
HAL Id: hal-00990051
https://hal.science/hal-00990051v1

Preprint submitted on 13 May 2014 (v1), last revised 24 Sep 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The mean-field approximation and the non-linear
Schrödinger functional for trapped Bose gases

Mathieu Lewin, Phan Thành Nam, Nicolas Rougerie

To cite this version:
Mathieu Lewin, Phan Thành Nam, Nicolas Rougerie. The mean-field approximation and the non-
linear Schrödinger functional for trapped Bose gases. 2014. �hal-00990051v1�

https://hal.science/hal-00990051v1
https://hal.archives-ouvertes.fr


THE MEAN-FIELD APPROXIMATION AND THE NON-LINEAR

SCHRÖDINGER FUNCTIONAL FOR TRAPPED BOSE GASES

MATHIEU LEWIN, PHAN THÀNH NAM, AND NICOLAS ROUGERIE

Abstract. We study the ground state of a trapped Bose gas, starting from the full many-
body Schrödinger Hamiltonian, and derive the nonlinear Schrödinger energy functional in
the limit of large particle number, when the interaction potential converges slowly to a
Dirac delta function. Our method is based on quantitative estimates on the discrepancy
between the full many-body energy and its mean-field approximation using Hartree states.
These are proved using finite dimensional localization and a quantitative version of the
quantum de Finetti theorem. Our approach covers the case of attractive interactions in the
regime of stability. In particular, our main new result is a derivation of the 2D attractive
nonlinear Schrödinger ground state.
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1. Introduction

The impressive progress of cold atom physics [42, 46] during the last two decades gave a
new impetus to the theory of many-bosons systems, in particular the study of Bose-Einstein
condensates (BECs). In such a state of matter, many interacting particles (bosons) occupy
the same quantum state and may thus be collectively modeled using a one-body nonlinear
Schrödinger description.
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In this framework, the energy functional of a Bose-Einstein condensate of non-relativistic
particles in1

R
d, interacting via a pair potential w, reads as (in appropriate units)

EH[u] :=
∫

Rd

|(∇+ iA) u|2 + V |u|2 + 1

2
|u|2(w ∗ |u|2). (1.1)

This so-called Hartree functional includes a trapping potential V : Rd → R confining the
particles in a bounded region of space (V (x) → ∞ when |x| → ∞), a feature ubiquitous
in experiments with cold atoms. The vector potential A : Rd → R

d can model a (possibly
artificial [17]) magnetic field or the Coriolis force due to the rotation of the atoms [2, 13, 22],
in which case V has to incorporate a contribution due to the centrifugal force. The ground
state of the system is obtained by minimizing (1.1) under the mass constraint

∫

Rd

|u|2 = 1. (1.2)

Samples in which Bose-Einstein condensation is achieved are typically very dilute, and it
is therefore relevant to think of the case where the range of the interaction potential w is
much smaller than the size of the system. This situation can be modeled by using contact
interactions, which amounts to formally set w = aδ0 proportional to the delta function at
the origin. One then obtains the nonlinear Schrödinger (or Gross-Pitaevskii) functional

Enls[u] :=
∫

Rd

|(∇+ iA) u|2 + V |u|2 + a

2
|u|4. (1.3)

Here a measures the strength of interparticle interactions. An appealing aspect of cold
atoms experiments is the possibility to tune the value and even the sign of a, going from
repulsive (a > 0) to attractive interactions (a < 0)2. In the latter case the system may
collapse, i.e. there might not exist a ground state for (1.3). It is in fact the case if d = 2
and a ≤ −a∗ for some critical value a∗ > 0, and also if d ≥ 3 and a < 0.

An important question is that of the relation between the macroscopic, nonlinear de-
scription using functionals such as (1.1) and (1.3), and the underlying, linear, physics based
on the many-body Schrödinger equation. In the latter model the system is described via a
many-body Hamiltonian of the form

HN =
N∑

j=1

(
−
(
∇xj

+ iA(xj)
)2

+ V (xj)
)
+

1

N − 1

∑

1≤i<j≤N

Ndβw(Nβ(xi − xj)) (1.4)

acting on HN :=
⊗N

s H, the symmetric tensor product of N copies of the one-body Hilbert

space H = L2(Rd) describing quantum particles living in d dimensions. The symmetry
restriction is necessary for bosonic particles that correspond to square integrable complex
wave functions Ψ ∈ L2(RdN ) ≃⊗N L2(Rd) of N variables satisfying

Ψ(x1, . . . , xN ) = Ψ(xσ(1), . . . , xσ(N)) (1.5)

for any permutation σ. The ground state energy associated with (1.4) is simply the smallest
eigenvalue of the operator, and a ground state is any associated eigenfunction. Roughly

1We are interested in d = 1, 2, 3 but our method also applies to d ≥ 4.
2Respectively from defocusing to focusing interactions in the quantum optics vocabulary.
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speaking, one should expect that when N → ∞, a ground state of (1.4) factorizes:

Ψ(x1, . . . , xN ) ≈
N∏

j=1

u(xj), (1.6)

with u ∈ L2(Rd) a ground state of the nonlinear one-body theory. Of course (1.6) must
be taken with care: determining in which precise sense it holds is a subtle task that has
motivated much research.

In (1.4) we have scaled the interaction term in such a way that we may expect a well-
defined theory in the limit N → ∞. The prefactor (N − 1)−1 ensures that the interaction
energy stays of order N , and the fixed parameter 0 ≤ β ≤ 1 allows to model different
interacting scenarii by changing the N -dependence of the potential range. For illustration,
let us recall how the limit problem depends on β in three space dimensions:

• If β = 0 we are in the mean-field (MF) regime. The range of the interaction potential
is fixed but its intensity goes to zero proportionally to N−1. In this case the limit
problem is (1.1). The relation between (1.1) and (1.4) has been clarified under
special assumptions on w in [7, 39, 51, 25, 52] and in full generality in [31], taking
inspiration from the earlier works [20, 47, 57].

• If 0 < β < 1, the scaled interaction potential converges in the sense of measures to
a delta function

wN := Ndβw(Nβ ·) ⇀
(∫

Rd

w

)
δ0 (1.7)

and the limit problem becomes (1.3) with a =
∫
Rd w. We will refer to this case

as the nonlinear Schrödinger (NLS) limit. It has not been considered much in the
literature. However, when w ≥ 0, the techniques invented to tackle the harder case
β = 1 a fortiori apply in this case.

• If β = 1, the interaction potential of course still converges to a delta function but,
in dimension d = 3, the limit functional is now (1.3) with a = 4π×(scattering length
of w). This is due to the fact that the ground state of (1.4) includes a non trivial
correction to the ansatz (1.6), in the form of a short scale correlation structure. The
relationship between (1.4) and (1.3) in this so-called Gross-Pitaevskii (GP) limit
has been established by Lieb, Seiringer and Yngvason in a seminal series of papers
(we refer for example to [40, 37, 38, 34], or [36] for a review, see also [8]), assuming
the interactions to be purely repulsive, w ≥ 0.

The corresponding evolution problems have also attracted a lot of attention recently. Among
many other references, one may consult [6, 4, 24, 48, 45] for the MF limit, [1, 18, 44] for
the NLS limit and [19, 43] for the GP limit.

The purpose of this paper is to present a new method allowing to rigorously establish
that the minimization of (1.3) correctly describes the ground state of (1.4) in the limit
N → ∞. We are limited to rather small values of β, i.e. to potentials converging slowly
(with polynomial rate) to delta interactions, so we always obtain (1.3) with

a =

∫

Rd

w.
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Our method consists in establishing quantitative bounds on the difference between the
N -body energy per particle and an N -dependent Hartree energy obtained by taking

wN = Ndβw(Nβ .)

as an interaction potential in (1.1). The NLS functional is obtained in a second step by
passing to the limit in the Hartree functional. We thus treat separately the issues of the
mean-field approximation (the validity of the ansatz (1.6)) and that of the short range of
the interactions (the nature of the one-body state u in the ansatz (1.6)).

