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Vision-driven walking pattern generation for humanoid reactive walking

Mauricio Garcia1,2 and Olivier Stasse2 and Jean-Bernard Hayet1

Abstract— We present a novel approach to introduce visual
information in the walking pattern generator for humanoid
robots in a more direct way than the current existing methods.
We make use a model predictive control (MPC) visual servoing
strategy, which is combined to the walking motion generator.
We define two schemes based on that principle: a position-based
and an image-based scheme, with a Quadratic Program (QP)
formulation in both cases. Finally, we present some simulation
results validating our approach.

I. INTRODUCTION

The last years have seen the rise of a new wave of very ef-
ficient control systems for humanoid robots walking genera-
tion, based on dynamical balance criteria such as the position
of the Center Of Pressure (CoP), that can compute the foot
steps placement in a completely online way [6], opening the
door to reactive navigation strategies in humanoid robotics.
Linear Model Predictive Control (LMPC) is the core element
of most of these methods. LMPC “previews” the behavior
of the system by applying virtually a sequence of controls
from the current robot configuration and estimates, with a
simple but very efficient dynamical model, the result of
these controls at a given horizon. The optimization over jerk
sequences can be remarkably written as a Quadratic Program
(QP), subject to a set of constraints explicitly handled (e.g.,
the CoP position being inside the support polygon). The
result of this optimization is a whole sequence of controls,
and one only applies the first optimal control in the next
iteration. Hence, the key of these methods is to get very fast
optimization to be able to generate new optimal controls at
a high frequency, which is possible because of the existence
of very efficient techniques to solve QPs.

Now, the next step would consist in finding a way to
“close the loop” in the traditional perception-decision-action
paradigm, and use perceptual data as a feedback to the loco-
motion, e.g. for positioning precisely the robot. Our work has
been oriented towards this goal, and more precisely towards
the integration of visual errors from a visual servoing task to
guide the robot through locomotion, within the same LMPC
framework mentioned above. Some approaches exist that
directly define footsteps in the time horizon based on sensors
information about the environment, i.e. integrated through
mapping, in applications such as tracking, stair-climbing or
obstacle avoidance [2], [5], [8]–[11]. On the other hand, for
some tasks such as manipulation or interaction with human,
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Fig. 1. Humanoid walking pattern generation (WPG): Our algorithm
generates a Center of Mass (CoM) trajectory and a sequence of footsteps
to be done to reach a visual reference (defined here by four points), while
ensuring stability during the walk. In this figure, we depict the generated
foot steps (red and blue rectangles), the CoM trajectory (black) and CoP
trajectory (magenta). In the first part of the trajectory, the visual errors are
reduced by an initial rotation and a motion in direction to the target; in the
second part, they are reduced by a circular arc around the target.

it may be required to get precise positioning only relatively
to one specific feature, e.g. the manipulation workspace or
the human with which the robot will interact, without the
need for a global mapping strategy. For this purpose, visual
servoing has been very popular in the last two decades in
wheeled robotics, and its use in humanoid robotics is only at
its beginning. In one of the pioneering works, Dune et al. [3]
have proposed to couple a “traditional” visual control scheme
with one of the aforementioned walking pattern generation
(WPG) methods, seen as a black box. The idea is to compute
a desired velocity of the center of mass (CoM) by using
visual servoing, and to use it as a reference velocity in the
pattern generator. This method suffers from a number of
drawbacks. First, because the visual servoing scheme and
the pattern generator are completely decoupled, the visual
information is not directly feeding the pattern generator, it
simply gives a reference velocity to follow, which is not
guaranteed to be followed. Second, the reference velocity
computed from the visual servoing module takes into account
visual features undergoing a rather complex motion in the
image, because the camera itself undergoes a not-so-easy-to-
model motion in the world, because of the robot stepping.
In [3], this problem is tackled by performing the visual
servoing not on the real, observed features, but instead on
virtual features corresponding to “ideal” features from which



the sway motion have been removed. A similar approach has
been recently proposed by Faragasso and al. [4]. In this later
paper, the velocity is considered by the integration of the
robot displacement over a step period and is relying on a
“black-box” approach with the WPG presented in [6].

