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Abstract. HTML boilerplate code is acting on webpages as presenta-
tion directives for a browser to display data to a human end user. For the
machine, our community made tremenduous efforts to provide querying
endpoints using consensual schemas, protocols, and principles since the
avent of the Linked Data paradigm. These data lifting efforts have been
the primary materials for bootstraping the Web of data. Data lifting
usually involves an original data structure from which the semantic ar-
chitect has to produce a mapper to RDF vocabularies. Less efforts are
made in order to lift data produced by a Web mining process, due to
the difficulty to provide an efficient and scalable solution. Nonetheless,
the Web of documents is mainly composed of natural language twisted
in HTML boilerplate code, and few data schemas can be mapped into
RDF. In this paper, we present CommentsLifter, a system that is able
to lift SIOC data from user-generated comments in the Web 2.0.

Keywords: Data extraction, Frequent subtree mining, users comments

1 Introduction

The SIOC ontology [4] has been defined to represent user social interaction on
the web. It aims at interconnecting online communities. Nowadays SIOC data are
mostly produced by exporters !. These exporters are plugins to existing frame-
works such as blog platforms (Wordpress, DotClear , ...), content management
systems (Drupal) and bulletin boards. Unfortunately, these exporters are not yet
default installation plugins for these frameworks. Therefore few administrators
enable them, as a consequence the SIOC data production remains the excep-
tion.2. There exists also numerous closed source platforms that supports online
communities, among them are the online newspapers that allows commenting
on article, Q&A systems. This subset of the user generated content on the web
will never be unlocked using exporters.

In this paper we present CommentsLifter, a web-mining approach that aims
at extracting users’ comments directly from HTML pages, in order to circumvent

! http://sioc-project.org/exporters
2 http://wuw.w3.org/wiki/SI0C/EnabledSites
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the exporter issue. The comments are identified in webpages by mining frequent
induced subtrees from the DOM , and using heuristics allow to discriminate the
different field of the comment (username, date, ...). This approach does not
require any a priori knowledge of the webpage. We empirically evaluated our
approach and obtained very good results.

The paper is structured as following. The next section presents related works
on both structuring data into semantic web formats and web mining approaches.
Section 3 presents a formalisation of the problem and recalls some theoretical tree
mining results. Section 4 details the different steps of CommentsLifter, followed
by experimental results. Finally, section 6 concludes.

2 Related works

Converting existing format of data into RDF is a cornerstone in the success of
the semantic web. The W3C maintains a list of available RDF'izer on its website
3. Input data can be either structured or unstructured. In the former case, if
the semantics of the data can be extracted, then the conversion can take place
without human intervention [12], otherwise the user needs to manually specifiy
the semantic of the data. Sesame contains an APT called SAIL (Storage And
Inference Layer) that can be used to wrap existing data format into RDF. The
BIO2RDF project [2] uses this API to build bioinformatics knowledge systems.
Van Assem presented a method for converting Thesauri to RDF/OWL [1] that
has been succesfully applied for biological databases [2]. In order to convert
mailing list archive into a RDF format, the authors of [10] developed SWAML,
a python script that reads a collection of messages in mailbox and generates a
RDF description based on the SIOC ontology. Since the input data are already
structured (i.e. emails follow the RFC 4155) the conversion is straightforward.
On the other side, there exist several approaches that aims at automatically or
semi-automatically adressing the case where user intervention is usually required.
Text-To-Onto [17] is a framework to learn ontology from text using text mining
techniques as well as its successor Text20nto [8]. However none of these papers
provide a sound evaluation of the quality of learnt ontologies. This is due to
the very nature of ontology modeling in which no ground truth can be assessed,
there exist as many model as one could imagine for describing the same thing. In
[3], Berendt details relationships between web mining and semantic web mining.
The different cases (ontology learning, mapping, mining the semantic web, ...)
are detailed. From this categorization, the purpose of our research falls into the
category of instance mining, which focuses on populating instances for existing
semantics. For this purpose, learning techniques have been proposed for web scale
extraction with a few semantic concepts [9] and presented promising results at
the time of the publication. Textrunner [20] also learns extractor to perform web-
scale information extraction, presenting good precision but a very low recall.
Concerning non learning techniques, automatic modelling of user profiles has

3 http://www.w3.org/wiki/ConverterToRdf
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been performed in [11], using term recognition and OpenCalais for named entity
recognition.