To deal with the first (main) issue we elaborate on the method we presented in [31], which
is based on the quantum de Finetti theorem [55, 28]. However, in [31] we relied heavily
on compactness arguments and thus did not obtain any error bound, which is required to
deal with a N -dependent interaction potential as we do here. Our strategy in this paper is
to use the localization method in Fock space described in [29] to reduce the problem to a
finite dimensional setting in which we may employ a quantitative version of the quantum
de Finetti theorem due to Christandl, König, Mitchison and Renner [11].

The intuition behind this procedure is as follows. Under the assumption that the system
is trapped, namely V (x) → ∞ when |x| → ∞, the one-body operator

H1 := − (∇+ iA(x))2 + V (x) (1.8)

of the Hamiltonian (1.4) has a discrete spectrummade of a diverging sequence of eigenvalues.
In the ground state of the N -body Hamiltonian, the number of particles living on one-body
states with high energy will clearly be small. The idea is thus to restrict our attention to
the subsystem consisting of all the particles which have a one-particle energy below a given
cut-off L, that is allowed to tend to infinity slowly.

The part of the many-body ground state living in the low energy space will be dealt with
using a quantitative version of the finite dimensional quantum de Finetti theorem [21, 11,
10, 27, 30]. This result roughly says that the density matrices of any N -body state can be
approximated by that of a convex combination of product states |u⊗N 〉〈u⊗N |. The energy
being a linear functional of the 2-body density matrix, it is then easy to obtain the Hartree
energy as a lower bound. The approximation error due to this procedure is proportional
to the dimension of the low-lying energy space and inversely proportional to the number of
particles. A crucial step therefore consists in optimizing over the energy cut-off L (which
governs the dimension of the low energy subspace) to minimize the error due to the use of
the de Finetti theorem.

A related approach was used by Lieb and Seiringer in [34] who dealt with the Gross-
Pitaevskii limit of the same model. After having replaced the interaction by a smeared one
involving the scattering length (a step which is not considered here), they also localized
the particles to the lower energy states. Then they used coherent states in Fock space for
the particles with the lower energies, in order to recover the mean-field functional. An
advantage of our approach is that it works “locally in Fock space”, that is, in any n-particle
subspace independently of the others and thus avoids some difficulties related to the control
of high values of the particle number.

Our method seems less sensitive to the type of interaction potential considered than pre-
vious approaches. In particular we do not need w ≥ 0 to establish quantitative estimates on
the difference between the N -body energy and the N -dependent Hartree energy. However,
we need a sufficiently stable system to obtain the NLS energy when passing to the limit
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N → ∞. In fact, the N -body system must be stable of the second kind, namely the lowest
energy per particle must be uniformly bounded. In the following, we shall only use stability
conditions for the N -dependent Hartree functional. Since the Hartree energy is always an
upper bound to the N -body energy, the Hartree stability is obviously necessary for the
N -body stability. That the Hartree stability is sufficient for the N -body stability is not
obvious, and it comes from our quantitative estimates on the energy difference between the
N -body and Hartree models. To be precise, for β small enough (depending on d and the
trapping potential V ), we obtain the NLS energy (and NLS ground state) from the N -body
model when N → ∞ in the following cases

(1) d = 3 and the interaction potential is stable in the sense that

∫∫

R3×R3

|u(x)|2|u(y)|2w(x − y) dx dy ≥ 0, ∀u ∈ L2(Rd). (1.9)

Assumption (1.9) is necessary in dimensions d ≥ 3. In fact, (1.9) is necessary (and
sufficient if w is regular enough) for the stability of the second kind of classical
particles interacting via the potential w, see Subsection 2.2.1 below.

(2) d = 2 and the potential is stable in the sense that

inf
u∈H1(R2)




∫∫

R2×R2

|u(x)|2|u(y)|2w(x− y) dx dy

2 ‖u‖2L2(R2) ‖∇u‖2L2(R2)


 > −1.

Except for the case of equality, this assumption is again also necessary.
(3) d = 1 under no specific assumption on the interaction potential.

See Section 2.2.1 for a detailed discussion on these assumptions. Of these three cases, the
second is the one that presents the main novelty of the paper: in 2D, we present the first
derivation of the attractive NLS ground state in the regime of stability. In 3D on the other
hand our conditions on β are much more stringent than those in [37, 34] where the GP limit
is covered in the case w ≥ 0. The result is thus not new but our method of proof may still
be of interest, in particular because it provides error bounds, and treats on the same footing
the case with and without vector potential A. In 1D, because of the Sobolev embedding,
one may directly use contact interactions at the level of the many-body Hamiltonian (1.4)
as in [33, 52], so the procedure of scaling a regular interaction potential is less relevant.
However, we provide a derivation of the attractive 1D ground state with what seems to be
an unprecedented precision on the error bound.

Our main theorems are stated in the next section, and their proofs occupy the rest of the
paper.

Acknowledgement: The authors acknowledge financial support from the European Re-
search Council (FP7/2007-2013 Grant Agreement MNIQS 258023) and the ANR (Math-
ostaq project, ANR-13-JS01-0005-01). PTN and NR have benefited from the hospitality of
the Institute for Mathematical Science of the National University of Singapore.
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2. Main results

We do not aim at optimal assumptions on the potentials V and w. We will assume that
w is symmetric, integrable and uniformly bounded:

w ∈ L1(Rd,R), |w(x)| ≤ 1 and w(x) = w(−x). (2.1)

We take the convention sup |w| ≤ 1 only to simplify some expressions in the sequel. We
shall denote by

wN (x) := Ndβw(Nβx)

the scaled interaction potential, and use the same notation wN for the operator acting on
the two-particle space H2 ≃ L2(R2d) as the multiplication by (x1, x2) 7→ wN (x1 − x2).

The fact that we consider a trapped system, as appropriate for experiments with cold
atomic gases, is materialized by the following assumption on the one-body potential:

c|x|s − C ≤ V (x) ≤ C|x|S + C (2.2)

for some exponents S, s > 0 and some constants c > 0, C ≥ 0. The upper bound is actually
not essential and our estimates will only involve the lower exponent s.

As for the vector potential A, that can model a magnetic field or Coriolis forces acting
on rotating particles, it is sufficient to assume

A ∈ L2
loc(R

d,Rd). (2.3)

A particularly relevant example is given by A(x) = Ω(−x2, x1, 0) for d ≥ 2, corresponding
to Coriolis forces due to a rotation at speed Ω around the x3-axis, or a constant magnetic
field of strength Ω pointing in this direction.

2.1. Error bounds for the mean-field approximation. Our first main task is to pro-
vide quantitative bounds on the discrepancy between the ground state energy per particle
corresponding to (1.4)

E(N) := inf σHNHN (2.4)

and the nonlinear energy

eH := inf
‖u‖

L2(Rd)
=1

EH[u] (2.5)

given by the minimization of the Hartree functional

EH[u] :=
∫

Rd

(
|(∇+ iA(x)) u(x)|2 + V (x)|u(x)|2

)
dx

+
1

2

∫∫

Rd×Rd

|u(x)|2wN (x− y)|u(y)|2dxdy. (2.6)

Note that when β > 0 both EH and eH depend on N and that |eH| ≤ CNdβ.
It will be convenient to introduce a slightly modified Hartree energy with the interaction

wN replaced by wN − ε|wN | for some ε > 0 (that will later on be taken small enough):

Eε
H[u] := EH[u]−

ε

2

∫∫

Rd×Rd

|u(x)|2|wN (x− y)||u(y)|2dxdy. (2.7)

We denote by

eεH := inf
‖u‖

L2(Rd)
=1

Eε
H[u] (2.8)
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the corresponding ground state energy, which satisfies |eεH| ≤ (C + ε)Ndβ .
When β > 0 we also consider the NLS energy functional

Enls[u] =
∫

Rd

(
|(∇+ iA(x)) u(x)|2 + V (x)|u(x)|2

)
dx+

a

2

∫

Rd

|u(x)|4dx (2.9)

with ground state energy

enls = inf
‖u‖

L2(Rd)
=1

Enls[u] (2.10)

that arises as the limit N → ∞ of (2.6). As announced, a will always be defined as

a :=

∫

Rd

w. (2.11)

The ground state energy enls is finite in dimensions d ≥ 2 only under appropriate assump-
tions on a (e.g. a ≥ 0).

