = {− 1

‖B‖B},
(b) Or else K does not depend on K0 : it is the attractor Ld with d = α + ‖B‖ and

1
‖B‖B ∈ Ld.

(ii) If B = 0 then K = cl
(⋃

n>1
Kn

)
.

Proof. Actually the proof is very similar to the one of Theorem 2.8 thus we will only detail
the key-points. The first point is to show that dn is always obtained with the function fp.
Indeed, let n > 1 and xn ∈ Kn with ‖xn‖ = 1. Then, for all i ∈ {1, . . . , p− 1},

‖fp(xn)‖ = ‖αxn +B‖ > |‖αxn‖ − ‖B‖| = |α− ‖B‖| > ρ(fi(B(0, 1))) > ρ(fi(Kn)).

It follows that dn = fp(yn) for some yn ∈ Kn and dn > |α− ‖B‖|.
Considering now un = 1

dn
(αyn +B) we get un ∈ Kn+1, ‖un‖ = 1 and, since ‖yn‖ 6 1,

dn+1 > ‖αun +B‖ > ‖αun + dnun‖ − ‖dnun −B‖ = (α+ dn)‖un‖ − α‖yn‖ > dn.

Thus (dn)n>1 is increasing, bounded, so it converges. Let d be its limit.
In particular, we have proved that

α− ‖B‖ 6 |α− ‖B‖| 6 dn 6 d 6 α+ ‖B‖. (15)

Besides, inequality (9) with i = p writes ‖B‖ 6 |d − α| hence either d > α + ‖B‖ or
d 6 α− ‖B‖. Finally, d ∈ {α− ‖B‖, α+ ‖B‖}.
(i) Assume that B 6= 0. Hence d 6= α.
(a) Suppose first that d = α− ‖B‖. This case is similar to the case (i)(a) of Theorem 2.8.
(b) Suppose now that d = α+ ‖B‖. First, d > α. Next, for i ∈ {1, . . . , p− 1},

‖Ai‖ 6 sup
‖x‖=1

{‖Aix+Bi‖} 6 |α− ‖B‖| < α+ ‖B‖.

It follows that d > λH and we conclude as for the case (i)(b) of Theorem 2.8.

(ii) Assume that B = 0. It follows from (15) that dn = d = α for all n > 1. This case is then
similar to the case (ii)(a) of Theorem 2.8. �

3. Results for linear IFS’s

We suppose in this section that the IFS consists in p > 1 linear maps fi : RD → RD defined
by fi(x) = Aix. We still denote by M = {A1, . . . , Ap} the set of their canonical matrices.
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3.1. New strategy.
If (dn)n converges to d, it follows from Lemma 2.2 that d 6 λH so we cannot apply Theorem
2.1. Actually the convergence of (dn)n may not imply the convergence of (Kn)n. Consider
for example D = 2 and the functions f1, f2 defined by

A1 =

[
2 0

0 −3

]
and A2 =

[
1 0

0 −1

]
.

If K0 = {(1, 0)} then Kn = {(2−k, 0) : 0 6 k 6 n} hence converges to cl(
⋃
n>0Kn) and (dn)n

is constant to 2 < 3 = λH . If K0 = {(0, 1)} then Kn = (−1)n{(0, 3−k) : 0 6 k 6 n} hence
diverges but (dn)n is constant to λH .

Therefore we adopt here a new strategy, taking advantage of both the linearity of the fi’s
and the homogeneity of ρ.

Proposition 3.1. Let K0 ∈ K. Assume that there exists d > 0 such that (Hn
d (K0))n con-

verges to a set L ∈ K with ρ(L) 6= 0. Then,

(i) (dn)n converges to d and d 6 σM,
(ii) (Kn)n converges to K = 1

ρ(L) L.

Proof. Let n > 1. We obtain by linearity

Kn =
1

d0 · · · dn−1
Hn(K0)

Since ρ(Kn) = 1, it follows by homogeneity that ρ(Hn(K0)) = d0 · · · dn−1. Using linearity

again we observe that Hn
d (K0) = 1

dn H
n(K0). Thus ρ(Hn

d (K0)) =
∏n−1
k=0

dk
d . By hypothesis,

this last sequence is a proper convergent product, hence dk
d → 1. Moreover, if d > σM then

the joint spectral radius of {1dA1, . . . ,
1
dAp} is σM

d < 1, hence (Hn
d (K0))n converges to {0}

(see [3]) which is a contradiction. Thus we get (i). Finally,

Kn =
1

ρ(Hn(K0))
Hn(K0) =

1

ρ(Hn
d (K0))

Hn
d (K0).

Hypotheses and continuity of ρ allow us to take the limit in the rhs above. That gives (ii). �

As we saw in Proposition 2.6 if such a d exists then d = σM for a large class of IFS’s. We
can expect that this is true in general. However, the first example in this section shows that
the strict inequality is possible even for very simple IFS’s. Actually the hypothesis on the
common invariant subspaces of the Ai’s is essential. Notice that the Ai’s share a common
non trivial invariant subspace if and only if there exists an invertible matrix P such that, for
all i ∈ {1, . . . , p},

Ai = P

[
A′i Mi

0 A′′i

]
P−1

with A′i and A′′i square and some matrix Mi (see [24]). This in particular the case of diagonal
matrices, where the numerous invariant spaces will provide very special behaviors for (Kn)n.
In the rest of this section, we will look at such IFS’s focusing on the convergence of (Hn

d (K0))n
especially for d = 1.
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3.2. LCP sets of matrices.
We say thatM is a Left Convergent Product set of matrices (LCP set in short) if the infinite
products Ain · · ·Ai1 converge for all sequences (i) = (i1, i2, · · · ) ∈ I = {1, . . . , p}∞. In this
case, we set A(i) = limn→∞Ain · · ·Ai1 (see [9, 16]). The theory of LCP sets was popularized
in the 90s (see [9]) and it is still of interest nowadays (see [16]) for example in the study of
inhomogeneous Markov chains (see e.g. [23]). One can always associate a canonical IFS with
a LCP set. The next result gives sufficient conditions to obtain its convergence.