In this paper, we propose a simpler alternative, that can
face much more naturally to the problems mentioned before,
and, above all, is much more easily integrated with the
locomotion algorithm, instead of operating as a separate
“black box”. Our idea is that since locomotion is based on
previewing algorithms such as LMPC, we can also “preview”
the visual features evolution given the application of a series
of controls, and use it to guide the steps of the robot directly
within the LMPC. The main difficulty is to keep the problem
formulation as a QP. To this end, we build upon two families
of works, the one from Herdt et al. [6] about the LMPC
locomotion formulation and the one from Allibert et al. [1],
that has used Model Predictive Control in visual servoing.

In Section II, we give reminders about the WPG and
about model predictive visual servoing. Then we present two
approaches to include the visual servoing: a PBVS scheme in
Section III, and an IBVS scheme in Section IV. We present
results in Section V and conclude in Section VI.

II. WALKING PATTERN GENERATION

We recall how the current walking motion generation
schemes, inherited from [7], settle the generation of balanced
and stable motion through the determination of a CoM
trajectory. Details can be found, e.g. in [6]. Suppose that
the trajectory has periodic piece-wise constant jerks on time
intervals T , the CoM dynamics along the x-axis is

x̂k+1 = Ax̂k + B
...
xk

ξxk = Cx̂k (1)

where x̂k = (xk, ẋk, ẍk)
> stacks the x−position, velocity

and acceleration of the CoM at time k, and A,B,C constant
matrices. The vector ξxk is the CoP at time k. By applying
recursively Eq. 1, we express the CoM trajectory on larger
intervals, in terms of the initial position x̂k and the whole
sequence of applied jerks

...
Xk = (

...
xk,

...
xk+1, ...,

...
xk+N−1)>,

Xk+1 =
(
xk+1 . . . xk+N

)T
= Ppsx̂k + Ppu

...
Xk. (2)

Similar expressions can be derived for the CoM velocity
and acceleration, and for the y or heading components. In [7],
the positions of the center of pressure (CoP) are an input,
so that a preliminary footstep planning was necessary. Then,
a re-formulation was proposed to handle automatic footstep
placement [6], by using a reference velocity (Ẋref

k+1, Ẏ
ref
k+1).

The resulting constrained optimization problem is:

min
Uk

α

2

∥∥∥ ...
Xk

∥∥∥2
+
β

2

∥∥∥Ẋk+1 − Ẋref
k+1

∥∥∥2
+
γ

2

∥∥∥Zx
k+1 − Z

xref
k+1

∥∥∥2

+
α

2

∥∥∥ ...
Y k

∥∥∥2
+
β

2

∥∥∥Ẏk+1 − Ẏ ref
k+1

∥∥∥2
+
γ

2

∥∥∥Zy
k+1 − Z

yref
k+1

∥∥∥2
,(3)

with Uk
def
=
( ...
X
>
k , (X

f
k )>,

...
Y
>
k , (Y

f
k )>

)>
, and Xf

k , Y
f
k the

footsteps positions. The vector of CoP values on the horizon
is Zxk+1 = [ξxk+1 · · · ξxk+N ]. The Zxref

k+1 are the center of the
support polygon at each iteration. This can be written as a
canonical Quadratic Program (QP)

min
Uk

1

2
U>k QkUk + p>k Uk. (4)

The main contribution of this paper is that instead of
controlling the robot through the references velocities (which
may be derived from a traditional visual servoing ap-
proach [3]), we do it by using directly the visual features.
We keep the problem as a QP so it can be solved efficiently
in real time, in an optimization scheme similar to 4.

In another area, visual servoing comes in two main flavors:
Image based visual servoing (IBVS) uses image features;
Position based visual servoing (PBVS) uses the 3-D pose(s)
of object(s) of interest. In both cases, a velocity controller
such as vc = −λL+e, uses e, the current vector of errors,
and L+, the Moore-Penrose pseudo-inverse of the interaction
matrix L relating the velocity of the features and the velocity
of the camera. It outputs vc, the velocity of the camera. Here,
we orient the optimization of the jerks and foot placements
(Eq. 3) by taking into account the expected evolution of the
visual servoing (VS) errors so that, instead of minimizing
the VS errors at current time k, one would like to foresee
its evolution at the horizon [k + 1, k +N ].