For β = 0 it is well-known (see [31] and references therein) that

lim
N→∞

E(N)

N
= eH. (2.12)

For the purpose of this paper we need to provide explicit estimates in the case of a confined
system and for β ≥ 0, which is the content of the following

Theorem 2.1 (Error bounds for the mean-field approximation).
We assume that (2.1), (2.2) and (2.3) hold true.

• If d = 1 and β > 0, then we have

eH ≥ E(N)

N
≥ eH − CN

−
1

4+2/s . (2.13)

• If d = 1 and β = 0, or if d ≥ 2 and

0 ≤ β <
1

d(1 + d/s + d/2)
, (2.14)

then we have

eH ≥ E(N)

N
≥ eεH − C

ε−1−d/2−d/s

N1−dβ(1+d/2+d/s)
, (2.15)

for all 0 < ε ≤ 1.

Without more information on the potential w and when β > 0, it is not obvious that
the problem eεH is actually close to eH and we will only be able to go further under some
additional stability assumptions on w. We can however make the following

Remark 2.2 (Estimates in the mean-field limit).
Using the simple estimate

eεH ≥ eH −Ndβε

and optimizing with respect to ε, we can immediately deduce from (2.15) a bound which is
valid for a smaller range of β but does not involve eεH anymore. Namely, if

0 ≤ β <
1

d(2 + d/s + d/2)
, (2.16)
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then we have

eH ≥ E(N)

N
≥ eH − CN

dβ−
1

2+d/s+d/2 . (2.17)

If β = 0 then eH is independent of N and we have thus the uniform bound

eH ≥ E(N)

N
≥ eH − CN

−
1

2+d/2+d/s (2.18)

which gives a bound on the rate of convergence in (2.12). �

With more information on w, it is clear that (2.18) is not optimal. Indeed, it has been
proved in [32, 51, 25] that when the Hartree minimization problem eH has a unique non-
degenerate minimizer, then the next order is given by Bogoliubov’s theory and it is of order
1/N . This is for instance the case if3 ŵ > 0 and the vector potential A is small enough.
Without more assumptions on w, we are not aware of any existing quantitative error bound.
For instance, in a gas rotating sufficiently fast for vortices to be nucleated (see [14, 15, 16, 50]
and references therein), uniqueness is known to fail and our bound (2.18) seems to be the
best so far.

For illustration, we compute the rate of convergence we obtain in a few physically inter-
esting situations (see Table 1), still in the Hartree case β = 0. We consider space dimensions
d = 1, 2, 3, and compare the harmonic oscillator case s = 2 with the case of particles in a
box where we set formally s = ∞. In fact our method also applies to the case of particles
confined to a bounded domain and we obtain the rates for s = ∞ in this case.

d = 3 d = 2 d = 1

s = 2 N−1/5 N−1/4 N−1/3

s = ∞ N−2/7 N−1/3 N−2/5

Table 1. Rates of convergence to Hartree’s energy (β = 0).

2.2. Error bounds for the Non Linear Schrödinger model. If β > 0, then eH and eεH
still depend on N in our bounds (2.13) and (2.15). Our next task is to relate these energies
to the NLS ground state energy enls. In general, eH will not converge to enls. For this to be
true, some stability properties of the interaction potential w are needed, further discussed
in the following.

2.2.1. Stability properties of w. An even potential W is called classically stable [49] when
∑

1≤i<j≤N

W (xi − xj) ≥ −CN, ∀x1, ..., xN ∈ R
d, ∀N ≥ 2. (2.19)

By integrating against a factorized measure ρ(x1) · · · ρ(xN ) and letting N → ∞, we see
that (2.20) implies

∫∫

Rd×Rd

ρ(x)ρ(y)W (x− y) dx dy ≥ 0, ∀ρ ≥ 0. (2.20)

Conversely, when W is bounded, (2.19) implies (2.20) as is seen by taking ρ =
∑N

i=1 δxi
.

By dilating ρ one can see that (2.20) implies
∫
Rd W ≥ 0.

The relevance of classical stability to our quantum problem depends on the dimension:

3ŵ denotes the Fourier transform of w.
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• When d ≥ 3, the nonlinear term of the NLS functional is super-critical with respect to
the kinetic energy and we shall take (2.20) to be our assumption. Note that it is really
necessary to ensure that eH does not converge to −∞, which can be seen immediately by
taking a trial state uN (x) = Ndβ/2u(Nβx). In other words, in 3D, stability of the quantum
problem requires classical stability.
• In dimension d = 2, the nonlinear term of the NLS functional is critical with respect to
the kinetic energy. Classical stability is then not the optimal concept and Condition (2.20)
can be relaxed a bit with the help of the kinetic energy. We say that an even potential W
is Hartree-stable when

‖u‖2L2 ‖∇u‖2L2 +
1

2

∫∫

R2×R2

|u(x)|2|u(y)|2W (x− y) dx dy ≥ 0 (2.21)

for all u ∈ H1(R2). Clearly, a classically-stable potential is also Hartree-stable. Replacing
u by λu(λx) and taking the limit λ → ∞, we see that such a potential W must satisfy

‖u‖2L2 ‖∇u‖2L2 +
1

2

(∫

R2

W

)∫

R2

|u(x)|4 dx ≥ 0, ∀u ∈ H1(R2).

This exactly means that ∫

R2

W (x) dx ≥ −a∗

where a∗ is the critical interaction strength [56, 58, 26, 41] for existence of a ground state

for the NLS functional, that is, a∗ := ‖Q‖2L2(R2), where Q ∈ H1(R2) is the unique (up to

translations) positive radial solution of

−∆Q+Q−Q3 = 0. (2.22)

On the other hand, using Young’s inequality4 we have
∫∫

R2×R2

|u(x)|2|u(y)|2W (x− y) dx dy ≥ −
(∫

R2

W−

)∫

R2

|u(x)|4 dx,

and we see that
∫
R2 W

− ≤ a∗ implies (2.21). In the following we shall actually need a slightly
stronger notion of Hartree-stability, obtained by requiring (2.21) with a strict inequality,

inf
u∈H1(R2)




∫∫

R2×R2

|u(x)|2|u(y)|2W (x− y) dx dy

2 ‖u‖2L2(R2) ‖∇u‖2L2(R2)


 > −1 (2.23)

which plays the same role as the assumption
∫
R2 W > −a∗ in the NLS case.

• In dimension d = 1, the NLS nonlinearity is subcritical and the quantum system is always
stable thanks to the kinetic energy, whence the absence of specific assumptions in this case.

In order to simplify our presentation, from now on we use the word “stable” for a potential
W that satisfies (2.23) in dimension d = 2 and (2.20) in dimension d ≥ 3. The importance
of these concepts is illustrated in the following.

4with W− := −min(0,W ) the negative part of W
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Proposition 2.3 (Convergence of eH towards enls).
Let β > 0. We assume that (2.1), (2.2) and (2.3) hold true, and further suppose that
|x|w(x) ∈ L1(Rd).

• If d = 1, or d = 2, 3 with w stable, then we have

|eH − enls| ≤ CN−β. (2.24)

Furthermore, minimizers for eH converge in the limit N → ∞ to a minimizer for enls, after
extraction of a subsequence.

• If d = 2 and

inf
u∈H1(R2)




∫∫

R2×R2

|u(x)|2|u(y)|2w(x− y) dx dy

2 ‖u‖2L2(R2) ‖∇u‖2L2(R2)


 < −1, (2.25)

or if d ≥ 3 and w is not classically stable (in the sense of (2.20)), then

lim
N→∞

eH = −∞. (2.26)

The decay condition |x|w(x) ∈ L1 is a technical assumption which allows us to ob-
tain (2.24) by controling the error induced by replacing the interaction potential wN in the
Hartree model with the delta-potential in the NLS model. Without this assumption we still
have eH → enls but with no estimate on the convergence rate. Of course (2.26) immediately
implies

lim
N→∞

E(N)

N
= −∞ (2.27)

since E(N) ≤ NeH. In the above result, the stability condition on w is optimal in dimension
d = 3. If w is classically unstable we have (2.27) but it could be that

∫
R3 w ≥ 0, and then enls

is finite and therefore cannot be related to the limit of the N -body problem. In dimension
d = 2 we are only missing the case of equality in (2.23) and the stability condition is
therefore nearly optimal.