Several techniques have been developed for web extraction. In [5], the authors
simulate how a user visually understands Web layout structure. [15] divided
the page based on the type of tags. Many recent research works exploit text
density to extract content on pages [14,19,13]. This approach presents good
results regarding article content extraction. In order to do so, the boilerpipe
library?, based on the work from Kohlschutter [14,13] is widely used. For a
more detailed survey on the different Web data extraction we encourage the
reader to refer to [6]. Among other techniques DEPTA [22] (an extension of
works done in [16]) presents an hybrid approach of visual and tree analysis. It
uses a tag tree alignment algorithm combined with visual information. In a first
step DEPTA processes the page using a rendering engine (Internet Explorer)
to get the boundaries information of each HTML element. Then the algorithm
detects rectangles that are contained in another rectangle, and thus build a tag
tree in which the parent relationships indicates a containment in the rendered
page. DEPTA then uses a string edit distance to cluster similar nodes into region.
Since each data region in a page contains multiple data records, extracted tag
trees must be aligned to produce a coherent database table. A tree edit distance
(like in [18]) is then defined and used to merge trees. However DEPTA is not able
to extract nested comments. We will use a different approach, that only requires
DOM parsing technique and that is suitable for analyzing huge amount of pages.
Our approach is based on a theoretical tree mining background, presented in the
next section.

3 Problem Definition

The purpose of our work is to provide a solution for the leverage of Linked Data
using the SIOC schema from user generated comments on webpages, without any
a priori knowledge on the webpage. Our main assumption is that comments on a
given webpage (even at domain scale) are embedded in the same HTML pattern.
This assumption is well fulfilled in the practice since comments are usually stored
in a relational database and exposed into HTML after an automatic processing.
Therefore our goal is to automatically determine the HTML pattern that is used
to expose the comments and then to identify the relevant information in the
content to fill SIOC instances.

Basically a comment is a sioc:Post contained in a sioc:Forum container. We
identified the following subset of the core-ontology properties of sioc:Post to be
relevant for the extraction (we marked with * the mandatory properties and
relationships) :

stoc:content® : text-only representation of the content
stoc:topic: title of the comment
dcterms:created: creation date

4 http://code.google.com/p/boilerpipe/
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and relationships :

stoc:has_creator*® : points to a sioc:UserAccount which is the resource
stoc:has_container* : indicates a sioc:Container object
dcterms:title : text representation of the title

dcterms:created : date of creation of the resource.

stoc:reply_to : links to a sioc:Post item

stoc:has_reply : links to sioc:Post items

The sioc: Container pointed by sioc:has_container can be from different types
in our case. We consider extraction from user reviews (sioct:ReviewArea), posts
on forum (sioc:Forum), comments from blogs (sioct: Weblog), Q&A answers
(sioct:) or generally for newspaper discussion (sioc:Thread). However, distin-
guishing these differents subclasses of sioc:Container would require classifica-
tion from the webpages we intend to perform extraction on. This is out of the
scope of our paper, we will therefore uniformally consider the container as an
instance of sioc:Container. Similarly there exists subclasses of a sioc:Post for
each container. As for the container, our algorithm will output sioc:Post items.

To summarize, our problem is the following : in order to generate SIOC
data from raw HTML, we must identify the different items (sioc:Post) and their
conversational relationships (sioc:reply_to and sioc:has_reply). For each item we
must identify the user (sioc: UserAccount), the content of the post (sioc:content)
and when possible the date and the title.

3.1 Theory recall : tree mining

o odfe do ago

OO
e o (b) (c) (d)

Fig. 1. Different types of subtree from tree (a) : bottom-up subtree (b) ; induced
subtree (c) ; embedded subtree (d)

Tree mining deals with the task of finding pattern of interest in single tree
(FREQT or AMIOT) or in forests [21]. The patterns to be extracted, as well
as the trees they should be extracted from, may differ in nature. Trees are
pigeonholed along three criteria: rooted/unrooted, ordered/unordered and la-
beled/unlabeled. A tree is called rooted if there exists a node that has been
designated the root, in which case the tree may be traversed in two directions:
towards and away from the root. A tree is said to be ordered if an ordering for
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the children of each vertex has been defined. Finally a tree is a labeled tree if
each node is given a unique label. For our concern, i.e. tree mining using DOM
trees, we will consider the case of rooted labeled ordered trees.