In [1], such a time horizon-aware scheme has been pro-
posed. It introduces visual predictive control (VPC) as:

min
Uk

k+N∑
j=k+1

[sdj − smj ]>Wj [s
d
j − smj ], (5)

subject to sdj = s∗ − ej , (6)
qj = f(qj−1, uj−1), (7)
smj = h(qj). (8)

In Eq. 5, Uk = uk:k+N−1 are the series of controls to be
applied, qj is the state, and s∗, sdj and smj are respectively
the (static) reference, desired and predicted positions of the
visual features. The terms ej are the errors sj − smj between
real and predicted feature positions, assumed constant over
the prediction horizon, equal to ek = sk−smk , i.e. the error at
current time k, because by definition the sj are not known for
j > k. Since the errors are constant on the horizon window,
sdj = sdk = s∗ − ek are constant in the prediction horizon.

The Eq. 7 estimates the new state given the last
state/control pair. In general, it is non-linear. Eq. 8 estimates
the model output smj , given the current state qj , e.g., the
camera projection model. Matrix Wj is used to weight errors
in the prediction horizon and as suggested in [1], we consider
Wj = diag(wj). The smj are the M predicted features at
time j, smj = (sm1,j , s

m
2,j , . . . , s

m
M,j)

>. Eq. 5 can be written

min
Uk

M∑
l=0

[Sdl − Sml,k]>W[Sdl − Sml,k], (9)



with Sml,k stacking the features positions in the horizon:

Sml,k =
(
sml,k+1, s

m
l,k+2, . . . , s

m
l,k+N

)>
, and Sdl stacking the

corresponding desired positions. This form motivates us in
combining Eq. 9 and Eq. 3 to generate vision-driven motion
primitives for reactive walking.

III. POSITION-BASED VISUAL SERVOING FOR WALKING
PATTERN GENERATION

Using directly Eq. 9 in Eq. 3, we would lose the QP
formulation due to the non-linearities in Eqs. 7 and 8. We can
solve the first problem (Eq. 7) by using a similar approach
as in [6], e.g. with the dynamic model of Eq. 2.

A. Linearization of the observation model

As we said, Eq. 8 implements the pinhole camera model.
Let pwl′ = [xwl′ , y

w
l′ , z

w
l′ ]> be the 3D position of the l’-th

landmark in the world frame. One can project it to the
image plane by first transforming the landmark to the camera
frame with the homogeneous transform TmcTwm

j and then
applying the projection u(x, y, z) = x

z , v(x, y, z) = y
z ,

(
ul′,j
vl′,j

)
=

(
u(xcl′,j , y

c
l′,j , z

c
l′,j)

v(xcl′,j , y
c
l′,j , z

c
l′,j)

)
=

(
xcl′,j/z

c
l′,j

ycl′,j/z
c
l′,j

)
, (10)

where Twm
j is the transformation from the world to the

CoM frame (varying with j) and Tmc is the transformation
from the CoM to the camera frame, constant in our approach,

Twm
j = (Tmw

j )−1 =

(
(Rmw

j )−1 −(Rmw
j )−1tmw

j

01×3 1

)

where tmwj is the position of the CoM in the world frame
at time j, which depends in our control variables through Eq.
2. Rmw

j is the direction of the robot waist according to the
world reference frame at time j. In our current formulation
there is no free variables modifying this quantity, because it
would break the problem linearity. More details about this
problem are given in Section III-B.

In MPC, prediction is done over a finite horizon. Let us
use a first order approximation of the projection (Eq. 10)
for small (dx, dy, dz) to maintain the QP form. By using
a Taylor series for u(x, y, z) around some point (x0, y0, z0)
and substituting the derivatives,

{
u(x0 + dx, y0 + dy, z0 + dz) ≈ x0

z0
+ dx

z0
− x0dz

z20
,

v(x0 + dx, y0 + dy, z0 + dz) ≈ y0
z0

+ dy
z0
− y0dz

z20
,

with dx = x− x0, dy = y − y0 and dz = z − z0.
We linearize Eq. 10 for the whole horizon, around the

first position (j = k) of landmark l′, i.e. at the linearization
point (xcl′,k, y

c
l′,k, z

c
l′,k). This way, we can express linearly

the predicted position of the landmark l′ at time j > k:(
ul′,j
vl′,j

)
=

(
π11
l′,kx

c
l′,j + π13

l′,kz
c
l′,j + ul′,k

π22
l′,ky

c
l′,j + π23

l′,kz
c
l′,j + vl′,k

)
,

where ul′,k = xcl′,k/z
c
l′,k and vl′,k = ycl′,k/z

c
l′,k are the

initial positions of the landmarks in the horizon and the
coefficients πij the elements of the matrix

Πl′,k =

(
1/zcl′,k 0 −ul′,k/zcl′,k

0 1/zcl′,k −vl′,k/zcl′,k

)
.