2.2.2. Convergence of the many-body problem. With Theorem 2.1 and Proposition 2.3 at
hand, it is an easy task to deduce error bounds between E(N)/N and the NLS minimum
energy.

Theorem 2.4 (Derivation of the NLS ground state energy).
Let β > 0. We assume that (2.1), (2.2) and (2.3) hold true, and further suppose that
|x|w(x) ∈ L1(Rd).

• If d = 1, then we have

CN−β + enls ≥
E(N)

N
≥ enls −CN−β − CN

−
1

4+2/s (2.28)

for all β > 0.

• If d = 2 and w is stable (in the sense of (2.23)), or if d = 3 and w − η|w| is stable (in
the sense of (2.20)) for some 0 < η < 1, then

enls + CN−β ≥ E(N)

N
≥ enls − CN−β − CN

−
1−dβ(1+d/2+d/s)

2+d/s+d/2 , (2.29)
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provided that β satisfies (2.14).

• Finally, if d = 3 and w is stable (in the sense of (2.20)), then we have

enls + CN−β ≥ E(N)

N
≥ enls −CN−β − CN

dβ−
1

2+d/s+d/2 (2.30)

provided that β satisfies (2.16).

We remark that when d = 2, since the stability assumption (2.23) is strict, the stability
for w implies the stability for w − η|w| for some 0 < η < 1. However, the same does not
hold when d = 3 and the error estimate (2.29) is really better than (2.30) (and similarly for
the range of β).

The proofs of Theorems 2.1 and 2.4 also imply some estimates on the ground states
themselves. In the absence of any assumption on the behavior of the Hartree functional we
cannot convert them into convergence rates for the states. In the NLS limit we nevertheless
obtain convergence of states and Bose-Einstein condensation:

Theorem 2.5 (Convergence of states in the NLS limit).
We use the same assumptions as in Theorem 2.4. Denote ΨN a ground state of the many-
body Hamiltonian (1.4) and

γ
(n)
N := Trn+1→N |ΨN 〉〈ΨN |

its n-body reduced density matrix. We have, modulo a subsequence,

lim
N→∞

γ
(n)
N =

∫

u∈Mnls

dµ(u)|u⊗n〉〈u⊗n| (2.31)

strongly in the trace-class for any n ≥ 1, with µ a Borel probability measure supported on

Mnls =
{
u ∈ L2(Rd), ‖u‖L2 = 1, Enls[u] = enls

}
. (2.32)

In particular, when the NLS ground state unls is unique (modulo a constant phase), we have
convergence for the whole sequence

lim
N→∞

γ
(n)
N = |u⊗n

nls 〉〈u⊗n
nls |, strongly in trace-class norm. (2.33)

Uniqueness of unls is ensured when
∫
w is either ≥ 0 or small enough in absolute value

in dimensions d = 1, 2, and the vector potential A is small enough. Loss of uniqueness
does occur if these assumptions are not satisfied, which is intimately linked to symmetry
breaking phenomena [3, 5, 15, 16, 26, 50]. When the NLS functional satisfies some stability
properties one may obtain error estimates on states, see Remark 4.2.

The main virtue of the estimates of Theorems 2.1 and 2.4 is that they do not depend
on special properties of the interaction potentials (apart from the necessary stability con-
ditions). They actually also do not depend on the vector potential A and they would be
exactly the same if the one-body term in the many-particle Hamiltonian is perturbed by
any bounded operator. As we have said, there is however no reason to think that the rates
of convergence are optimal.

When d ≥ 2, the estimates of Theorem 2.1 deteriorate with increasing β and this results
in a decrease of the range of applicability to the NLS limit. For the typical settings described
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above we obtain the desired result

E(N)

N
→ enls when N → ∞ (2.34)

under the conditions listed in Table 2. In 3D we distinguish the case where w − η|w| is
stable for some small fixed η where we obtain better estimates than when w is simply stable.
In the former case we say that w is η-stable. It remains an open problem to improve the
convergence rates we obtain and to generalize the results to larger values of β.

d = 3, w stable d = 3, w η-stable d = 2
s = 2 β < 1/15 β < 1/12 β < 1/8
s = ∞ β < 2/21 β < 2/15 β < 1/6

Table 2. Maximal value of β in the NLS limit (β > 0).

The rest of the paper is organized as follows: the core of the analysis is in Section 3 where
we prove Theorem 2.1. Next we turn to the proof of Proposition 2.3 in Section 4 where we
also conclude the proofs of Theorems 2.4 and 2.5.

3. Error bounds for Hartree theory

In this section, we prove Theorem 2.1.

3.1. Quantum de Finetti and localization. Let γN be an arbitrary (mixed) state in

the bosonic Hilbert space HN =
⊗N

s H, i.e. a positive operator satisfying Tr γN = 1. For

every k = 1, 2, ..., N , the k-particle density matrix γ
(k)
N is obtained by taking the partial

trace over all but the first k variables:

γ
(k)
N = Trk+1→N [γN ]

One of the main advantages of the reduced density matrices is that we can write

E(N)

N
=

1

N
〈ΨN ,HNΨN 〉 = 1

2
TrH2

[
H2γ

(2)
N

]
(3.1)

where γN = |ΨN 〉〈ΨN | and

H2 = − (∇x1 + iA(x1))
2 + V (x1) +− (∇x2 + iA(x2))

2 + V (x2) +Ndβw(Nβ(x1 − x2)).

When β = 0, H2 is independent of N and the limit E(N)/N → eH essentially comes

from the structure of γ
(2)
N in the large N limit. If one does not need an error estimate,

this convergence follows easily from a compactness argument and the quantum de Finetti
theorem [55, 28]. This is explained in [31, Section 3].

When β > 0, we have to deal with a N -dependent interaction potential and the compact-
ness argument in [31] is not sufficient. Our strategy in this paper is to use a localization
method to reduce the problem to a finite dimensional setting. We may then employ the
following quantitative version of the quantum de Finetti theorem, originally proved in [11]
(see [10, 27, 30] for variants of the proof and [21] for an earlier result in this direction):
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Theorem 3.1 (Quantitative quantum de Finetti in finite dimension).

Let K be a finite dimensional Hilbert space. For every state GN on KN :=
⊗N

s K and for
every k = 1, 2, ..., N we have

TrKn

∣∣∣G(k)
N −

∫

SK
|u⊗k〉〈u⊗k|dµGN

(u)
∣∣∣ ≤ 4k dimK

N
(3.2)

where

G
(n)
N := Trn+1→N [GN ]

and

dµGN
(u) := dimKN

〈
u⊗N , GNu⊗N

〉
du (3.3)

with du being the normalized uniform (Haar) measure on the unit sphere SK.

Remark 3.2. The measure dµN (u) is a probability measure thanks to Schur’s formula

1KN = dimK
N

∫

SK
|u⊗k〉〈u⊗k|du.

We shall not need the explicit expression (3.3). If one could find a different construction giv-
ing a better error estimate, the convergence rates of our main theorems would be improved
using the method we describe below. �

We will apply Theorem 3.1 to the low-lying energy subspace of the (magnetic) Schrödinger

operatorH1 = − (∇+ iA)2+V acting on H = L2(Rd). We denote by P− and P+ the spectral
projectors above and below the energy cut-off L:

P− = 1(−∞,L) (H1) , P+ = 1H − P− = P⊥
− . (3.4)

Thanks to our assumption (2.2) and (2.3), the dimension of the low-lying subspace

NL := dim(P−H) = number of eigenvalues of H1 below L (3.5)

is finite. Moreover it is controlled by a semi-classical inequality “à la Cwikel-Lieb-Rosenblum”,
stated in the next lemma. We refer to [35, Chapter 4] for a thorough discussion of related
inequalities.

