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introduction

The following intriguing result is usually referred to as the Blum-Hanson theorem (see [START_REF] Blum | On the mean ergodic theorem for subsequences[END_REF] and [START_REF] Jones | A note on the Blum-Hanson theorem[END_REF]): if T is a linear operator on a Hilbert space H with }T} ¤ 1, and if x H is such that T n x Ñ 0 weakly as n Ñ V, then the sequence pT n xq is"strongly mixing", which means that every subsequence of pT n xq converges to 0 in the Cesáro sense; in other words, lim

KÑV 1 K K i1
T n i x 0 for any increasing sequence of integers pn i q. (The terminology "strongly mixing" comes from [START_REF] Berend | Mixing sequences in Hilbert spaces[END_REF]).

Accordingly, a Banach space X is said to have the Blum-Hanson property if the Blum-Hanson theorem holds true on X; that is, if T is linear operator on X such that }T} ¤ 1, then every weakly null T -orbit is strongly mixing. For example, it was shown rather recently in [START_REF] Müller | Quasi-similarity of power-bounded operators and Blum-Hanson property[END_REF] that p pNq has the Blum-Hanson property for any p r1, Vq. On the other hand, it is known since [START_REF] Akcoglu | A couterexample to Blum-Hanson theorem in general spaces[END_REF] that CpT 2 q, the space of all continuous real-valued functions on the torus T 2 , does not have this property. Further results and references can be found in [START_REF] Lefèvre | Smoothness, asymptotic smoothness and the Blum-Hanson property[END_REF].

In this short note, we address the Blum-Hanson property for CpKq spaces. Our main result is the following: Theorem 1.1. Let K be a metrizable compact space. Then CpKq has the Blum-Hanson property if and only if K has finitely many accumulation points.

This will be proved in the next Section. In Section 3, we obtain in much the same way one nonmetrizable result, namely that the space V pNq CpβNq fails the Blum-Hanson property. Our two results can be put together to get a single theorem on the Blum-Hanson property for spaces of bounded continuous functions, which is done in Section 4. We conclude the paper by stating explicitely the "general principle" underlying our proofs. For the "if" part of the proof, we will make use of a result from [START_REF] Lefèvre | Smoothness, asymptotic smoothness and the Blum-Hanson property[END_REF] which is stated as Lemma 2.1 below.

Let X be a Banach space. For any x X and t R , set r X pt, xq : sup

" lim sup nÑV }x ty n } * ,
where the supremum is taken over all weakly null sequences py n q X with }y n } ¤ 1. Since r X pt, xq is 1-Lipschitz with respect to t, the quantity r X pt, xq ¡ t is nonincreasing and hence it has a limit as t Ñ V, possibly equal to ¡V. Actually, this limit is nonnegative if X does not have the Schur property, i.e. there is at least one weakly null sequence in X which is not norm null.

For the needs of the present paper only, we shall say that the Banach space X has property (P) if, for every weakly null sequence px k q X, it holds that (1) lim kÑV lim tÑV pr X pt, x k q ¡ tq 0 .

The result we need is the following; for the proof, see the Remark just after Theorem 2.1 in [START_REF] Lefèvre | Smoothness, asymptotic smoothness and the Blum-Hanson property[END_REF].

Lemma 2.1. Property (P) implies the Blum-Hanson property.

An extreme example of a space with property (P) is X : c 0 pNq. Indeed, if x c 0 and if pz n q is a weakly null sequence in c 0 , then lim sup

nÑV }x z n } V maxp}x} V , lim sup }z n } V q .
It follows that (¦) r c 0 pt, xq maxp}x}, tq , so that r c 0 pt, xq ¡ t 0 whenever t ¥ }x}, for any x c 0 .

Let us also note the following useful stability property, whose proof is straightforward.

Remark 2.2. If X 1 , . . . , X N are Banach spaces with property (P), then the V direct sum X 1 ¤ ¤ ¤ X N also has (P).

We can now start the proof of theorem 1.1.