Finally, we project the l′ − th landmark (constraint 8)

ul′,j = aul′,kxj + bul′,kyj + cul′,k, (11)

with
aul′,k = Πu

l′,kR
wc
1

bul′,k = Πu
l′,kR

wc
2

cul′,k = Πu
l′,k(Rwcpwl′ + tmc + Rwc

3 zj) + ul′,k.

where Πu
l′,k is the first row of Πl′,k, Rwctmwj = Rwc

1 xj +

Rwc
2 yj + Rwc

3 zj , and Rwc
i is the i-th column of Rwc 1 and

xj , yj , zj the position of the CoM at time j (see Section II).
Equivalently, we have vl′,j = avl′,kxj + bvl′,kyj + cvl′,k.

Stacking the features ul′,j and the CoM positions for the
whole horizon and using Eq. 2, we get a vector Sml,k similar
to the one introduced in Eq. 9

Sml′,k = Au
l′,kXk+1 + Bu

l′,kYk+1 + Cu
l′,k,

with Au
l′,k = aul′,kIN×N , Bu

l′,k = bul′,kIN×N , and Cu
l′,k =

cul′,k
(

1, 1, . . . 1
)>

, which corresponds to the predicted
coordinates u of the landmark l′-th in the horizon.

Every projected landmark provides two coordinates (u, v)
and we treat each one as an individual feature. This means
that the l-th feature is the u-coordinate of landmark l′ =
bl/2c for l even, and the v-coordinate for l odd. Generalizing:

Sml,k = Al,kXk+1 + Bl,kYk+1 + Cl,k, (12)

with Al,k = Au
l′,k for l even and Al,k = Av

l′,k for l
odd. The same holds for Bl,k and Cl,k. Finally, we can
introduce visual servoing (Eq. 12) in the walking generation
as a canonical QP, by minimizing the following objective

function of Uk
def
=
( ...
X
>
k , (X

f
k )>,

...
Y
>
k , (Y

f
k )>

)>
min
Uk

α

2

∥∥ ...
Xk

∥∥2 +
α

2

∥∥ ...
Y k
∥∥2

+
γ

2

∥∥Zxk+1 − Z
xref

k+1

∥∥2 +
γ

2

∥∥Zyk+1 − Z
yref
k+1

∥∥2
+
β

2

M∑
l=0

[Sdl − Sml,k]>W[Sdl − Sml,k].

B. Control of the rotation angle

So far, we have proposed a scheme to control the trajectory
of the center of mass in x and y, and we supposed the
heading angle constant. Introducing this heading angle in
the minimization problem is not straightforward without
losing linearity. Furthermore, the rotation angle plays a
very important role here since sometimes most of the error

1To simplify the notations Rwc = RmcRwm
j



between sd and sm may be due to the angle. We propose
to use the extension of the LMPC scheme proposed in [6],
that deals with a reference angular velocity. The solution is
decoupled, and first estimates the optimal rotation angles and
introduces these values as known in the main QP (Rmw

j ).
Hence, we first optimize the sequence of heading jerks by

min...
Θk,

...
Θ

f
k

β

2

∥∥Θk+1 −Θ0
∥∥2

+
γ

2

∥∥∥Θf
k+1 −Θ0

∥∥∥2

(13)

+
α

2

∥∥...
Θk

∥∥2
+
α

2

∥∥∥...
Θ

f
k

∥∥∥2

,

with the same notations as for
...
Xk and

...
Y k:

...
Θk is the

sequence of N jerk values to apply, and Θk+1 is the sequence
of predicted θ values, i.e. the orientations of the trunk,
Θk+1

def
= (θk+1, ..., θk+N )>, and similarly for Θf

k+1, the
feet orientations. A reference Θ0 is defined at the starting
configuration as a target feet orientation. Moreover, the trunk
orientation Θk tries to follow the flying foot orientation
Θf
k . The flying foot is the only one that moves in single

support phase. Finally, zero speed, and zero acceleration are
specified at both ends of the trajectories. In a second stage,
we introduce these angles as constant in Eq. 3, in particular
for defining the ZMP constraint. This approach gives us the
advantage of introducing constraints like maximum rotation
between both feet, between feet and trunk, and also a rotation
limit to keep the visibility of the landmarks.