Lemma 3.3 (Low-lying bound states of the one-body Hamiltonian).
Let V and A satisfy (2.2) and (2.3), respectively. Then for L large enough we have

NL ≤ CLd/s+d/2. (3.6)

Proof. The number of eigenvalues of (−i∇+A)2 + V below L can be estimated by

NL ≤ TrL2(Rd)

[
exp

(
−(−i∇+A)2 + V − L

L

)]
≤ 1

(2π)d

∫∫

Rd×Rd

e−
|p|2+V −L

L dx dp,

using [12, Thm. 2.1] and [53, Thm 15.8]. Using our assumption (2.2) that V (x) ≥ c|x|s−C
and changing variables gives the result. �

We will combine the de Finetti theorem and the localization method in Fock space, which
provides the correct way of restricting a quantum N -body state to a subspace of H. Let us
quickly recall this procedure, following the notation of [29].
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Let γN = |ΨN 〉〈ΨN | be the density matrix of a ground state5 ΨN ∈ HN of the N -
body Hamiltonian HN (known to exist in our setting of trapped systems). With the given
projections P−, P+, there are localized states G−

N , G+
N in the Fock space

F(H) = C⊕ H⊕ H
2 ⊕ · · ·

of the form
G±

N = G±
N,0 ⊕G±

N,1 ⊕ · · · ⊕G±
N,N ⊕ 0⊕ · · · (3.7)

with the crucial property that their reduced density matrices satisfy

P⊗n
± γ

(n)
N P⊗n

± =
(
G±

N

)(n)
=

(
N

n

)−1 N∑

k=n

(
k

n

)
Trn+1→k

[
G±

N,k

]
(3.8)

for any 0 ≤ n ≤ N . Here we use the convention that

γ
(n)
N := Trn+1→N [γN ],

which differs from the convention of [29], whence the different numerical factors in (3.8).
The relations (3.8) determine the localized states G−

N , G+
N uniquely and they ensure that

G−
N and G+

N are (mixed) states on the Fock spaces F(P−H) and F(P+H), respectively:

N∑

k=0

Tr
[
G−

N,k

]
=

N∑

k=0

Tr
[
G+

N,k

]
= 1. (3.9)

Due to (3.1), we are mainly interested in the two-particle density matrices. Applying the
quantitative de Finetti Theorem 3.1 to the localized state G−

N , we obtain the following

Lemma 3.4 (Quantitative quantum de Finetti for the localized state.).
For every L > 0, we have

TrH2

∣∣∣∣P
⊗2
− γ

(2)
N P⊗2

− −
∫

SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤
8NL

N

where

dµN (u) =

N∑

k=2

k(k − 1)

N(N − 1)
dµN,k(u), dµN,k(u) = dim(P−H)

k
s

〈
u⊗k, G−

N,ku
⊗k
〉
du. (3.10)

Proof. Applying the quantitative de Finetti Theorem 3.1 we have

TrH2

∣∣∣∣Tr3→k

[
G−

N,k

]
−
∫

SP−H

|u⊗2〉〈u⊗2|dµN,k(u)

∣∣∣∣ ≤ 8
NL

k
TrHk

[
G−

N,k

]

where dµN,k(u) = dim(P−H)
k
s〈u⊗k, G−

N,ku
⊗k〉du. Combining this and (3.8) we get

TrH2

∣∣∣∣P
⊗2
− γ

(2)
N P⊗2

− −
∫

SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤
N∑

k=2

(
N

2

)−1(k
2

)
8NL

k
TrHk

[
G−

N,k

]

=
8NL

N

N∑

k=2

k − 1

N − 1
TrHk

[
G−

N,k

]
≤ 8NL

N
,

since
∑N

k=0TrHk [G−
N,k] = 1. �

5Or, more generally, any N-body mixed state.
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Remark 3.5 (De Finetti measure for the n-body matrix).
We will later apply the same idea to any n-body density matrix. The de Finetti measures
obtained in this way a priori depend on n, unless G−

N,k = 0 for any k = 0 . . . N − 1, i.e.
unless all the particles are P− localized. We shall however prove in Section 4.3 that most
particles are P− localized, and thus all these n-dependent measures actually converge to
the same limit. �

We shall prove Theorem 2.1 in the following subsections. The core of the proof is in
Section 3.3, where Lemma 3.4 plays an essential role, with some preparation in Section 3.2
and some final computations in Section 3.4.

3.2. Truncated two-body Hamiltonian. Recall from (3.1) that

E(N)

N
=

1

2
Tr[H2γ

(2)
N ]

with γN = |ΨN 〉〈ΨN |. In order to reduce to a finite dimensional setting, we will replace the
Hamiltonian H2 by the localized operator P−⊗P−H2P−⊗P−, up to a small modification of
the interaction potential wN . The crucial fact is that if the energy cut-off L is large enough
(in comparison with ‖wN‖L∞), then the kinetic energy of the P+ localized particles can be
used to control both the localization error and the number of P+ localized particles.

For convenience we introduce a two-particle operator with modified interaction:

Hε
2 = −(∇x1 − iA(x1))

2 + V (x1)− (∇x2 − iA(x2))
2 + V (x2)

+ wN (x1 − x2)− ε|wN (x1 − x2)|. (3.11)

and the non-interacting two-particle operator

H0
2 = −(∇x1 − iA(x1))

2 + V (x1)− (∇x2 − iA(x2))
2 + V (x2) = H1 ⊗ 1+ 1⊗H1.

An important tool is then the following.

Lemma 3.6 (Truncated two-body Hamiltonian).
Assuming that 0 < ε ≤ 1 and L ≥ CNdβε−1 (resp. L ≥ Cε−2 if d = 1 and β > 0) for a
large enough constant C, we have

H2 ≥ P⊗2
− Hε

2P
⊗2
− +

L

2
(P+H1P+ ⊗ 1+ 1⊗ P+H1P+). (3.12)

The estimates in the d = 1 case use a simple lemma that we prove at the end of this
subsection:

Lemma 3.7 (Sobolev-type inequality in dimension d = 1).
For any even potential W ∈ L1(R), we have in dimension d = 1

H1 ⊗ 1+ 1⊗H1 +W (x− y) ≥ −C

(∫

R

W−

)2

− C. (3.13)

Proof of Lemma 3.6. For the two-body non-interacting Hamiltonian

H0
2 = H1 ⊗ 1+ 1⊗H1,

we use that

H1 = P−H1P− + P+H1P+
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and obtain

H0
2 = P−H1P− ⊗ 1+ 1⊗ P−H1P− + P+H1P+ ⊗ 1+ 1⊗ P+H1P+

= (P−)
⊗2H0

2 (P−)
⊗2 + P−H1P− ⊗ P+ + P+ ⊗ P−H1P− + P+H1P+ ⊗ 1+ 1⊗ P+H1P+.

Since H1 is bounded from below, we have P−H1P− ≥ −CP− ≥ −C and we obtain

H0
2 ≥ (P−)

⊗2H0
2 (P−)

⊗2 + P+(H1 − C)P+ ⊗ 1+ 1⊗ P+(H1 − C)P+. (3.14)

We now consider the interaction term and use the shorthand notation wN for the two-
body multiplication operator (x1, x2) 7→ wN (x1 − x2). We write again

wN = (P− + P+)
⊗2 wN (P− + P+)

⊗2

= (P−)
⊗2wN (P−)

⊗2 + (P−)
⊗2wNΠ+ΠwN (P−)

⊗2 +ΠwNΠ, (3.15)

with the orthogonal projection Π := P− ⊗ P+ + P+ ⊗ P− + P+ ⊗ P+. To bound the error
terms we use the inequality

PAQ+QAP ≥ −εP |A|P − ε−1Q|A|Q,

valid for any self-adjoint operator A, and any orthogonal projectors P,Q. If A is positive
this follows by writing6

(
ε1/2P ± ε−1/2Q

)
A
(
ε1/2P ± ε−1/2Q

)
≥ 0

and the general case is obtained by using the same bound applied to A+ and A− separately.
We thereby deduce that

(P−)
⊗2wNΠ+ΠwN (P−)

⊗2 ≥ −ε(P−)
⊗2|wN |(P−)

⊗2 − ε−1Π|wN |Π
and, therefore,

wN ≥ (P−)
⊗2(wN − ε|wN |)(P−)