Proof of Theorem 1.1. Let us denote by K I the set of all accumulation points of K. We may assume that K I $ r, since otherwise K is finite and hence CpKq is finite-dimensional.

(a) Assume first that K I is finite say K I ta 1 , . . . , a N u, and let us show that X : CpKq has the Blum-Hanson property.

One may write K K 1 ¤ ¤ ¤K N , where the K i are pairwise disjoint compact sets and K I i ta i u. Then CpKq is isometric to the V direct sum CpK 1 q ¤ ¤ ¤ CpK N q, and each CpK i q is isometric to the space c of all convergent sequences of real numbers. Therefore (by Lemma 2.1 and Remark 2.2) it is enough to show that the space c has property (P).

We view c as the space CpN tVuq, so that c 0 is identified with the subspace of all f CpN tVuq such that f pVq 0. We have to show that if pf k q is a weakly null sequence in c, then lim kÑV lim tÑV pr c pt, f k q ¡ tq 0 . Observe first that since f k pVq Ñ 0 as k Ñ V, one can find a (weakly null) sequence p r f k q c such that r f k c 0 for all k and } r

f k ¡ f k } V Ñ 0: just set r f k : f k ¡ f k pVq1.
Let pg n q be a weakly null sequence in c with }g n } V ¤ 1. As above, choose a (weakly null) sequence pr g n q c such that }r g n ¡ g n } V Ñ 0 and r g n c 0 for all n. Since }g n } V ¤ 1, we may also asume that }r g n } V ¤ 1 for all n. Then, since f k and the r g n are living in c 0 , we get from p¦q above that for any t R and for each k N:

lim sup nÑV } r f k tr g n } V ¤ r c 0 pt, r f k q maxp} r f k } V , tq .
By the triangle inequality, it follows that lim sup

nÑV }f k tg n } V ¤ } r f k ¡ f k } V maxp} r f k } V , tq
for each k N and all t ¥ 0. This being true for any weakly null sequence pg n q with }g n } V ¤ 1, we conclude that lim

tÑV pr c pf k , tq ¡ tq ¤ } r f k ¡ f k } V for each k N,
and hence that lim kÑV lim tÑV pr c pt, f k q ¡ tq 0 .

(b) Now assume that K I is infinite. Since K is metrizable, it follows that K contains a compact set S of the following form:

S V ¤ k1 ts i,k ; i Nu ts V,k u ts V,V u ,
where all the points involved are distinct and

s i,k Ñ s V,k as i Ñ V for each fixed k ¥ 1; s V,k Ñ s V,V as k Ñ V;
the sets S k : ts i,k ; i Nu ts V,k u "accumulate to ts V,V u", i.e. they are eventually contained in any neighbourhood of s V,V .

Thus, we have S I ts V,k ; k ¥ 1u ts V,V u and S P ts V,V u.

The key point is now to construct a special continuous map θ : S Ñ S and to consider the associated composition operator C θ acting on CpSq. This is the same strategy as in [START_REF] Akcoglu | A couterexample to Blum-Hanson theorem in general spaces[END_REF], in our setting.

Fact 1. One can construct a continuous map θ : S Ñ S such that, denoting by θ n the iterates of θ, the following properties hold true.

(i) θ n psq Ñ s V,V pointwise on S as n Ñ V;

(ii) there exists an open neighbourhood V of s V,V in S such that sup sS #tn N; θ n psq V u V .

Proof. We define the map θ as follows:

$ ' ' ' ' ' ' & ' ' ' ' ' ' % θps V,V q s V,V θps i,k q s i,k¡1 if k ¥ 2 θps V,k q s V,k¡1 if k ¥ 2 θps i,1 q s i¡1,i¡1 if i ¥ 2 θps V,1 q s V,V θps 1,1 q s V,V It is clear that θ is continuous at each point s V,k , k ¥ 2. Moreover, since s i¡1,i¡1 Ñ s V,V as i Ñ V, the map θ is also continuous at s V,1 and at s V,V .
Since all other points of S are isolated, it follows that θ is continuous on S.