Lemma 3.2. Assume that

(i) M is a LCP set,
(ii) There exists a sequence (εn)n of positive numbers such that εn → 0 and

∀ (i) = (i1, i2, · · · ) ∈ I, ∀n > 1, ‖A(i) −Ain · · ·Ai1‖ 6 εn. (16)

Then, (Hn(K0))n converges for all K0 ∈ K to the limit set

L = cl

( ⋃
(i)∈I

A(i)(K0)

)
. (17)

Proof. Let us write K ′n = Hn(K0) and L′ =
⋃

(i)∈I A(i)(K0). Hypothesis (i) implies that M
is product bounded (see [5]), then there exists R > 0 such that ‖A(i)‖ 6 R for all (i) ∈ I.
Since K0 is compact, it follows that L′ is bounded, hence L is compact. We claim that
dH(K ′n, L

′) 6 Cεn for all n > 1, C > 0. Let n > 1 be fixed. We have

K ′n = {Ain · · ·Ai1(x0) : x0 ∈ K0 and 1 6 i1, . . . , in 6 p}.

Let x′ ∈ L′. One has x′ = A(i)(x0) with x0 ∈ K0 and (i) = (i1, i2, · · · , in, · · · ) ∈ I. Let
x = Ain · · ·Ai1(x0). One has x ∈ K ′n and ‖x′ − x‖ 6 ‖A(i) − Ain · · ·Ai1‖ ‖x0‖ 6 Cεn where
C = ρ(K0). Thus L′ ⊂ K ′n(Cεn). We prove in a similar way that K ′n ⊂ L′(Cεn), hence
dH(K ′n, L

′) 6 Cεn. It follows that dH(K ′n, L
′) → 0 and, since dH(K ′n, L

′) = dH(K ′n, L), that
K ′n → L. �

We illustrate this result with the family of positive stochastic matrices in R2. In this case,
we can give a precise description of the limit set L. Let us recall that a positive stochastic
matrix is a matrix whose rows consist of positive real numbers, with each row summing to 1.

Proposition 3.3. Let p > 1 linear maps fi : R2 → R2 of the form fi(x) = Aix where Ai is
a positive stochastic matrix. Then, for all K0 ∈ K, the sequence (Hn(K0))n converges to the
set

L = cl

( ⋃
v0∈K0

{
(x, x) : x ∈ hv0(Γ)

})
where hv0 : R→ R is an affine map which depends on v0 and fi, and Γ is the attractor of an
IFS {g1, . . . , gp} where gi : R→ R is an affine map which only depends on fi.

Proof. We will apply Lemma 3.2. First, since each product Ain · · ·Ai1 contains a positive
stochastic matrix then it converges (see [7]) andM is a LCP set. Next, there exists a matrix
P of the form

P =

[
1 u

1 v

]
with u, v ∈ R,
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such that, for all i ∈ {1, . . . , p}, Ai = PTiP
−1 where Ti is a matrix of the form

Ti =

[
1 ai

0 bi

]
with ai ∈ R and bi ∈ [0, 1).

Notice that it is also proved in [9] that {T1, . . . , Tp} is a LCP set with a continuous limit
function. Here we want more and describe precisely the limit set of matrices. Let us define
gi : R→ R by gi(x) = bix+ ai and set b = max16i6p bi < 1. We obtain by induction that, for
all sequences of indices i1, . . . , in, n > 2,

Tin · · ·Ti1 =

[
1 (gi1 ◦ gi2 ◦ · · · ◦ gin−1)(ain)

0 bi1 · · · bin

]
.

Hence, considering the contractive Hutchinson operatorG associated with the IFS {g1, . . . , gp},
its attractor Γ, and the orbit (Gn(A))n of the compact set A = {a1, . . . , ap}, we obtain, for
all n > 2, {

Tin · · ·Ti1
}
16i1,...,in6p

=

{[
1 ci1···in

0 b(ci1···in)

]
, ci1···in ∈ Gn−1(A)

}
with 0 6 b(ci1···in) 6 bn and d(ci1···in ,Γ) 6 Cbn for a constant C > 0 (see [17]).
It follows first that, for all (i) ∈ I and all n > 1,

‖A(i) −Ain · · ·Ai1‖ = ‖P
(
T(i) − Tin · · ·Ti1

)
P−1‖ 6 ‖P‖ ‖T(i) − Tin · · ·Ti1‖ ‖P−1‖ 6 C ′bn

with C ′ > 0. Hence (16) and all the hypotheses of Lemma 3.2 are satisfied with εn = C ′bn.
Moreover, letting n goes to ∞ we obtain the following set of limit matrices:

{
T(i)
}
(i)∈I =

{[
1 c

0 0

]
, c ∈ Γ

}
.

Therefore, if v0 = (x0, y0) ∈ K0 we get

A(i)(v0) =
(
P

[
1 c

0 0

]
P−1

) [x0
y0

]
=

[
y0−x0
v−u c+ x0v−y0u

v−u
y0−x0
v−u c+ x0v−y0u

v−u

]
.

The result follows by taking hv0(x) = y0−x0
v−u x+ x0v−y0u

v−u and using (17). �

Notice that if K0 ⊂ Span{(1, 1)} then fi(v0) = v0 and L = K0. Actually, Span{(1, 1)} is a
common invariant space of the Ai’s so that Kn = K0 for all n > 0. In particular, one cannot
apply Proposition 2.6 but it follows from the decomposition of the Ai’s that d = 1 = σM.