C. Visual constraints

Any linear constraint in the image plane (u, v), can be
expressed as a linear constraint in the variables Uk. It means
that we can have time- and landmark-varying constraints:

A′
(
Au
l′,kXk+1 + Bu

l′,kYk+1 + Cu
l′,k

Av
l′,kXk+1 + Bv

l′,kYk+1 + Cv
l′,k

)
≤ b′. (14)

Bound constraints in (u, v) like visibility constraints are
easily expressed with Eq. 14 and introduced in the QP.

IV. IMAGE-BASED VISUAL SERVOING FOR WALKING
PATTERN GENERATION

If we come back to sk, the vector of visual features, and
relate it to vck, the instantaneous velocity vector of the camera
at time k (in R6), we can derive the following equation,
involving the interaction matrix Lk, ṡk = Lkv

c
k.

Suppose that the variations are piecewise constant on each
time intervals of duration T of the Model Predictive Control,
and then integrate in time the previous relation, we have

sk+1 = sk + TLkv
c
k. (15)

Assume that the twist matrix cVm relating the CoM and
the camera velocities remains constant: vck =c Vmvmk .

By applying recursively the Eq. 15, we can express the
position of the features at time j inside the horizon window
(i.e., in absolute time k + j) in terms of the velocity of the
CoM vm = (ẋ, ẏ, ż, φ̇, ψ̇, θ̇)

sk+j = sk + T

k+j−1∑
i=k

LciVmvmi .

Now if we suppose that, within the horizon window, at
time i, the interaction matrix Li stays close to what is is in
k, i.e. Li ≈ Lk, and if we make appear all the velocity
components, and the corresponding columns of the twist
matrix, (cVm)j for j ∈ {1 . . . 6}

sk+j = sk + TLk

[
(cVm)1

k+j−1∑
i=k

ẋi

+(cVm)2

k+j−1∑
i=k

ẏi + ...+ (cVm)6

k+j−1∑
i=k

θ̇i

]
. (16)

It is noticeable that, locally, close to time k, the evolution
of the image features is linear with respect to the CoM
velocity. We suppose that the CoM only translates in x
and y axis and the trunk can rotate around the z axis:
żi = φ̇i = ψ̇i = 0. Now, consider the distinct features, i.e.
the row l of s, and stack all l’s within the window horizon
as Sl,k+1

def
= (sl,k+1 . . . sl,k+N )T .

Since each velocity component can be expressed as a
linear combination of their corresponding jerks values ap-
plied from k to i, Sl,k+1 can finally be expressed as a
linear function of ˙̂xk, ˙̂yk,

˙̂
θk (constant in our problem) and...

Xk,
...
Y k,

...
Θk (variables of our problem).

Then, we can express the problem of determining the
trajectory of the CoM such that the visual objective of the
Image-Based Visual Servoing can be reached, with the same
objective function as in Eq. 13. Again, direct optimization
of the jerk values for x, y, and θ would lead to introduce
nonlinearities in the QP formulation (from the constraints
involving θ). Hence, we apply a two-step strategy as in the
PBVS case. The first stage uses optimization over the jerks
in x, y, θ but without considering the constraints on x, and y,
the idea being to provide a reference trajectory for the angles.
This first optimization problem to solve is then reduced to

min...
Θk,

...
Θ

f
k

γ

2

M∑
l=0

[Sd
l − Sl,k+1]>W[Sd

l − Sl,k+1] (17)

+
α

2

∥∥...
Θk

∥∥2
+
α

2

∥∥∥...
Θ

f
k

∥∥∥2

+
β

2

∥∥ ...
Xk

∥∥2
+
β

2

∥∥ ...
Y k

∥∥2
,

that is transformed into a QP thanks to Eq. 16.
In the second stage, we take the θ trajectories for the

CoM and the feet as reconstructed in the first stage, and
then optimize over the x, y translation jerks and over the
feet positions. The angular velocity is taken as constant,

min
Uk

α

2

∥∥ ...
Xk

∥∥2 +
α

2

∥∥ ...
Y k
∥∥2

+
β

2

∥∥Zxk+1 − Z
xref

k+1

∥∥2 +
β

2

∥∥Zyk+1 − Z
yref
k+1

∥∥2
+
γ

2

M∑
l=0

[Sdl − Sl,k+1]>W[Sdl − Sl,k+1],
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Fig. 4. Top, comparison of velocity profiles in the x (blue) and y (red)
axes, for the approach of [3] (dashed line) and ours (solid line). Bottom,
comparison of the features errors evolution.

with the predicted sequence of features from Eq. 16.