An examination of the orbits of θ reveals that for any s S, we have θ n psq s V,V for all but finitely many n N. Indeed, if s s V,k for some k N, then Orbps, θq ts V,k , s V,k¡1 , . . . , s V,1 , s V,V u, whereas if s s i,k for some pi, kq N ¢N, then Orbps, θq ts i,k , s i,k¡1 , . . . , s i,1 , s i¡1,i¡1 , . . . , s i¡1,1 , s i¡2,i¡2 . . . , s 1,2 , s 1,1 , s V,V u.

So property (i) is satisfied.

Set V : SzS 1 , where S 1 ts i,1 ; i Nu ts V,1 u. This is an open (actually clopen) neighbourhood of s V,V in S. For any N N, the orbit of s N : s N,1 contains exactly N points of SzV S 1 , namely s N,1 , s N ¡1,1 , . . . , s 1,1 . So property (ii) is satisfied as well.

From Fact 1, it is straightforward to deduce Fact 2. The space CpSq does not have the Blum-Hanson property.

Proof. Let θ : S Ñ S be given by Fact 1, and let C θ : CpSq Ñ CpSq be the composition operator associated with θ:

C θ u u ¥ θ for all u CpSq.
By property (i) above, we see that C n θ u Ñ ups V,V q1 weakly as n Ñ V, for every u CpSq.

Let us choose a function f CpSq such that f ps V,V q 0 and f 1 on F : SzV , where V satisfies (ii). Then C n θ f Ñ 0 weakly. On the other hand, since f 1 on F it follows from (ii) that one can find points s S such that #tn N; C n θ f psq 1u is arbitrarily large. So we have

1 #I ņI C n θ f V ¥ 1
for finite sets I N with arbitrarily large cardinality. From this, it is a simple matter to deduce that the sequence pC n θ f q is not strongly mixing, which concludes the proof of Fact 2.

It is now easy to conclude the proof of Theorem 1.1, by using the following trivial observation.

Fact 3. Let X be a Banach space, and let Z be a closed subspace of X. Assume that Z is 1 -complemented in X, i.e. there is a linear projection π : X Ñ Z such that }π} 1. If Z fails the Blum-Hanson property, then so does X. Proof. If T : Z Ñ Z and z Z witness that Z fails the Blum-Hanson property, then r T : T ¥ π : X Ñ Z X and z witness that so does X.

It is well known that since K is metrizable, there is an isometric linear extension operator J : CpSq Ñ CpKq: this is a classical result due to Dugundji [START_REF] Dugundji | An extension of Tietze's theorem[END_REF]. So the space CpSq is isometric to a 1 -complemented subspace of CpKq, namely Z : J rCpSqs.

By Fact 3, this concludes the proof of Theorem 1.1.

Remark 1. The above proof shows that the space CpSq fails the Blum-Hanson property in a very special way. Namely, there exists a composition operator C θ on CpSq all whose orbits are weakly convergent and such that some weakly null orbit is not strongly mixing. As shown in [START_REF] Akcoglu | A couterexample to Blum-Hanson theorem in general spaces[END_REF], the same is true for the space CpT 2 q. On the other hand, it is observed in [START_REF] Lefèvre | Smoothness, asymptotic smoothness and the Blum-Hanson property[END_REF] that this is not so in the space Cpr0, 1sq, for the following reason: if θ : r0, 1s Ñ r0, 1s is a continuous map and if the iterates θ n converge pointwise to some continuous map α : r0, 1s Ñ r0, 1s, then the convergence is in fact uniform.

Remark 2. Our proof gives in fact the following more precise result: if K has finitely accumulation points, then CpKq has property (P); and otherwise, one can find an operator T on CpKq with }T} ¤ 1 such that all T -orbits are weakly convergent and some wealy null orbit is not strongly mixing.