The patterns to be mined are subtrees. There are different types of subtrees
for there exists different types of trees. We present in the following the most
common types of subtrees (from [7], which provides a very detailed review on
frequent subtree mining). For each case, we consider a rooted tree T' with vertex
set V and edge set F and a subtree 7" with respectively V' its vertex set and
E’ its edge set. The main types of subtrees are as follows.

Bottom-up subtree T” is a bottom-up subtree from T iff : V! C V, E' C E;
for a vertex v € V, if v € V'’ then all descendants of v must be in V' ;
the ordering of the siblings must be preserved in the subtree. Intuitively a
bottom-up subtree T' can be obtained by taking a vertex from V together
will all its descendants and the corresponding edges.

Induced subtree 1" is an induced subtree from T iff : V! C V, B C E; for
a vertex v € V, the left-to-right ordering of the siblings must be preserved
in the subtree, i.e. it should be subordering of the corresponding vertices in
T. Intuitively a induced subtree T’ can be obtained by repeatedly removing
leafs from T

Embedded subtree 1" is an embedded subtree from T iff : E' C E, (v1,vq) €
E’ where vy is the parent of vo in T” only if v; is ancestor of vy in T'. Intu-
itively, as an embedded subtree, 77 must not break the ancestor-descendant
relationship among the vertices of T

Figure 1 illustrates these three types of subtrees from a given data tree
through three different examples. To better understand the difference between
the subtrees, one can say that bottom-up subtrees are complete subtrees while
inducted subtrees allow to remove nodes horizontally in the subtree and finally
embedded subtrees allow both horizontal and vertical removals. We have the fol-
lowing relationship: bottom-up subtree C induced subtree C embedded subtree.
Following the same order, algorithms’ complexity and running time vary with
the type of subtree one wants to extract. Therefore it is desirable to well identify
which type of subtree we are looking for.

3.2 Frequent Subtree Mining

In the case of product listing extraction, the goal is to extract frequent subtrees
that are identical in the page. For this purpose, a bottom-up subtree mining
objective is sufficient. For selecting a feature among mined items, for example
title and price, a filter on the leaf nodes can be applied. For the case of comments
extraction, the patterns can be nested. For instance lets assume that the pattern
that we are looking for is [a[p; br; p; div]]. If we encounter an answer to a com-
ment, i.e. nested instances in the pattern, the tag tree for the comment and its
answer could be as follows : [a[p; br; p; div; [a[p; br; p; div]]]]. In the case of a single
comment we will encounter our pattern [a[p; br;p; div]]. We observe that nodes
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can be skipped horizontally along with their descendants, which eliminates the
bottom-up subtree type. We observed empirically that instances are nested in the
way we described previously : the direct parenting relation is preserved. Conse-
quently induced subtree is a sufficient type of subtree for our purpose. Embedded
subtree mining could also be used, however since the algorithms complexity grow
with the complexity of the pattern to mine, induced subtree mining is definitely
more appropriate.The major advantage of subtree mining over existing works is
that it provides a mine once extract many approach. For mining a whole website,
one would need to mine the pattern from only one webpage and could later ex-
tract data by simple pattern matching on other pages, thus saving large amount
of computation time. In the next section, we present SIOCizer, our approach to
comments extraction based on frequent subtree mining.

4 CommentsLifter

We now start the description of CommentsLifter. This section presents the dif-
ferent steps of our algorithm. The underlying idea of CommentsLifter is to use
simple observations on Web pages structure to reduce the candidate set genera-
tion. This allows to minimize the error rate while selecting the winning pattern,
and to contribute to the runtime performance optimization objective. To extract
comments from a Web page, CommentsLifter uses seven steps: Document prepro-
cessing, Frequent subtrees extraction, Clustering, Merging, Pattern expansion,
Winner selection, Field extraction, Data extraction. In the next subsections we
detail the process followed in each step of our algorithm.

4.1 Preprocessing

Recommendations issued by the W3C aim at specifying the languages of the
World Wide Web, among other various versions of HTML and CSS. While pages
following these recommendations produces clean DOM trees, they represent only
4.13 % of the Web pages®. The remaining pages are made of wrongly formatted
HTML code that is often referred to as ”tag soup”%. Due to the large portion that
these pages represent, Web browser engines are able to handle malformed HTML
tags, improperly nested elements, and other common mistakes. In our algorithm,
the first step involves to convert any input HTML document (malformed or not)
and to output a well-formed document as DOM tree. For this purpose, any
dedicated library (Jsoup’, Jtidy®) or browser engine can be used.