Example 3.4. Let us consider the IFS {f1, f2} where the fi : R2 → R2 are the linear maps
given by their canonical matrices

A1 =
1

4

[
1 + 3a 3− 3a

1− a 3 + a

]
and A2 =

1

2

[
1 + a 1− a
1− a 1 + a

]
with 0 < a < 1. With P =

[
1 3
1 −1

]
one obtains

T1 =

[
1 0

0 a

]
and T2 =

[
1 1− a
0 a

]
.
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Thus g1(x) = ax, g2(x) = ax + (1 − a) and Γ is the Cantor set Γa when 0 < a < 1
2 and

the interval [0, 1] when 1
2 6 a < 1. The limit L of the sequence (Hn(K0))n depends on the

starting set K0. One has

L = cl

( ⋃
(x0,y0)∈K0

{
(x, x) : x ∈ h(x0,y0)(Γ)

})

where h(x0,y0) : R → R is the affine map defined by h(x0,y0)(x) = x0−y0
4 x + 3y0+x0

4 . For

example, when a = 1
3 , L =

(
− 1

4 Γ 1
3

+ 7
4 ,−

1
4 Γ 1

3
+ 7

4

)
if K0 = {(1, 2)} (see Figure 3(a))

whereas L =
(
− 1

4 Γ 1
3

+ 7
4 ,−

1
4 Γ 1

3
+ 7

4

)⋃ (1
2 Γ 1

3
+ 1

2 ,
1
2 Γ 1

3
+ 1

2

)
if K0 = {(1, 2), (2, 0)} (see

Figure 3(b)). More K0 contains points then more complicated is the limit set L, with unions
of overlapping Cantor sets.

(a) One Cantor set (b) Two Cantor sets

Figure 3. The limit set L of (Hn(K0))n where H is the Hutchinson operator associated
with the IFS {f1, f2}. Maps f1, f2 are given in Example 3.4 with parameter a = 1

3
. Figure

(a): the starting set is K0 = {(1, 2)} and L is a Cantor set. Figure (b): the starting set is
K0 = {(1, 2), (2, 1)} and L is a union of two disjoint Cantor sets (one in bottom on the left
and a second in top on the right).

Several necessary and sufficient conditions for a finite set of matrices to be a LCP set have
been given (see [7, 6, 11] and [16] for a survey). Not surprisingly, they require to evaluate
the joint spectral radius of M or determine the generalized eigenspaces of the Ai’s.

3.3. Identity-block matrices.
Hypothesis (16) implies that the address function A : (i) 7→ A(i) is continuous. Unfortunately,
very simple LCP sets may not fulfill this condition preventing from applying Lemma 3.2. This
situation happens for example adding the matrix Id to a LCP set with a continuous function
A (see [9]). However this simple case can be solved directly.
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Lemma 3.5. Assume that Ap = Id and ‖Ai‖ 6 1 for all i ∈ {1, . . . , p − 1}. Then, for all
K0 ∈ K, the sequence (Hn(K0))n converges to the set

L = cl

( ⋃
n>0

Hn(K0)

)
.

Moreover, if ‖Ai‖ < 1 for all i ∈ {1, . . . , p − 1}, then denoting by L′ the attractor of the
contractive IFS {f1, . . . , fp−1}, we have L = L′ as soon as K0 ⊂ L′.

Proof. Since fp = Id, the sequence (Hn(K0))n is clearly increasing. So it is enough to prove
that it is bounded to get the convergence to L. Let R > 0 be large enough to ensure K0 ⊂
B(0, R). Then, fi(B(0, R)) ⊂ B(0, R) for all i ∈ {1, . . . , p}. Therefore Hn(K0) ⊂ B(0, R)
for all n > 0. Now, observe that, for all K ∈ K, H(K) = H ′(K) ∪ K where H ′ is the
Hutchinson operator associated with the IFS {f1, . . . , fp−1}. Assume that K0 ⊂ L′. Then,
H(K0) ⊂ H(L′) = H ′(L′) ∪ L′ = L′ ∪ L′ = L′. By induction it follows that Hn(K0) ⊂ L′ for
all n > 0. Taking the limit we get L ⊂ L′. Next, we have L = H(L) = H ′(L) ∪ L ⊃ H ′(L).
By induction it follows that L ⊃ (H ′)n(L) for all n > 0. Taking the limit we get L ⊃ L′, and
finally L = L′. �

These latter sequences are related to the so-called inhomogeneous IFS’s (see e.g. [14]). In-
deed, one has Hn(K0) = Hn

0 (K0) where H0 is the Hutchinson operator associated with the
contractive IFS {f0, f1, . . . , fp−1} where f0 : K ∈ K 7→ K0.

We can generalize the previous result to matrices Ai which contain an identity-block, that is
when the restriction of fi to a certain subspace of RD is the identity function. We will state
two results dealing with two special cases of such families.

Theorem 3.6. Assume that there exists two subspaces V,W ⊂ RD satisfying V ⊕W = RD
and, for all i ∈ {1, . . . , p},

(i) fi(V ) ⊂ V and the linear function fi,V : V → V induced by fi is a contraction or the
identity function Id,

(ii) fi(W ) ⊂W and the linear function fi,W : W →W induced by fi is a contraction.

Then, (Hn(K0))n converges for all K0 ∈ K to a set L. Precisely,

− either there is at least one i ∈ {1, . . . , p} such that fi,V = Id, then

L = cl

( ⋃
n>0

pV,W (Hn(K0))

)
where pV,W is the projection onto V along W ,

− or else L = {0}.
Moreover, L is the limit of the sequence (Hn

V (pV,W (K0)))n where HV is associated with the
IFS {f1,V , . . . , fp,V }

Proof. Let us write V0 = pV,W (K0), W0 = pW,V (K0) where pW,V is the projection onto W

along V , and set λ̃H = max16i6p ‖fi,W ‖ < 1. Finally let us write K ′n = Hn
V (V0).

(a) Let x = v + w ∈ V ⊕W . Since fi(x) = fi,V (v) + fi,W (w), we can write

∀n > 0, Hn(K0) =
⋃
v∈K′n

v + Ln(v)
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where Ln(v) ⊂W satisfies pV,W (Ln(v)) = v. Thus, we obtain

dH(Hn(K0),K
′
n) = dH

( ⋃
v∈K′n

v + Ln(v),
⋃
v∈K′n

{v}
)
6 sup

v∈K′n
dH(v + Ln(v), {v}).