One nonmetrizable example

We have been unable to show without the metrizability assumption on K that CpKq fails the Blum-Hanson property if K has infinitely many accumulation points. Note that metrizability was used twice in the proof of Theorem 1.1: to ensure that if K I is infinite then K contains the special compact set S; and for the existence of an isometric (linear) extension operator J : CpSq Ñ CpKq.

It is known that the linear extension theorem may fail in the nonmetrizable case (see e.g. [START_REF] Pelczyński | On simultaneous extensions of continuous functions[END_REF]Remark 2.3]). It may also happen that a compact set K has infinitely many accumulation points and yet does not contain any compact set like S. For example, this holds for K βN (the Stone-Čech compactification of N) because there are no nontrivial convergent sequences in βN. However, in this (very) special case it is possible to adapt the proof of Theorem 1.1 to obtain the following result. Proof. It will be more convenient to view V as V pN ¢ Nq CpβpN ¢ Nqq.

Let θ : N ¢ N Ñ N ¢ N be essentially the same map as in the proof of Theorem 1.1 but ignoring the limit points:

$ & % θpi, kq pi, k ¡ 1q if k ¥ 2 θpi, 1q pi ¡ 1, i ¡ 1q if i ¥ 2 θp1, 1q p1, 1q
We denote by C θ the asociated composition operator acting on V V pN ¢ Nq, i.e C θ f pi, kq f pθpi, kqq for every pi, kq N ¢ N . Set f : 1 F V pN ¢ Nq, where F tpi, 1q; i ¥ 1uztp1, 1qu tpi, 1q; i ¥ 2u. Exactly as in the proof of Theorem 1.1, one checks that the sequence pC n θ f q is not strongly mixing in V pN ¢ Nq. So it is enough to show that, on the other hand,

C n θ f Ñ 0 weakly in V pN ¢ Nq.
Viewing V pN ¢ Nq as CpβpN ¢ Nqq, we have to show that C n θ f pUq Ñ 0 for every ultrafilter U on N ¢ N. Let us fix such an ultrafilter U.

Since C n θ f C n θ 1 F 1 θ ¡n pFq when considered as an element of V pN ¢ Nq, we have for any n N:

C n θ f pUq " 1 if θ ¡n pFq U 0 if θ ¡n pFq U So we need to prove that if n is large enough, then θ ¡n pFq U.
Observe first that if we set S 1 : N¢t1u, then θ ¡n pS 1 qS 1 is finite for every n N. This is readily checked from the definition of θ. Indeed, for each s pi, 1q S 1 , the first n N such that θ n psq S 1 is at least equal (in fact, exactly equal) to i; so for each fixed n there are at most n points s S 1 such that θ n psq S 1 .

Since F S 1 and θ is finite -to-one, it follows that θ ¡n pFq θ ¡n I pFq is finite whenever n $ n I . Now, assume without loss of generality that θ ¡n pFq U for more than one n N.

Then, by what we have just observed, U contain a finite set. Hence, U is a principal ultrafilter, defined by some point s 0 N ¢ N. On the other hand, we know from the definition of the map θ that θ n ps 0 q p1, 1q for all but finitely many n N. Since p1, 1q F , it follows that θ ¡n pFq U for all but finitely many n.

From Proposition 3.1, we immediately deduce Corollary 3.2. The space L V L V p0, 1q does not have the Blum-Hanson property.

Likewise, if His an infinite-dimensional Hilbert space, then the space BpHq of all bounded operators on H does not have the Blum-Hanson property.

Proof. This is clear since these two spaces contain a 1 -complemented isometric copy of V . To conclude this paper, and since this may be useful elsewhere, we isolate the following kind of criterion for detecting the failure of the Blum-Hanson property in C b pTq for a not necessarily metrizable topological space T . Lemma 4.2. Let T be a Hausdorff topological space. Assume that there exists a subset S of T which is normal as a topological space, such that the following properties hold true.

(1) One can find a continuous map θ : S Ñ S and a point a S such that (i) θ n psq Ñ a pointwise on S as n Ñ V; Since W V by (iii) and S is normal, one can choose a function f C b pSq such that f 0 on W and f 1 on F : SzV . By condition (ii) in (1), the sequence pC n θ f q is not strongly mixing; so we just need to check that C n θ f Ñ 0 weakly in C b pSq.