® http://arstechnica.com/Web/news,/2008/10/opera-study-only-4-13-of-the-Web-is-
standards-compliant.ars

S http://en.wikipedia.org/wiki/Tag_soup

" http://jsoup.org/

8 http://jtidy.sourceforge.net/
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4.2 Frequent subtrees extraction

The next step of our algorithm consists in the generation of a first candidate set.
For this purpose we extract frequent depth-two trees from the DOM and store
them in a cardinality map (an example is given in Table 1). The basic of our
approach is to select patterns with a depth of two that we will later expand into
largest patterns if possible (empirical results in Section 5 show that the average
depth of comment pattern is 4.58). For this purpose, a tag tree is generated from
the preprocessed DOM. CommentsLifter traverses the tree in a top down fashion
and stores the encountered trees of size two (each node that has children, along
with its children). The results are sorted, as presented in Table 1. Candidates
with less than two occurrences are discarded, since we assume that there are at
least two comments. The same assumption is made for instance by [22]. For each
pattern occurrence, the encountered instance is stored in a multimap(in fact we
only store the label of the parent node).

Count 13 12 10 8
Tree |div[a;br;i;p] [ul[li;li]|div]p;p]|div]p;p;p]
Table 1. Example of two depth candidates.

At this stage our candidate set is initialized and necessarily contains the
instances of comments we are looking for.

4.3 Clustering

Comments in a Web page appears in a continuous manner, it is very unlikely that
comments are stored in different branches of the DOM tree. We did not encounter
the case of split comments in different subtrees during our experiments. In fact,
comments are organized in a tree structure, where the beginning of the comments
block is the root of the tree (node with label 0, not depicted on the figure). Since
comments are located in the same subtree, we process to a clustering phase of
the occurrences for each pattern.

In this step, we aim at clustering co-located instances of the same pattern. In
other words, the algorithm builds the couples (pattern, Instances), where each
pattern is associated with a set of instances matching it that are located in the
same subtree and close to each other. Consequently, one pattern can be associ-
ated multiple times with a unique set of instances, whose member is distinct from
any other member of another associated set to the pattern. This means that each
couple (pattern, Instances) is splitted into different (pattern, Instances) where
the instances in Instances do belong to the same subtree in the DOM. The basic
of our algorithm is a distance-based clustering.For each given pattern, the algo-
rithm sorts its instances along their depth in the tree. At each depth, we check
for each instance if it has a parent in the previously found (pattern, Instances).
For the remaining instances, we cluster them using a classical node distance in
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trees : d(a,b) € N is the length of the shortest path between the nodes a and
b. After building the set of (pattern, Instances), we remove elements where the
cardinality of instances is equal to one.

For example, running our algorithm on the tree provided by Figure 2 with the
pattern wl[l4; I3] would produce two couples (pattern,instances) that are depicted
with dotted and dashed boxes in the same figure.

div
a div
ul ul T R
/\ /\ | /\ |
. . ‘ .
li li li li L 7117 - 11 N

Fig. 2. Example output for section 4.3 with the pattern ul[li; 7]

At the end of this step, CommentMiner holds the set of couples (pattern, Instances)
that matches a pattern to a set of co-located instances in the DOM tree. In the
next step, we try to identify mergeable patterns from this data structure.

4.4 Merging

HTML patterns that contains comments often have a depth greater than two
(see Section 5 for more details). Consequently our candidate set may at this step
contain couple of (pattern, Instances) that in fact do belong to the same global
pattern, that we did not discover yet because the pattern expansion process will
occur later. Instead of discovering the same pattern from different candidates,
we aim at merging these candidates beforehand for optimization.

For this purpose we perform a pairwise comparison between the sets of in-
stances and we process a merge in the case where every element s of set 57 is
topped by an element in the set Ss. An element is topped by another if the
latter is a parent of the former. If a set of instances is topped by another set, we
discard this set and restart the process until no further updates to the candidate
set are performed.