V. RESULTS AND DISCUSSION

Hereafter, we present results of our approach, in a simu-
lated environment, with the HRP2 robot model. We assume
that no noise or modeling errors have been introduced. For
all the tests (PBVS and IBVS), the initial position is (0, 0)
and the visual target, made of four points, is at (5, 0). The
figure 2 gives three trajectories realized by following our
control scheme, with different goals and execution schemes.
The left column corresponds to a PBVS one, the center and
right columns to IBVS schemes. The first line gives the
footsteps sequence, the second the evolution of the visual
features (red is the initial configuration, blue the final one).
The third and four lines depict the velocities and errors
profiles. One can observe that in all cases, the dynamical
balance is kept, that the visual reference is reached (more
precisely in the case of PBVS than IBVS) and that most of
the correction related to the rotation is done at the beginning.
This is visible in the rightmost experiment, where one can
distinguish three phases: orientation compensation (in site
rotation), scaling (forward motion), and sideweays motion
along an arc of circle to reduce the residual visual errors.

To focus on the PBVS, the performance of the linearization
done to maintain the QP form (see Section III) depends of
the distance traveled inside the horizon, and on the velocity
of the robot and the size of the horizon. In Fig. 5, we can see
the linearized and real features trajectories for a given CoM
trajectory and higher-than-usual velocities. Close to the be-
ginning (linearization point), trajectories are close, and then
differ. This example is extreme, since usual displacements
are much smaller. When horizon displacements get bigger
(far from the target), the robot just needs a tendency. When
smaller, the linearization errors becomes negligible.

Also, in Fig. 3, we see that it is robust to perturbations:
A trajectory is followed with PBVS to reach (2, 0.1), but a
strong perturbation in the CoM position is introduced (close
to (0.5, 0.2)). This perturbation is recovered quasi-instantly.
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Fig. 5. Trajectory of the visual features in one iteration of the QP,
and evolution of the features obtained by the linearization model
(green lines) and by the non-linear model (red lines).

Due to stepping, features positions oscillate. One of the
main advantages of using MPC is that it naturally filters these
oscillations. It is remarkable that, in comparison with [3],
we do not need to model explicitly the sway motion of the
robot and the resulting motion of the features. The system
does oscillate inside the horizon, but at the end, the optimal
control is taken without oscillations.

We conducted a simple experiment to illustrate better
the differences between our approach with [3]. In this
experiment, the robot simply goes three meters forward. In
Fig. 4 left, we present the profiles of velocities and errors, in
both cases. We can appreciate (right figure) that the coupled
approach (solid line) converges faster. Moreover, one can
observe that, close to the goal, the features positions follow
a smoother trajectory in the case of the visual predictive
control than with the decoupled approach, where oscillations
(as a result of the immediate stepping) are visible. Also,
when the error gets small, [3] slows down to have a slow
convergence rate. This is a normal feature, i.e. the error
evolves with an exponential decay. With our approach,
this is less the case, because we take into account future
information. In the errors evolution we should note that
the u components in the image plane are theoretically the
oscillatory ones (from the stepping motion). In Fig. 4, we
can see that the v component converges faster in the coupled
approach. With the u components, there remains a small
residual of the oscillation in all approaches.

VI. CONCLUSIONS

In this paper, we have proposed a novel approach to
close the control loop by introducing visual information
into the humanoid walking pattern generation. Our online
pattern generator integrates the regulation of the relative
pose of 3D (PBVS) or 2D (IBVS) image features while
simultaneously ensuring safety and stability. In the first case,
in order to keep the optimization formulation as a QP, the
perspective projection equations are linearized around the
features positions at the beginning of each cycle. As an
ongoing work, we plan to perform real experiments on the
HRP-2 humanoid platform.
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Fig. 2. PBVS (leftmost) and IBVS (center and rightmost) experiments for the humanoid robot reactive walking.
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Fig. 3. Perturbation on a PBVS experiment for the humanoid robot reactive walking. A brutal pushing of the robot occurs close to (0.5, 0.2).
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