Being Hausdorff and normal, the space S is completely regular; so the space C b pSq is canonically isometric with CpβSq, where βS is the Stone-Čech compactification of S. The latter can be described as the space of all z-ultrafilters on S, i.e maximal filters of zero sets for functions in C b pSq, or, equivalently (since S is normal) maximal filters of closed subsets of S; see [START_REF] Gillman | Rings of continuous functions[END_REF]. Therefore, what we have to do is to show that lim nÑV lim U f pθ n psqq 0 for any z-ultrafilter U on S .

If U is a "principal" z-ultrafilter defined by some s 0 S, i.e. U is convergent with limit s 0 , then lim U f pθ n psqq f pθ n ps 0 qq for all n, so the result is clear since f pθ n ps 0 qq Ñ f paq 0 as n Ñ V by (i). Now, let us assume that U is not principal. Then U does not contain any finite set. Indeed, if a maximal filter of closed sets contains a finite union of closed sets F 1 ¤ ¤ ¤ F N , then it has to contain one of the F i by maximality; so, if U were to contain a finite set, then it would contain a singleton and hence would be principal in a trivial way. By (iii), it follows that θ ¡n pSzWq U for all but finitely many n N; and since U is a maximal filter of closed sets, this implies that θ ¡n pWq U for all but finitely many n. Since f 0 on W , it follows that lim U f pθ n psqq 0 for all but finitely many n, which concludes the proof.

Remark 1. This lemma would be much neater if condition (iii) above could be dispensed with; but we don't know how to prove the lemma without it. The proof of Theorem 1.1 shows that when S is compact, (i) and (ii) alone are enough for CpSq to fail the Blum-Hanson property. At the other extreme, the proof of Proposition 3.1

shows that when S is discrete (and infinite), one can find a map θ : S Ñ S satisfying (i), (ii) and a property stronger than (iii).

Remark 2. When S is compact, condition (iii) actually follows from (i). Indeed, let W be any open neighbourhood of a, and assume that (iii) fails for W and some infinite set N N. Then, by compactness we have nN θ ¡n pSzWq $ r. But if s nN θ ¡n pSzWq then θ n psq does not tend to a as n Ñ V, which contradicts (i).
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 2 Proof of Theorem 1.1

Proposition 3 . 1 .

 31 The space V pNq CpβNq does not have the Blum-Hanson property.

4 .

 4 Further remarksFor any topological space E, let us denote by C b pEq the space of all real-valued, bounded continuous functions on E. Putting together Theorem 1.1 and Proposition 3.1, we obtain the following result.

Theorem 4 . 1 .

 41 If T is a metrizable topological space, then C b pTq has the Blum-Hanson property exactly when T is compact and has finitely many accumulation points. Proof. By Theorem 1.1, it is enough to show that if C b pTq has the Blum-Hanson property, then T is compact. Now, if T is not compact, it contains a countably infinite closed discrete set S (thanks to the metrizability assumption). By Dugundji's extension theorem, C b pTq then contains a 1 -complemented isometric copy of C b pSq. Since C b pSq is isometric to V pNq, it follows from Proposition 3.1 that C b pTq does not have the Blum-Hanson property.

( 2 )

 2 ii) there exists an open neighbourhood V of a such that sup sS #tn N; θ n psq V u V ; (iii) there exists a further open neighbourhood W of a with W V such that, for any infinite set N N, one can find n 1 , . . . , n p N such that the set θ ¡n 1 pSzWq ¤ ¤ ¤ θ ¡np pSzWq is finite. (There is a linear isometric extension operator J : C b pSq Ñ C b pTq. Then, one can conclude that the space C b pTq fails the Blum-Hanson property. Proof. By (2), it is enough to show that C b pSq does not have the Blum-Hanson property. This will of course be done by considering the composition operator C θ : C b pSq Ñ C b pSq.