Algorithm 1 presents this merging process. After this step, the candidate set
is again drastically pruned since we eliminated all potentially duplicate patterns
for the expansion phase. This process, together with the previous clustering
process, are the key phases of our algorithm since they discard both duplicate
and irrelevant candidates.
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Algorithm 1: MergePatterns : Merge similar pattern

Data: A collection of couple (Pattern,Instances) Input where all patterns are

different,

minDepth the mininum depth of the instances in the DOM tree
Result: A collection Candidates of (Pattern,Instances) where similar couples

have been merged

recursion < false;
Candidates < (;
for i:0...Input.size do

end

for j:i...Input.size do

//Depth of the highest common element ;
commonDepth < depth(HighestCommon(Input[i].Instances,;
Input[j].Instances));
//Save useless computation ;
if commonDepth < minDepth then
‘ continue ;
end
Small + setWithLessInstances(Input[i], Input[j]);
Large <+ setWithMorelnstances(Input[i], Input[j]);
if Vk € Small.Instances, 3l € Large.Instances,isParentO f(l, k) then
Candidates + Input \ Small;
//Restart the merging process;
MergePatterns(Candidates);
//Cut the current call;
break;;
else Candidates «+ Candidates U Large U Small

end

return Candidates;
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4.5 Pattern expansion

Since the candidate set contains simple pattern (i.e. of depth two), we process
a pattern expansion to discover the fully matching patterns. Patterns may be
expanded in both direction, towards the top and the bottom of the tree.

For each candidate (pattern, Instances), we distinguish two cases. In the first
case every instance is at the same depth in the tree, this is the case of product
listing extraction that we call flat case. This is the case of bottom-up subtree
mining (see Figure 1). The second case also called nested case is the one where
instances belong to the same subtree but at different depths, this is the case of
induced subtrees in Figure 1 . Top expansion is straightforward, we check if the
type of the parent node (i.e. HTML markup tags) for every instance is the same,
in this case we expand the pattern with the new parent node and update the
instances consequently. This process is executed until all the instances do not
share the same tag as parent node or if the same node (in sense of label in the
tree, not HTML markup tag) is the parent of all instances. This process is the
same for both nested and flat cases.

div

- - - - .7 - = - - - .7 = 1

| div | div |

| /\ |1 /\

| [l |

| ul a Il ul a | div
| (| |
VA o ]
| i it (| 1 1 |

s RO O S <SS B R Sttt SO |

Fig. 3. Pattern expansion process, top expansion until the same node (top div node) is
shared by both instances, then bottom expansion for induced subtree (the most right
div is skipped)

Once a pattern is expanded in the top direction, the bottom expansion takes
places. This bottom expansion in the flat case, similarly to the top expansion is
simple since top-down subtrees are easy to extract. One just needs to traverse
the instances trees in a top-down most left direction, looking for nodes that
are shared by all instances. Once a node is not present in every instance the
algorithm uses backtracking to select the next sibling, and then to continue its
process.

However the nested case is not trivial since we look for embedded subtrees.
Standard algorithms such as AMIOT and FREQT are dedicated to this task, but
as we mentioned in section 3.2 they performed poorly on the full Web page, either
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the running was excessively long (some minutes) or the program ended with an
exception. To make an efficient use of these algorithms, we take advantage of
specificities of comments extraction. Apart from the aforementioned issues, the
biggest problem we encountered using AMIOT or FREQT was that we were
unable to adaptatively select the support (in fact, a percentage) for a Web page.
However in our pattern expansion case, we know how much instances are present
for each couple (pattern,Instances). Thus, we performed modification in the
algorithms (see Implementation in section 5.1 for further details) to discard
candidates pattern not on a minimum support base, but on a strict occurrence
equality base. Finally, instead of using the complete Web page as the data tree,
we construct a tree by adding all the instances in a tree. More precisely since the
instances are stored using their top nodes, we build the data tree by adding the
subtrees under the instances top nodes as children of the root node. Therefore,
our data tree contains on ly the relevant instances. Consequently the set of
candidates pattern is drastically reduced, compared with the use of the whole
DOM page. To drive AMIOT in the right direction, the candidate pattern set is
initialized with the current depth-two pattern, thus avoiding useless candidate
generation for the first stage. Figure 3 depicts this expansion process . In this
figure we present the instances as they appear in the DOM tree. Our starting
pattern is wl[li;li], and its instances are represented within the dotted boxes.
Both instances have a div node with a different label as parent, consequently
the pattern is expanded to the top : div[ul[li;li]]. Next, both instances again
have a div node as parent but in this case this is the same node. The top
expansion process finishes. For the bottom expansion, we consider this subtree
as the data tree. AMIOT (resp. FREQT) performs a left to right expansion
that adds the node a to the pattern: div[ul[li;li]; a]. The right most div node
is discarded since it does not belong the left instance (the occurrence is one
whereas the algorithms expects two). Then AMIOT adds the node p to the
pattern that becomes div[ul[li; li]; a[p]]. The figure does not show the part under
the right most div, in this part we could find for example another instance of
div[ul[li; 1i]; a[p]], resulting in a nested comment.