Let v ∈ K ′n. We have

dH(v + Ln(v), {v}) = sup
z∈Ln(v)

‖z − v‖ = sup
z∈Ln(v)

‖z − pV,W (z)‖.

Let z ∈ Ln(v). We can write

z = (fin ◦ · · · ◦ fi1)(z0) = (fin,V ◦ · · · ◦ fi1,V )(v0) + (fin,W ◦ · · · ◦ fi1,W )(w0)

with z0 = v0 + w0 ∈ V0 ⊕W0. Thus,

‖z − pV,W (z)‖ = ‖(fin,W ◦ · · · ◦ fi1,W )(w0)‖ 6 ‖fin,W ◦ · · · ◦ fi1,W ‖‖w0‖ 6 λ̃nH sup
w0∈W0

‖w0‖.

It follows that dH(Hn(K0),K
′
n) 6 λ̃nH supw0∈W0

‖w0‖ → 0 when n→∞.

(b) Therefore, it is now enough to prove the convergence of (K ′n)n.
Assume first that fi,V 6= Id for all i ∈ {1, . . . , p}. Then HV is contractive and we get
K ′n → {0}. Thus Kn → L = {0}.
Assume now that there is at least one j ∈ {1, . . . , p} such that fj,V = Id. Since ‖fi,V ‖ 6 1,
it follows from Lemma 3.5 that K ′n → L = cl

(⋃
n>0K

′
n

)
. Let us prove by induction that

K ′n = pV,W (Hn(K0)). We have K ′0 = H0
V (V0) = V0 = pV,W (K0) and

K ′n+1 = HV (K ′n) =

p⋃
i=1

fi,V (K ′n) =

p⋃
i=1

fi,V (pV,W (Hn(K0)))

=

p⋃
i=1

pV,W (fi(H
n(K0))) = pV,W

( p⋃
i=1

fi(H
n(K0))

)
= pV,W (Hn+1(K0)).

Hence the result. Therefore Kn → L = cl
(⋃

n>0 pV,W (Hn(K0))
)

that ends the proof. �

Theorem 3.7. Assume that there exists two subspaces V,W ⊂ RD satisfying V ⊕W = RD
and, for all i ∈ {1, . . . , p},

(i) (fi − Id)(V ) ⊂W ,
(ii) fi(W ) ⊂W and the linear function fi,W : W →W induced by fi is a contraction.

Then, (Hn(K0))n converges for all K0 ∈ K to the set

L = cl

( ⋃
v0∈pV,W (K0)

v0 + L̃(v0)

)
where pV,W is the projection onto V along W and L̃(v0) is the attractor of the IFS {f̃1, . . . , f̃p}
where f̃i : W →W is defined by f̃i(w) = fi,W (w) + (fi − Id)(v0).
In particular, pV,W (L) = pV,W (K0).

Proof. Let us write V0 = pV,W (K0), W0 = pW,V (K0) where pW,V is the projection onto W

along V , and set λ̃H = max16i6p ‖fi,W ‖ = max16i6p ‖f̃i‖ < 1.
(a) First let z0 ∈ K0 with z0 = v0 + w0 ∈ V0 +W0 ⊂ V ⊕W . We have

∀ i ∈ {1, . . . , p}, fi(z0) = v0 +
(
(fi(v0)− v0) + fi(w0)

)
= v0 + f̃i(w0) ∈ V0 +W.
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We then prove by induction that

∀n > 0, Hn({z0}) = v0 + H̃n({w0})

where H̃ is the Hutchinson operator associated with the contractive IFS {f̃1, . . . , f̃p}. There-

fore the sequence (H̃n(w0))n converges to a set L̃(v0) which only depends on v0. It follows

that (Hn({z0}))n converges to v0 + L̃(v0) with the estimate

dH

(
v0 + L̃(v0), v0 + H̃n(w0)

)
= dH

(
L̃(v0), H̃

n(w0)
)
6 λ̃nH dH(L̃(v0), w0).

(b) Let

R =
1

1− λ̃H
max
16i6p

{ρ((fi − Id)(V0))}.

We have f̃i(B(0, R) ∩W ) ⊂ B(0, R) ∩W for all i ∈ {1, . . . , p}, so that H̃(B(0, R) ∩W ) ⊂
B(0, R) ∩W . It follows that L̃(v0) ⊂ B(0, R) ∩W for all v0 ∈ V0. Thus

∀ v0 ∈ V0, ρ(v0 + L̃(v0)) 6 ‖v0‖+R 6 ρ(V0) +R.

We then have proved that the set
⋃
v0∈V0 v0 + L̃(v0) is bounded, i.e. L ∈ K.

Furthermore, since L̃(v0) does not depend on w0, we can write⋃
v0∈V0

v0 + L̃(v0) =
⋃

v0+w0∈K0

v0 + L̃(v0).

(c) Finally, writing Hn(K0) =
⋃
v0+w0∈K0

v0 + H̃n(w0) and using (a) and (b), we obtain

dH(L,Hn(K0)) = dH

( ⋃
v0+w0∈K0

v0 + L̃(v0),
⋃

v0+w0∈K0

v0 + H̃n(w0)

)
6 sup

v0+w0∈K0

dH

(
v0 + L̃(v0), v0 + H̃n(w0)

)
6 λ̃nH sup

v0+w0∈K0

dH(L̃(v0), w0).

Since this latter supremum is finite, we obtain the result by letting n goes to ∞. �

Notice that hypotheses of Theorem 3.7 mean that, for all i ∈ {1, . . . , p}, the maps fi’s have
a block matrix with respect to the sum V ⊕W of the form[

Id 0

Mi Ãi

]
with Ãi contractive and some matrix Mi. We deduce that σM = 1.
In particular, when Mi = 0 for all i ∈ {1, . . . , p}, we get fi,W = f̃i hence L̃(v0) = {0} for all
v0 ∈ V0 and the limit set is simply L = pV,W (K0). We recover a special case of Theorem 3.6,
namely when fi,V = Id and HV = Id.