⊗2 − (1 + ε−1)Π|wN |Π. (3.16)

Using now |wN | ≤ Ndβ and collecting our estimates we find

H2 ≥ (P−)
⊗2Hε

2(P−)
⊗2 + P+(H1 − C)P+ ⊗ 1+ 1⊗ P+(H1 − C)P+ − (1 + ε−1)NdβΠ

≥ (P−)
⊗2Hε

2(P−)
⊗2 +

1

2
(P+H1P+ ⊗ 1+ 1⊗ P+H1P+) +

(
L

2
− C − (1 + ε−1

)
Ndβ)Π

and the result follows in dimensions d ≥ 2 or when β = 0 and d = 1.
Coming back to (3.16), we may use Lemma 3.7 in the case d = 1, β > 0, to obtain

H2 ≥ (P−)
⊗2Hε

2(P−)
⊗2 +

1

2
(P+H1P+ ⊗ 1+ 1⊗ P+H1P+)

+ Π
(
L/4− C + (H1 ⊗ 1+ 1⊗H1)/4 − (1 + ε−1

)
|wN |

)
Π

≥ (P−)
⊗2Hε

2(P−)
⊗2 +

1

2
(P+H1P+ ⊗ 1+ 1⊗ P+H1P+) + Π

(
L/4−C − Cε−2

)
Π.

�

6We copy the proof that the diagonal part of a positive hermitian matrix controls the off-diagonal part.
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Proof of Lemma 3.7. In 1D we can bound
∫

R

|W (x)||u(x)|2 ≤
(∫

R

|W |
)
‖u‖2L∞(R) ≤ C‖W‖L1(R)‖u‖L2(R)

∥∥u′
∥∥
L2(R)

(3.17)

for every u ∈ H1(R). We conclude that

−d2/dx2 +W ≥ −d2/dx2 −W− ≥ −C
∥∥W−

∥∥2
L1(R)

− C.

Using the pointwise diamagnetic inequality |(∇ + iA)u| ≥ |∇|u| | and removing the center
of mass, the estimate is similar for the two-particle operator. �

3.3. Bound on the localized energy. Now we turn to the main step of the proof of
Theorem 2.1: we compare the energy corresponding to the localized operator in the right
side of (3.12) with the Hartree energy eH.

Lemma 3.8 (Lower bound to the localized energy).
For 0 < ε ≤ 1, L ≥ CNdβε−1 (resp. L ≥ Cε−2 if d = 1 and β > 0) and N large enough,
we have

1

2
Tr
[
P⊗2
− Hε

2P
⊗2
− γ

(2)
N

]
+

L

4
Tr
[
P+γ

(1)
N

]
≥ eεH − CL1+d/s+d/2

N
(3.18)

where γN is the density matrix of the N -body ground state.

Proof. By Lemma 3.4, we have

TrH2

∣∣∣∣P
⊗2
− γ

(2)
N P⊗2

− −
∫

SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤
8NL

N

with dµN defined as in (3.10). On the other hand,
∥∥P⊗2

− Hε
2P

⊗2
−

∥∥ ≤ 2L+ (1 + ε)‖wN‖L∞ ≤ CL (3.19)

in operator norm because we have truncated the high energy spectrum of the one-body part
and the two-body potential is bounded by ‖wN‖L∞ ≤ Ndβ ≤ CL. In dimension d = 1, the
estimate is the same but we use that |wN | ≤ H0

2 + C, by Lemma 3.7. Therefore,

1

2
Tr
[
P⊗2
− Hε

2P
⊗2
− γ

(2)
N

]
≥ 1

2

∫

SP−H

TrH2

[
Hε

2 |u⊗2〉〈u⊗2|
]
dµN − CLNL

N

≥
∫

SP−H

Eε
H[u]dµN − CL1+d/s+d/2

N

≥
∫

SP−H

(
Eε
H[u]− eεH

)
dµN + eεH µN (SP−H)−

CL1+d/s+d/2

N
(3.20)

where we have used the estimate NL ≤ CLd/s+d/2 of Lemma 3.3. Applying the variational
principle Eε

H[u] ≥ eεH and computing
∫
dµN explicitly using (3.10), we get

1

2
Tr
[
P⊗2
− Hε

2P
⊗2
− γ

(2)
N

]
≥ eεH

N∑

k=2

k(k − 1)

N(N − 1)
TrHk

[
G−

N,k

]
− CL1+d/s+d/2

N
. (3.21)

If eεH ≤ 0 then we simply write

N∑

k=2

k(k − 1)

N(N − 1)
TrHk

[
G−

N,k

]
≤

N∑

k=2

TrHk

[
G−

N,k

]
≤ 1
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and we are done. If eεH > 0, then we need to prove that
∫
dµN ≃ 1 and for this we use the

positive term

Tr
[
(P+ ⊗ 1+ 1⊗ P+)γ

(2)
N

]
= 2Tr

[
P+γ

(1)
N

]
= 2

(
1−Tr

[
P−γ

(1)
N

])
.

First, recall that by (3.8)

Tr
[
P−γ

(1)
N

]
=

N∑

k=1

k

N
TrHk

[
G−

N,k

]
.

Then, using Jensen’s inequality, we have

N∑

k=2

k(k − 1)

N(N − 1)
TrHk

[
G−

N,k

]
=

N

N − 1

N∑

k=0

k2

N2
TrHk

[
G−

N,k

]
− TrP−γ

(1)
N

N − 1

≥ N

N − 1

(
N∑

k=0

k

N
TrHk

[
G−

N,k

])2

− TrP−γ
(1)
N

N − 1

=
N

N − 1

(
TrP−γ

(1)
N

)2
− TrP−γ

(1)
N

N − 1
.

Therefore, denoting by

λ := TrP−γ
(1)
N ≤ 1

the fraction of particles localized on the low energy states, we have the lower bound

1

2
Tr
[
P⊗2
− Hε

2P
⊗2
− γ

(2)
N

]
+

L

4
TrP+γ

(1)
N ≥ Nλ2 − λ

N − 1
eεH +

L

4
(1− λ)− CL1+d/s+d/2

N
.

When L > 8NeεH/(N −1), the minimum of the right side is attained at λ = 1. In dimension

d ≥ 2, we have eεH ≤ CNdβ and L ≥ CNdβ/ε, and hence the condition L > 8NeεH/(N − 1)
is always fulfilled for N large enough. Similarly, if d = 1 and β > 0, we use that |eεH| ≤ C
and L ≥ Cε−2. In all cases we get

1

2
Tr
[
P⊗2
− Hε

2P
⊗2
− γ

(2)
N

]
+

L

4
Tr
[
P+γ

(1)
N

]
≥ eεH − CL1+d/s+d/2

N
(3.22)

which is the desired inequality. �

3.4. Conclusion: proof of Theorem 2.1. The upper bound in (2.15) is trivial, taking a
factorized trial state for the N -body energy. From Lemma 3.6 and Lemma 3.8, we have the
lower bound

E(N)

N
≥ eεH − C

L1+d/s+d/2

N
+

1

4
Tr
[
P+H1γ

(1)
N

]
(3.23)

which gives the result for L = CNdβε−1 in dimensions d ≥ 2 and, if β = 0, in dimension
d = 1. The last term in (3.23) is positive and will be useful later. For now we can just drop
it from the lower bound.

If d = 1 and β > 0, we take L = Cε−2. By Lemma 3.7 we have |eH| ≤ C and

Hε
2 = (1− ε)H2 + ε

(
H0

2 − (wN )−
)
≥ (1− ε)H2 − εC,
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which implies eεH ≥ eH − Cε. Thus we find

E(N)

N
≥ eH − Cε− C

ε−3−2/s

N
+

1

4
Tr
[
P+H1γ

(1)
N

]
.

The estimate (2.13) then follows after optimizing with respect to ε. �

4. The NLS limit

Now we explain how to go from the Hartree model to the NLS model and prove Propo-
sition 2.3 and Theorems 2.4 and 2.5.