4.6 Winner selection

Recurring structures competing with the comments pattern in the candidate
set are usually menu elements, links to other articles. In [13,14], Kohlschiitter
developed a densitometric approach based on simple text features that presents
excellent results (Fy—Score : 95 %) for news article boilerplate removal. User
generated comments also differentiate from menu elements on their text features.
Comments are from different text lengths, the link density is low since comments
are not part of a link as a difference with menu items. We developed simple
heuristics, based on our observations, to discard irrelevant candidates and to
rank the remaining candidates.

Our experimentation showed that instances with a link density greater than
0.5 (Kohlschutter found 0.33 for news article) are always boilerplate. Short com-
ments in very complex HTML boilerplate patterns can produce instances with a
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quite high link density. We empirically observed that links are on the username
or on its avatar and links to a profile page. Consequently we discard candidates
where the average link density is above 0.5.

For the remaining candidates their score is given by the following formula:

Seore(p, 1) = Tgi(D) x | —— >~ Tgt(T) ~ Igt(1)’ (1)

The above formula computes the average text length times its standard de-
viation. This heuristic promotes candidates where the instances have longer
text length with variable length. Finally we did not use heuristics based on
a lower bound of words (as in [13,14]). Once again comments extraction dif-
fers from traditional boilerplate removal since some comments are sometimes
just one word (e.g. lol, +1, first) or there may be longer than the article they
are commenting. Therefore the standard deviation is very useful for eliminating
menu items where the text length is often very close among their instances. The
(pattern, Instances) couple with the highest score is promoted as the winner.
At this step, the algorithm output the tree of instances, i.e. we have the struc-
ture of the conversation, but we need to further structure the conversation by
identifying the different fields in the pattern.

4.7 Structuring the content

Once the HTML pattern containing comments has been selected, the next step
of our algorithm consists in extracting the related SIOC fields as we described
in section 3. Two fields are always present in a comment : the username and the
content of the comment. From our observations on various website (online press,
Q&A, blogs, reviews), two other fields appear often. Firstly the date when the
comment has been posted occur in 97.95 % of the cases (See Table 2). Comments
less often have a title, but the percentage we measured ( 24.48 %) remains high
enough to be of interest. We voluntarily skipped the extraction of rare fields
(vote on comments, account creation date) because of their few occurrences
and the fact that they complicate the whole fields identification process. From
our observations, we noticed that content and title are always contained into
their own HTML markup tags, i.e. it is very unlikely to see the title and the
content in the same div. However we noticed that username and date often occur
between the same markup tag, for example we often encountered comments fields
such as <div>John, May 25, 2012 at 5:00 p.m</div>. Therefore we apply
the following procedures : first, identifying the date field within the pattern. We
store the location of the date in the pattern and remove dates in every instances.
For instance, the previous example will become<div>John</div>. At this point
we are sure that the fields we are looking for will be in distinct nodes of the
pattern.
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Date parsing Date parsing library such as JodaTime® and JChronic!® perform
well on extracting date from messy data. These libraries takes a String as input
and return a Date object. However they do not offer the feature of returning the
original text without the substring containing the date. Therefore we developed
our library, using features and heuristics from both of the above mentioned
libraries, that offers the date string removal feature.

Fields selection Our heuristic is based again on simple observations. We know
that every comment contains at least a username and a content. Date and title
being optional. For each leaf of our pattern, we compute the following measures
over its instances : percentage of date found, average text length, standard devi-
ation of text length, text entropy and average word count, standard deviation on
word count. Using these values, we build two candidate sets, the first one for the
date the other one for title, content and username. We distinguish these fields
using the fact that title, content and username are unstructured text, however
dates have a particular structure (containing year, days, ...).