Example 3.8. Let us consider the IFS {f1, f2} where the fi : R3 → R3 are the linear maps
given by their canonical matrices

A1 =


1 0 0

0 1 0

a b c

 and A2 =


1 0 0

0 1 0

0 0 c
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with a, b ∈ R and 0 < c < 1. Then, for all K0 ∈ K, the sequence (Hn(K0))n converges to the
set

L = cl

( ⋃
(x0,y0,z0)∈K0

{(
x0, y0,

ax0+by0
1−c Lc

)})
where Lc is the Cantor set Γc if 0 < c < 1

2 and the interval [0, 1] if 1
2 6 c < 1.

As an example, L is shown in Figure 4 when K0 is the unit circle {(cos t, sin t, 0) : t ∈ [0, 2π]}
and parameters (a, b, c) = (1, 1, 14).

Figure 4. The limit set L of (Hn(K0))n where H is the Hutchinson operator associated
with the IFS {f1, f2}. Maps f1, f2 are given in Example 3.8 with parameters (a, b, c) =
(1, 1, 1

4
). The starting set is the circle K0 = {(cos t, sin t, 0) : t ∈ [0, 2π]}.

Proof. We can apply Theorem 3.7 with V = Span{(1, 0, 0), (0, 1, 0)} and W = Span{(0, 0, 1)}.
Thus, (Hn(K0))n converges to the set

L = cl

( ⋃
(x0,y0,z0)∈K0

(x0, y0, 0) + L(x0, y0)

)
where L(x0, y0) is the attractor of the IFS {f̃1, f̃2} with, for all w = (0, 0, z) ∈W ,

f̃1(w) = f̃1(0, 0, z) =
(
0, 0, cz + ax0 + by0

)
and f̃2(w) = f̃2(0, 0, z) =

(
0, 0, cz

)
.

By uniqueness, we check that this attractor is the one announced.
Assume that (a, b, c) = (1, 1, 14) and K0 = {(cos t, sin t) : t ∈ [0, 2π]} × {0}. We have

L = cl

( ⋃
t∈[0,2π]

(cos t, sin t, 43(cos t+ sin t)Γ 1
4
)

)
.

Then L is the closure of a union of circles drawn on the cylinder {(cos t, sin t) : t ∈ [0, 2π]} ×
{4
√
2

3 t : t ∈ [−1, 1]}. Each intersection with a generatrice is homothetic with the Cantor set

Γ 1
4

(except for the two special values t = 3π
4 and t = 7π

4 ). �
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3.4. Orbit of the unit ball.
To avoid the various behaviors due to the different invariant subspaces of the Ai’s, we propose
to take into account all the directions of RD by focusing on the H-orbit of the unit ball B(0, 1).

Proposition 3.9. Assume that

(i) For all i ∈ {1, . . . , p}, ‖Ai‖ 6 1,
(ii) There exists N > 1 indices i1, . . . , iN ∈ {1, . . . , p} such that the matrix AiN · · ·Ai1

has eigenvalue 1.

Then, the sequence (Hn(B(0, 1)))n is decreasing and converges to the set

L =
⋂
n>0

Hn(B(0, 1)) (18)

with ρ(L) = 1. Moreover, Hn
ρ (B(0, 1)) = Hn(B(0, 1)) and dn = 1 for all n > 0.

Proof. Hypothesis (i) implies that H(B(0, 1)) ⊂ B(0, 1), then (Hn(B(0, 1)))n is decreasing
and converges to L. Let v ∈ B(0, 1) with ‖v‖ = 1 and such that AiN · · ·Ai1v = v. One has
v ∈ HkiN (K0) for all k > 0, thus v ∈ L. It follows L 6= {0} and v ∈ Hn(B(0, 1)) for all n > 0.
Therefore,

1 = ‖v‖ 6 ρ(L) 6 ρ(Hn(B(0, 1))) 6 ρ(B(0, 1)) = 1.

This yields Hn
ρ (B(0, 1)) = Hn(B(0, 1)) and dn = 1. �

Notice that the two hypotheses imply that α(AiN · · ·Ai1) = ‖AiN · · ·Ai1‖ = 1, hence σM = 1.
Notice also that M need not to be a LCP set. One can for example consider matrices with
rotations or symmetries.

Example 3.10. Let us consider the IFS {f1, f2} where the fi : R2 → R2 are the linear maps
given by their canonical matrices

A1 =

[
a 1

0 a

]
and A2 =

[
a 0

1 a

]
with a > 0. Then, the sequence (Hn

ρ (B(0, 1)))n is decreasing, thus converges to a set L.
Moreover, the point

v =

(
1√
2

1 +
√

1 + 4a2√
1 + 4a2 +

√
1 + 4a2

,
1√
2

2a√
1 + 4a2 +

√
1 + 4a2

)
belongs to L and satisfies ‖v‖ = 1. As an example, L is shown in Figure 5 when a = 1.

Proof. Since ‖A1‖2 = ‖A2‖2 = a2 + 1
2

(
1 +
√

1 + 4a2
)
> 1, we cannot apply directly the

previous proposition. Thus we have to consider the normalized matrices A′i = 1
dAi with

d = ‖A1‖ = ‖A2‖. Notice that we can show here that d = σM (see [24]). Then, hypothesis
(i) is satisfied and one checks that the matrix

A′1A
′
2 =

1

a2 + 1
2

(
1 +
√

1 + 4a2
) [1 + a2 a

a a2

]
has eigenvalue 1. Hence, using now Proposition 3.9, the sequence (Hn

d (B(0, 1)))n converges
to the set

L =
⋂
n>0

Hn
d (B(0, 1))



RENORMALIZATION OF THE HUTCHINSON OPERATOR 21

Figure 5. The limit set L of (Hn
ρ (B(0, 1)))n where H is the Hutchinson operator associated

with the IFS {f1, f2}. Maps f1, f2 are given in Example 3.10 with parameter a = 1.

with ρ(L) = 1. Therefore (Hn
ρ (B(0, 1)))n converges to L by Proposition 3.1. Finally, it

follows from the proof of Proposition 3.9 that v, one of the unit eigenvectors associated with
1, belongs to L. �

Let us emphasize that the previous method may be applied generally when two matrices of
M are symmetric each other, or when one of them is symmetric. In particular we can use it
to study the example of Section 1.2.