4.1. From Hartree to NLS: proof of Proposition 2.3. The key observations are sum-
marized in the following lemma.

Lemma 4.1 (Stability of the effective one-body functionals).
Let d ≤ 3. We assume that (2.1), (2.2) and (2.3) hold true, and that |x|w(x) ∈ L1(Rd).
When d = 2, 3 we also assume that w is stable (in the sense of (2.23) when d = 2 and (2.20)
when d = 3).

Then the set of minimizers for Enls is non-empty and compact in the quadratic form
domain of H1. Also, for any normalized function u ∈ L2(Rd) we have

∫

Rd

|∇|u|(x)|2 dx ≤ C(EH[u] + C) (4.1)

and

|EH[u]− Enls[u]| ≤ CN−β

(
1 +

∫

Rd

|∇|u|(x)|2 dx

)2

. (4.2)

Proof. We start by proving (4.1). When d = 3, since w satisfies (2.20) the nonlinear term
is positive, and therefore the inequality (4.1) follows immediately from the diamagnetic
inequality |(∇+ iA)u| ≥ |∇|u| | and the assumption that V ≥ −C.

If d = 2, we use the stability assumption on w to obtain, for η small enough,

C + EH(u) ≥
∫

R2

|∇|u||2 + 1

2

∫∫

R2×R2

|u(x)|2|u(y)|2w(x− y) dx dy

≥ 1

1− η

(∫

R2

|∇|u||2 + 1− η

2

∫∫

R2×R2

|u(x)|2|u(y)|2w(x− y) dx dy

)

+
η

1− η

∫

R2

|∇|u||2

≥ η

1− η

∫

R2

|∇|u||2.

Finally, in dimension d = 1, we use Lemma 3.7 and obtain

EH[u] =
1

2

〈
u⊗2,H2u

⊗2
〉
≥ −C − C

(∫

R

w−

)2

+
1

2
〈u,H1u〉 ≥

1

2

∫

R

|u′|2 − C.
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Next, we prove (4.2). We change variables to write

EH[u]− Enls[u] =
1

2

∫∫

Rd×Rd

|u(x)|2wN (x− y)|u(y)|2dxdy − 1

2

(∫
w

)∫

Rd

|u|4

=
1

2

∫∫

Rd×Rd

|u(x)|2w(z)
(
|u(x+ zN−β)|2 − |u(x)|2

)
dxdz

=
1

2

∫∫

Rd×Rd

|u(x)|2w(z)
( ∫ 1

0
∇|u|2(x+ tzN−β)

)
· zN−βdt

)
dxdz

and hence
∣∣EH[u]− Enls[u]

∣∣ ≤ N−β

(∫

Rd

|z||w(z)| dz
) ∥∥|u|2 ∗ ∇|u|2

∥∥
L∞(Rd)

.

In dimensions d ≤ 3, we can write by the Young and Sobolev inequalities
∥∥|u|2 ∗ |∇|u|2|

∥∥
L∞(Rd)

≤ ‖u‖3L6 ‖∇|u|‖L2(Rd) ≤ C ‖|u|‖4H1(Rd) ,

which concludes the proof of (4.2). �

With Lemma 4.1 at hand, it is now easy to prove Proposition 2.3.

Proof of Proposition 2.3. We first prove

|eH − enls| ≤ CN−β. (4.3)

Let v be a minimizer for enls. Then |v| ∈ H1(Rd) by (4.1). Consequently,

eH ≤ EH(v) ≤ Enls(v) + CN−β ‖|v|‖4H1(Rd) = enls + CN−β.

Similarly, pick for every N a minimizer uN for eH. By (4.1), |uN | is uniformly bounded in
H1(Rd). Hence

enls ≤ Enls(uN ) ≤ EH(uN ) + CN−β ‖|uN |‖4H1(Rd) ≤ eH + CN−β,

which concludes the proof of (4.3).
Next we prove that eH → −∞ as N → ∞ when w is not stable in dimensions d ≥ 2.

Let u ∈ C∞
c (Rd) with support in the unit ball and ‖u‖L2 = 1. Using as trial state vN (x) =

Ndβ/2u(Nβx), our assumption (2.2) on V and the pointwise estimate

|∇vN + iAvN |2 ≤ (1 + ε)|∇vN |2 + (1 + ε−1)|A|2|vN |2,
we find that

eH ≤ C + (1 + ε)N2β

∫

Rd

|∇u|2 + (1 + ε−1)Ndβ ‖u‖L∞

∫

|x|Nβ≤1
|A|2 + CN−Sβ

∫

Rd

|x|S |u|2

+
Ndβ

2

∫∫

Rd×Rd

|u(x)|2w(x− y)|u(y)|2dxdy

= (1 + ε)N2β

∫

Rd

|∇u|2 + Ndβ

2

∫∫

Rd×Rd

|u(x)|2w(x− y)|u(y)|2dxdy + o(Ndβ).

If d ≥ 3 and w is not classically stable, we choose u to have
∫∫

Rd×Rd

|u(x)|2w(x− y)|u(y)|2dxdy < 0,
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and we conclude that limN→∞ eH = limN→∞E(N)/N = −∞ since E(N)/N ≤ eH. If d = 2,
we take ε2 =

∫
|x|≤N−β |A|2 and obtain

lim sup
N→∞

eH
N2β

≤ inf
u∈H1(R2)

‖u‖
L2(R2)=1

(∫

R2

|∇u|2 + 1

2

∫∫

R2×R2

|u(x)|2w(x− y)|u(y)|2dxdy
)
.

The right side is strictly negative by assumption. �

4.2. Convergence of the many-body energy: proof of Theorem 2.4. In the cases
d = 1, d = 2 with w stable, the result immediately follows from Theorem 2.1, Remark 2.2
and Theorem 2.3. If w − η|w| is stable for some 0 < η < 1, so is w − ε|w| for all 0 ≤ ε ≤ η.
Then we can apply Proposition 2.3 with w replaced by w− ε|w| for some ε < 1 to be tuned
later on and get

|eεnls − eεH| ≤ CN−β (4.4)

where eεnls is the NLS minimization problem, with a =
∫
w replaced by

∫
w−ε

∫
|w|. Arguing

as in the proof of Lemma 4.1, it is not difficult to see that |eεnls − enls| ≤ Cε. Therefore
Theorem 2.1 provides the bound

enls + CN−β ≥ E(N)

N
≥ enls − Cε− CN−β − C

ε−1−d/2−d/s

N1−dβ(1+d/2+d/s)
.

Optimizing over ε gives (2.29). �

4.3. Convergence of states: proof of Theorem 2.5. We split the proof in four steps
for clarity.

Step 1, strong compactness of density matrices. We first note that γ
(n)
N is by definition

bounded in the trace-class, so that we can extract a subsequence along which

γ
(n)
N ⇀∗ γ

(n) (4.5)

as N → ∞. Modulo a diagonal extraction argument, one can assume that the convergence
is along the same subsequence for any n. We now argue that the convergence is actually
strong. We start by proving that

Tr
[
H1γ

(1)
N

]
= Tr

[ (
−
(
∇+ iA

)2
+ V

)
γ
(1)
N

]
≤ C, (4.6)

independently of N . To this end, pick some α > 0 and define

HN,α =

N∑

j=1

(
−
(
∇+ iA(xj)

)2
+ V (xj)

)
+

1 + α

N − 1

∑

1≤i<j≤N

Ndβw(Nβ(xi − xj)).

Noticing for instance that

(1 + η/4)(w − η/4|w|) ≥ w − (η/2 + η2/16)|w| ≥ w − η|w|,
we can apply the results of Theorem 2.4 with HN replaced by HN,α. We find in particular
that HN,α ≥ −CN and deduce that

enls + o(1) ≥ 〈ΨN ,HNΨN 〉
N

≥ −C(1 + α)−1 +
α

1 + α
Tr
[
H1γ

(1)
N

]
.
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Hence (4.6) holds true. SinceH1 = − (∇+ iA)2+V has a compact resolvent, (4.5) and (4.6)

imply that, up to a subsequence, γ
(1)
N converges strongly in the trace class. By [31, Corol-

lary 2.4], γ
(n)
N converges strongly as well for all n ≥ 1.