A node in the pattern is a candidate for the date field if its percentage of date
found is over 0.7 (to take into account the fact that date extraction is not perfect),
has more than two words and has a coeflicient of variation on the word count
that is inferior to 0.2. This latter condition requires that the number of words
is very close from one instance to another. We did not set value to zero to avoid
discarding fields where the date has a variable length, for example one hour
ago and yesterday. From these candidates, we pick the field with the highest
entropy in order to discard constant fields that may have been recognized as a
date. However if the set is empty, then no date are specified for the comments,
practically this happens very rarely.

The second candidate set should contain only nodes that instances own tex-
tual data. For this purpose we discard the nodes in the pattern where the vari-
ation of text entropy is equal to zero (constant text in every instance). Since we
know that the node containing the content must be present within this set, we
aim at identifying this field in the first place. Luckily the content is very simple
to identify since it contains the most words, has a very variable length and word
count. In the practice, selecting the node having the highest word count average
is sufficient. Once the content has been removed from this candidate set, we first
check its size. If the size is equal to one, the remaining candidate matches the
username. In the case where two candidates are present, we have to distinguish
between username and title. Username are very short names, usually one or two
words, and is then in average shorter than the title. If two fields are present, the
shorter is identified as being the username and the longest is then the title.

9 http://joda-time.sourceforge.net/
10 https://github.com/samtingleff/jchronic
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Ground|True False
Pages|Truth |Positive|Positive
Global| 100 2323 2121 153
Flat 7 1837 1674 125
Nested| 23 486 447 26

Precision| Recall i

Global| 93,3 % [91,3 % |92,3 %
Flat 93.1 % |91.1 %|92.1 %

Nested| 94.5 % (91.97 %|93.22 %

Table 2. Evaluation : steps one to six

Content|Username|Date|Title
Occurrence (%) 100 100 97.59(24.48
Correct extraction (%)| 100 87.75 |83.67|81.63

Table 3. Evaluation, step seven : field identification

5 Mining experiments

This section presents the evaluation protocol of CommentsLifter as well as exper-
iment’s results. We first detail the experimental setup, which is a bit particuliar
for comments extraction due to the large use of AJAX. Finally we present global
and detailed results for both flat and nested cases.

5.1 Setup

Many Web pages handle comments using AJAX, consequently downloading raw
HTML along manual ground truth construction is not sufficient for building the
dataset. To circumvent this issue we developed two components:

Firefox Extension We implemented a Firefox extension that sends the current
DOM (after browser-side Javascript processing) to a Web server.

‘Web Server The server receives the DOM from the browser through a POST
request on a servlet, then runs CommentsLifter and presents an evaluation
form along with the extracted comments. The user is asked to evaluate the
pertinence of the extraction. We distinguish three cases for the result. We
used Jena!! to generate the SIOC output.

5.2 Evaluation

The results obtained from evaluation are given in Table 2 and Table 3. Table
2 presents extraction results of the pattern mining part (steps 1 to 6 of the

" http://jena.apache.org/
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algorithm) whereas Table 3 presents the field identification results (step 7). The
sixth first steps of the algorithm presents very good results, with a global F} score
over 92%. Concerning field identification we first present the occurrence of the
different fields over our dataset. Username and content are always present, while
the date is not far from being present in every comment. However titles are to be
found in one quarter of the comments. The evaluation accords to the heuristics
we describe in section 4.7. Content extraction is a straightforward task since it is
easy to "measure” differences with other fields, our algorithm perform perfectly
at this task. Date parsing is no easy task, however our algorithm still performs
well with an identification rate of 83.67 %. However it is to note that while the
rest of the process is language agnostic, date parsing libraries are designed to
work with western languages (english, german, french, spanish, ...) but may fail
with other languages, especially with non latin alphabet.

6 Conclusions and future work

In this paper, we presented CommentsLifter an algorithm that extracts users’
comments and output SIOC data. Our algorithm combines mining induced sub-
trees from the DOM with simple yet robust heuristics to select the pattern
containing the comment as well as for identifying the several fields within the
pattern. The empirical evaluation presents very good results, for both extraction
and field identification. We successfully extracted comments from various types
of Web sites, without a priori knowledge, such as online newspapers, forum, user
reviews, blogs and we were able to reconstruct the conversations.

Further research will focus on refining the category of the extracted container,
in order to determine wether the discussion takes into a forum, Q&A, blog, review
area.
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