Under the hypotheses of Proposition 3.9, the set L defined by (18) is an eigenset for H
associated with the eigenvalue σM = 1. It is straightforward to see that, as the ball B(0, 1),
the set L is symmetric and star-shaped with respect to the origin, i.e. if x ∈ L then rx ∈ L
for any r ∈ [−1, 1]. Such a property was also discussed in [3]. We will explore now this
structure focusing on the angular part of L. To obtain a precise description we only deal
with IFS’s in R2.

Let P = {(x, y) ∈ R2 : x > 0}\{0}. Every point (x, y) ∈ P may be written with polar
coordinates as (R cos θ,R sin θ) with R > 0 and θ ∈ [−π

2 ,
π
2 ]. Let K ∈ K, K 6= {0} and

symmetric with respect to the origin. Then K ∩ P 6= ∅ and we can define its set of slopes
SK ⊂ [−∞,∞] by

SK =
{

tan θ such that there exists (R cos θ,R sin θ) ∈ K ∩ P
}

with the convention tan(±π
2 ) = ±∞.

The following result provides a description of the set of slopes of L for particular IFS’s.

Proposition 3.11. Let p > 1 linear maps fi : R2 → R2 given by their canonical matrices

Ai =
[
ai bi
ci di

]
such that det(Ai) 6= 0 and fi(P) = P. Assume moreover that the assumptions

of Proposition 3.9 hold and let L as in (18). Then, its set of slopes SL is a non-empty

invariant set of the Hutchinson operator Ĥ =
⋃p
i=1 f̂i where f̂i : [−∞,∞] → [−∞,∞] is the

homographic function defined by

f̂i(z) =
diz + ci
biz + ai

.
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Proof. Notice that SL is well-defined. Writing L ∩ P = {(R cos θ,R sin θ) : R > 0, θ ∈ Θ} we
get SL = tan Θ. Observing that L ∩ P = H(L) ∩ P, we have SL = SH(L). We deduce now
from the hypothesis that

H(L) ∩ P =

p⋃
i=1

(
fi(L) ∩ P

)
=

p⋃
i=1

(
fi(L) ∩ fi(P)

)
=

p⋃
i=1

fi(L ∩ P) = H(L ∩ P).

Hence H(L) ∩ P is the set of the points fi(s) for all s ∈ L ∩ P and i ∈ {1, . . . , p}. Since

fi(s) = Ai

[
R cos θ

R sin θ

]
= R

[
ai cos θ + bi sin θ

ci cos θ + di sin θ

]
,

the set of slopes of H(L) is exactly the set of all the points of the form

ci cos θ + di sin θ

ai cos θ + bi sin θ
= f̂i(tan θ), θ ∈ Θ and i ∈ {1, . . . , p}.

Therefore, SH(L) =
⋃p
i=1 f̂i(tan Θ). The results follows. �

The angular structure of L is then known as soon as we can describe the invariant sets of

the Hutchinson operator Ĥ. This operator may have several invariant sets S, not necessarily

closed. However, there is a useful way to determine them. Indeed, if Ĥ is contractive then

every bounded invariant set S of Ĥ satisfies cl(S) = L̂ where L̂ is the attractor of Ĥ. It is
possible to determine such attractors of IFS made up with homographic functions (see for
example [12] page 136). Notice that [−∞,∞] is always a compact set and then would be

an invariant set. Thus, it will be often necessary to consider a restriction of Ĥ to obtain a
contractive operator.

Example 3.12. Let us consider the IFS {f1, f2} where the fi : R2 → R2 are the linear maps
given by their canonical matrices

A1 =

[
1 0

0 a

]
and A2 =

 b

1− a
0

b
a b

1− a


with 0 < a < 1, 0 < b < 1 and a + b 6 1. Then, the sequence (Hn(B(0, 1)))n converges to
the set L given by (18). Its set of slopes satisfies cl(SL) = Γa if 0 < a < 1

2 and cl(SL) = [0, 1]

if 1
2 6 a 6 1 (see Figure 6 (a)). Moreover, if b = 1− a then SL = cl(SL) (see Figure 6 (b)).

Proof. One checks that all the hypothesis of both Propositions 3.9 and 3.11 are satisfied.

The set of slopes SL is then an invariant set of the operator Ĥ = f̂1 ∪ f̂2 where f̂1(z) = az

and f̂2(z) = az + (1 − a). Since ‖f1(0, y)‖ < 1 and ‖f2(0, y)‖ < 1 for all y 6= 0, one has

Span{(0, 1)} ∩ L = {0}. It follows that SL ⊂ R. Since Ĥ is contractive on KR one obtains
cl(S) = Γa if 0 < a < 1

2 and cl(S) = [0, 1] if 1
2 6 a < 1.

Assume now that b = 1 − a. To obtain a more precise description of the limit set L we
rather apply Theorem 3.7 with V = Span{(1, 0)} and W = Span{(0, 1)}. Let z0 = (x0, y0) ∈
B(0, 1). We have pV,W (z0) = (x0, 0). It follows that (Hn(B(0, 1)))n converges to the set

L = cl
(⋃

x0∈[−1,1](x0, 0) + L(x0)
)

where L(x0) is the attractor of the IFS {f̃1, f̃2} with, for

all w = (0, y) ∈W ,

f̃1(w) = f̃1(0, y) = (0, ay) and f̃2(w) = f̃2(0, y) = (0, ay + (1− a)x0).
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(a) cl(SL) = Γ 1
3

(b) SL = Γ 1
3

Figure 6. The limit set L of (Hn(B(0, 1)))n where H is the Hutchinson operator associated
with the IFS {f1, f2}. Maps f1, f2 are given in Example 3.12. In (a) parameters are a = b = 1

3

and the SL is dense in the triadic Cantor set. In (b) parameters are a = 1
3
, b = 2

3
and SL is

the triadic Cantor set.