Step 2, introducing the limit measure. Now we extract some useful information from
the proof of Theorem 2.1. We shall use the same notation as in Section 3 (with the same
choices for L and ε that were made later in the proof). For simplicity we denote by

rN := N−β +N
−

1
4+2/s1(d = 1) +N

−
1−dβ(1+d/2+d/s)

2+d/s+d/2 1(d = 2, 3)

the best error bound that we have derived on |E(N)/N − enls|.
Let dµN be defined as in Lemma 3.4, which is such that

µN (SP−H) = Tr
[
P⊗2
− γ

(2)
N P⊗2

−

]

Our arguments of Section 3 actually imply that µN (SP−H) → 1 but we will recover this
fact here. We have

Tr

∣∣∣∣P
⊗2
− γ

(2)
N P⊗2

− −
∫

SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤
8NL

N
≤ C

L1+d/s+d/2

N
→ 0.

On the other hand, the estimate (3.22) and the error bounds provide a control on the
number of excited particles:

1− µN (SP−H) = Tr
[
(1− P⊗2

− )γ
(2)
N

]
≤ 2Tr

[
P+γ

(1)
N

]
≤ rN

L
. (4.7)

Therefore, by the triangle and Cauchy-Schwarz inequalities, we find

Tr

∣∣∣∣γ
(2)
N −

∫

SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤ C
L1+d/s+d/2

N
+ C

√
rN
L

. (4.8)

Next, we denote PK the spectral projector of H1 onto energies below a cut-off K. Since

γ
(2)
N → γ(2) and PK → 1 we deduce from the above

lim
K→∞

lim
N→∞

µN (SPKH) = 1.

This tightness condition allows us to use Prokhorov’s theorem and [54, Lemma 1] to ensure
that, up to extraction of a subsequence, µN converges weakly to a measure µ in the ball
BH. After passing to the weak limit, we find that

γ(2) =

∫

BH

|u⊗2〉〈u⊗2|dµ(u).

Since µ(BH) ≤ 1 and Tr γ(2) = 1 by the strong convergence of γ
(2)
N , we conclude that µ is

supported on the sphere SH.

Step 3, the limit measure charges only NLS minimizers. Going back to our proof
in the previous sections and using that

µN (SP−H) = 1 +O
(rN
L

)
,

we deduce the bound ∫

SP−H

(
Eε
H[u]− eεH

)
dµN (u) ≤ CrN
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on the term that we had neglected in (3.20). By Lemma 4.1, this implies that, for B a large
enough (but fixed) constant,

B2

C

∫

‖∇|u|‖
H1≥B

dµN (u) ≤
∫

‖∇|u|‖
H1≥B

(
Eε
H[u]− eεH

)
dµN (u) ≤ CrN .

and
∫

‖∇|u|‖
L2≤B

(
Enls[u]−enls

)
dµN ≤ C(1+B4)(ε+N−β)+

∫

‖∇|u|‖
L2≤B

(
EH[u]−eH

)
dµN (u) ≤ CrN .

Passing to the limit N → ∞, it is now clear that µ has its support on Mnls.
At this stage, from (4.8) and the convergence of µN we have, along a subsequence

γ
(2)
N →

∫

Mnls

|u⊗2〉〈u⊗2|dµ(u),

strongly in the trace-class, where µ is a probability measure supported on Mnls. Taking a
partial trace we also have

γ
(1)
N →

∫

Mnls

|u〉〈u|dµ(u).

Step 4, higher order density matrices. There remains to prove that, for any n > 2,

γ
(n)
N →

∫

Mnls

|u⊗n〉〈u⊗n|dµ(u),

strongly in the trace-class when N → ∞. In view of the definition of µ this follows from
the estimate

Tr

∣∣∣∣γ
(n)
N −

∫

SP−H

|u⊗n〉〈u⊗n|dµN (u)

∣∣∣∣→ 0. (4.9)

To see that (4.9) holds we first define a measure approximating γ
(n)
N , as indicated in Re-

mark 3.5. Arguing as in the proof of Lemma 3.4 we have

TrHn

∣∣∣∣P
⊗n
− γ

(n)
N P⊗n

− −
∫

SP−H

|u⊗n〉〈u⊗n|dµn
N (u)

∣∣∣∣ ≤ C
nNL

N
(4.10)

where

dµn
N (u) =

N∑

k=n

(
N

n

)−1(k
n

)
dµN,k(u) (4.11)

and dµN,k is the same measure as in (3.10). An estimate similar to (4.7) next shows that

TrHn

∣∣∣∣γ
(n)
N −

∫

SP−H

|u⊗n〉〈u⊗n|dµn
N (u)

∣∣∣∣→ 0.

Using the easy bound (see [31, Section 2])
(
N

n

)−1(k
n

)
=

(
k

N

)n

+O(N−1)
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together with the triangle inequality and Schur’s formula (see Remark 3.2) we next deduce
from (4.10) that

Tr

∣∣∣∣γ
(n)
N −

∫

SP−H

|u⊗n〉〈u⊗n|dµN (u)

∣∣∣∣ ≤
N∑

k=0

((
k

N

)2

−
(

k

N

)n
)
TrHk

[
G−

N,k

]

+

n−1∑

k=0

(
k

N

)n

TrHk

[
G−

N,k

]

+

2∑

k=0

(
k

N

)2

TrHk

[
G−

N,k

]
+ o(1). (4.12)

Finally, combining our previous estimates gives

N∑

k=2

(
k

N

)2

TrHk

[
G−

N,k

]
→ 1

and using (3.9) we in fact have

N∑

k=0

(
k

N

)2

TrHk

[
G−

N,k

]
→ 1.

Then by Jensen’s inequality

1 ≥
N∑

k=0

(
k

N

)n

TrHk

[
G−

N,k

]
≥
(

N∑

k=0

(
k

N

)2

TrHk

[
G−

N,k

])n/2

→ 1.

Inserting this and (3.9) in (4.12) concludes the proof of (4.9) and thus that of the theorem.
�

We finally note that our method can give quantitative estimates on reduced density
matrices in some special cases:

Remark 4.2 (The case of a stable NLS functional). If a stability estimate of the form

Enls[u] ≥ enls + c inf
v∈Mnls

‖u− v‖2 (4.13)

holds at the level of the NLS functional, for some norm ‖ . ‖ (say the L2 norm), it is
easy to see that the previous method leads to quantitative estimates on density matrices.
In particular, if the NLS minimizer is unique (up to a constant phase), non-degenerate,
and (4.13) holds, one may obtain quantitative bounds on the depletion of the condensate.
Indeed, it immediately follows from the above considerations and (4.13) that

∫

u∈SP−H

∥∥ |u〉 〈u| − |unls〉 〈unls|
∥∥2
S2 dµN (u) ≤ rN

where S2 denotes the Hilbert-Schmidt class. Then, using Jensen’s inequality together with
the fact that |unls〉〈unls| is a rank-one projection we have

∥∥∥∥
∫

u∈SP−H

|u〉〈u|dµN (u)− |unls〉〈unls|
∥∥∥∥
S1

≤ C
√
rN
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and thus, in view of our previous bounds,∥∥∥γ(n)N −
∣∣u⊗n

nls

〉 〈
u⊗n
nls

∣∣
∥∥∥
S1(L2(R3))

≤ Cn
√
rN ,

where Cn depends only on n.
Since we do not want to rely on assumptions such as (4.13) we do not pursue in this

direction. We refer to [9] or [23, Section 6] for discussions of estimates of the form (4.13).
�
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[19] L. Erdős, B. Schlein, and H.-T. Yau, Rigorous derivation of the Gross-Pitaevskii equation with a

large interaction potential, J. Amer. Math. Soc., 22 (2009), pp. 1099–1156.
[20] M. Fannes, H. Spohn, and A. Verbeure, Equilibrium states for mean field models, J. Math. Phys.,

21 (1980), pp. 355–358.
[21] M. Fannes and C. Vandenplas, Finite size mean-field models, J. Phys. A, 39 (2006), pp. 13843–13860.
[22] A. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys., 81 (2009), p. 647.
[23] R. L. Frank, Ground states of semi-linear pdes. Lecture notes, 2014.



26 M. LEWIN, P.T. NAM, AND N. ROUGERIE
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