By uniqueness, this attractor is L(x0) = (0, x0La) with La = Γa if a < 1
2 and La = [0, 1] if

a > 1
2 . The limit set is then

L = cl

( ⋃
x0∈[−1,1]

(x0, x0La)

)
and we directly see that SL = La. �

The fact that in Example 3.12 the set SL is not always the whole Cantor set Γa comes
from the function f2. When b 6= 1 − a, f2 is a contraction. Thus, all the orbits of points
z ∈ B(0, 1) associated with f2 infinitely many times correspond to a ‘slope’ s = tan θ for
which R = R(θ) = 0. These slopes are then not visible in the limit set.

4. Other renormalizations

We have renormalized the sets Hn(K0) by dividing them by their radius. As we mentioned in
the introduction, one usually rather uses the diameter to rescale a sequence of compact sets.
Thus, we can wonder what a such renormalization would yield. More generally, we want to
study in this section the iteration of more general operators Hϕ which will provide various
ways to approximate the solutions of the eigen-equation H(K) = dK. We keep using the
sequence (Kn)n but choosing a well-adapted operator according to the form of the matrices
Ai’s.

4.1. Renormalization with a size function.
We are interested in functions ϕ that describe the size of a compact set and the way it occupies
the space. Following the example of the radius function ρ, we will say that a function
ϕ : K → [0,+∞) is a size function if it is continuous with respect to dH, monotonic and
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homogeneous (see Section 1.3). For example, the max-radius function ρ∞ and the diameter
δ respectively defined on K by

ρ∞(K) = max
(x1,...,xD)∈K

{|xj | : 1 6 j 6 D} and δ(K) = max{‖x− y‖ : x, y ∈ K}

are two size functions.

We define an associated operator Hϕ in the same way as (3) setting

∀K ∈ K, Hϕ(K) =
1

ϕ(H(K))
H(K) (19)

and consider the Hϕ-orbit of some set K0 ∈ K. Let us keep all the notation of the previous
sections, easily adapted by replacing ρ with ϕ. In particular Kn = Hn

ϕ(K0) (see (5)) and

dn = ϕ
(⋃p

i=1 fi(Kn)
)

(see the first equality in (6)). We will assume that Kn is always
well-defined, i.e. ϕ(Kn) 6= 0.

We are still interested in the convergence of the sequence (Kn)n and the description of its
limit. The key-points are Theorem 2.1 and Lemma 3.1 which provide general conditions of
convergence. We summarize here the main results which still hold for any size functions.

Theorem 4.1. Let p > 1 affine maps fi : RD → RD of the form fi(x) = Aix+Bi.

(i) If (dn)n converges to d > λH , then (Kn)n converges to the attractor Ld and d satisfies
the inequality

ϕ({(d Id−A1)
−1B1, . . . , (d Id−Ap)−1Bp}) 6 1.

(ii) Assume that Bi = 0 for all i ∈ {1, . . . , p}. If (Hn(K0))n converges to a set L ∈ K
such that ϕ(L) 6= 0, then (Kn)n converges to K = 1

ϕ(L)L.

In particular, when all the fi’s are linear, the choice of ϕ is not important. Therefore, all the
results of Section 3 providing the convergence of the sequence (Hn(K0))n (e.g. Lemma 3.2,
Lemma 3.5, Theorem 3.7) and the description of its limit L (Proposition 3.11) may be used.
In case of convergence, the limit set K will only depend on ϕ through the scaling factor ϕ(L).

4.2. Renormalization with the max-radius function.
We consider here the size function ρ∞, which is nothing but the ‘radius function’ associated
with the usual maximum norm ‖·‖∞. In particular, Property (4), Lemma 2.2 and Proposition
2.3 still work mutatis mutandis. Therefore it should be possible to obtain a result similar
to Theorem 2.8. Since the Euclidean norm is isotropic we assumed in Theorem 2.8 the Ai’s
were homotheties. Here, the maximum norm allows us to deal with more general diagonal
matrices. However, many complicated particular situations may happen. For the sake of
simplicity, we only state a simpler result with an additional hypothesis avoiding these special
behaviors.

Proposition 4.2. Let p > 1 maps fi : RD → RD of the form fi(x) = Aix + Bi where Ai =
diag(ai,1, . . . , ai,D) is a diagonal matrix with non-negative entries and Bi = (bi,1, . . . , bi,D).
Let K0 ∈ K. Assume that

max
16i6p
16j6D

{|ai,jxj + bi,j | : x = (x1, . . . , xD) ∈ Hρ∞(K0)} > max
16i6p
16j6D

{
|ai,j |

}
. (20)

Then, the sequence (Hn
ρ∞(K0))n converges to Ld where d = limn→∞ dn.
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Proof. The proof is very similar to that of Theorem 2.8. First we claim that (dn)n>1 always
converges. Indeed, for all n > 1 we can find xn ∈ Kn, in ∈ {1, . . . , p} and jn ∈ {1, . . . , D}
such that dn = |ain,jnxn,jn + bin,jn |. Then, un = 1

dn
(Ainxn + Bin) satisfies un ∈ Kn+1 and

|un,jn | = 1. Since |xn,jn | 6 1 we obtain

dn+1 > max
16j6D

{|ain,jun,j + bin,j |} > max
16j6D

{|ain,jun,j + dnun,j | − |dnun,j − bin,j |}

> |ain,jnun,kn + dnun,jn | − |dnun,jn − bin,jn |
> (ain,jn + dn)|un,jn | − ain,jn |xn,jn |
> dn + ain,jn(1− |xn,jn |) > dn.

Hence, (dn)n>1 is increasing and bounded so it converges to a number d > 0. Notice that the
lhs of (20) is d1 and the rhs of (20) is λH . Thus one has d > d1 > λH and the result follows
from Theorem 2.1. �

4.3. Renormalization with the diameter function.
We consider now the diameter function δ. The situation is more complicated than the previous
ones, even if the matrices Ai’s are homotheties. The stability property (4) of ρ was a key-
point in the proof of Theorem 2.8 but unfortunately it is no longer satisfied. We will only
deal with the one dimensional case D = 1.

Proposition 4.3. Let p > 1 affine maps fi : R → R of the form fi(x) = αix + Bi with
αi > 0. Let us define the function

F (x) =

min
16i6p

{αix+Bi}

max
16i6p

{αi(x+ 1) +Bi} − min
16i6p

{αix+Bi}
.

Assume that the sequence (Fn(u))n starting at u = min(Hδ(K0)) converges to a number
c ∈ R. Then,

(i) (dn)n converges to d = max
16i6p

{αi(c+ 1) +Bi} − min
16i6p

{αic+Bi},

(ii) If d > max
16i6p

{αi} then (Hn
δ (K0))n converges to Ld whose convex hull is [c, c+ 1].

Proof. Let us write ch(Kn) = [an, an + 1] for any n > 0.
(i) Let d(x) = max16i6p{αi(x+ 1) + βi} −min16i6p{αix+ βi}. Since αi > 0 one checks that
dn = d(an) and an+1 = F (an) where F is given by (4.3). The result follows.
(ii) Since λH = max16i6p{αi} the result is obtained by applying Theorem 2.1. Finally, since
ch(Ld) = limn→∞ ch(Kn), we get the last part of the assertion. �

This Proposition gives a very simple and practical tool to prove the convergence of (Kn)n.
It is enough to study the orbits of F which is just a piecewise homographic function.

Example 4.4. Let us consider the IFS {f1, f2, f3} where the fi : R→ R are given by

f1(x) = 2x+ 1 , f2(x) = 3x− 4 and f3(x) = x+ 2 .

Then, for all K0 ∈ K, the sequence (Kn)n converges to the attractor Ld with d = 5 + 2
√

3.
In particular its convex hull is the interval [1−

√
3, 2−

√
3] (see Figure 7).

Proof. First we determine the function F . We obtain

F (x) =

(
3x− 4

7− 2x

)
1I(−∞,0](x)+

(
3x− 4

7− x

)
1I(0,3](x)+

(
x+ 2

x+ 1

)
1I(3,4](x)+

(
x+ 2

2x− 3

)
1I(4,+∞)(x).
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Figure 7. The limit set K obtained by renormalizing the IFS {f1, f2, f3} with the diameter
function δ. Maps f1, f2, f3 are given in Example 4.4. The limit set is a Cantor set.

The only invariant point of F is c = 1 −
√

3 and one checks that (Fn(u))n converges to
c for every u ∈ R. Thus (dn)n converges to d = f3(c + 1) − f2(c) = 5 + 2

√
3. Since

d > max{α1, α2, α3} = 5, the result follows from Proposition 4.3. �

Example 4.5. Let p > 1 affine maps fi : R → R of the form fi(x) = αx + Bi with α > 0
and B1 < · · · < Bp. Then, for all K0 ∈ K, the sequence (Kn)n converges to Ld with
d = α+ (Bp −B1).

Proof. We get

F (x) =
αx+B1

α+ (Bp −B1)
.

Thus F is a contraction, (an)n>1 converges to the invariant point c = B1
Bp−B1

and (dn)n>1
is constant to d = α + (Bp − B1). Since d > α = λH , the result follows from Proposition
4.3. �

We end this section with an example showing that (Kn)n may diverge even for very basic
affine maps fi’s. The convergence may depend on the starting set K0. Thus, it seems very
difficult to state a theorem as general as Theorem 2.8.

Example 4.6. Let us consider the IFS {f1, f2} where the fi : R→ R are given by

f1(x) = 2 and f2(x) = x+ 1.

Let K0 ∈ K. Then, the sequence (Kn)n converges if and only if the set ch(K0) takes one of
the following forms:

ch(K0) =


[
a0,

1+a0(1+
√
2)√

2

]
with

√
2−1√
2+1
6 a0 6 1,[

a0, 1 +
√

2
]

with 1 6 a0 6 1 +
√

2,[√
2−1√
2+1

, b0
]

with
√
2−1√
2+1
6 b0 6 1.

In each case, the attractor is Ld with d =
√

2. In all other cases, the sequence (Kn)n diverges.
For example, if K0 = {2} then (Kn)n has two different accumulation points:

K = {3} ∪
{

3−
(
1
2

)n
: n > 0

}
and K ′ = {2} ∪

{
2−

(
1
2

)n
: n > 0

}
.

Proof. First one has

F (x) =

(
x+ 1

1− x

)
1I(−∞,0](x) + (x+ 1)1I(0,1](x) +

(
2

x

)
1I(1,+∞)(x).

One checks that the unique invariant point of F is
√

2 and that it is a repulsive point.
Thus, the sequence (Fn(u))n converges if and only if u =

√
2. If ch(K0) = [a0, b0] then

easy computations lead to the three possible cases given above. In these cases we obtain
an = dn =

√
2 for all n > 1. Since

√
2 > λH = 1, the convergence of (Kn)n follows from

Proposition 4.3.
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Assume now that K0 = {2}. Then one proves by induction that, for all m > 1,

K2m−1 = {3} ∪
{

3−
(
1
2

)n
: 0 6 n 6 m− 1

}
and K2m = {2} ∪

{
2−

(
1
2

)n
: 0 6 n 6 m

}
.

The sequences (K2m−1)m and (K2m)m are bounded and increasing so they converge to K
and K ′ respectively. �
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