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Joint Analysis of Flow Cytometry Data and
Fluorescence Spectra as a Non-Negative Array

Factorization Problem

David Brie", Rémi Klotz, Sebastian Miron, Said Moussaoui, Christian Mustin, Ppédi

Bécuwe, Stéphanie Grandemange

Abstract

The paper presents a novel approach to the processing of fimmetry data sequences. It consists
in decomposing a sequence of multidimensional probaldktysity functions by using multilinear block
tensor decomposition approach [1], [2]. Also a formal lirdtdeen flow cytometry data and fluorescence
spectra is provided allowing the joint processing of bothaddo illustrate the effectiveness of the
approach, a study of the T47D cell line mitochondrial membrpotential as a function of the CCCP
decoupling agent concentration is performed. The main raidgas of the method are : (i) the flow
cytometry data compensation is no longer necessary, @)ciil sorting capacity of the method is
significantly improved as compared to classical clusteritethods. As a byproduct, it was possible to
observe directly on the result of the processing, the degresel of the cell mitochondrial membrane
potential with respect to the cell cycle phase. The propasethod is quite general provided that
it is possible to design an experiment allowing to observe tbsponse of cell populations to an

environmental/chemical/biological parameter.

Index Terms

Flow cytometry, fluorescence spectroscopy, mixture of ivardiate probability density functions,
non-negative block Candecomp/Parafac decompositionrnegative matrix factorization, mitochondrial

membrane potential, JC-1 probe.
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. INTRODUCTION

Flow cytometry is an investigation technique widely usediology and medicine for the character-
ization and quantification of the morphological, densityl dluorescence properties of cells. A highly
insightful approach, often used in biology and biomedidadi&s, consists in studying the evolution
(response) of a cell population with respect to environmiéctiemical/biological parameters.g. temper-
ature, chemical drugs, gene expression). The recent tediocal progress of cytometers allow the design
of complex multiparameter experiments yielding a large amaf data. The classical flow cytometry
data analysis methods are no longer adapted to these dateeand there is a need for new algorithms
that can efficiently retrieve the relevant information frahis large amount of data [3]. Classical flow
cytometry data processing consists in a sequence of proeeduainly relying on the user expertise, and
is, therefore, somewhat subjective. In general, the diffeoperations are as follows:

1) Gating: consists in manually selecting a cell population of intexeithin the dot plot.

2) Compensationaims at minimizing the influence of the spectral overlapgmgdifferent cell sub-
populations. It consists in applying a linear transforioatio the data, whose parameters are user-defined.

3) Clustering: is a cell sorting operation based on cell characteristicatimeed above. In most
manufacturer provided softwares, this operation congistsanually defining quadrants on the dot plots.
Most of these methods require a user decision step which rvapgdy affect the relevance of the
results. This is especially the case when the sub-popualatistributions strongly overlap, as often in
practical applications. In the last years, more effectivstering algorithms were proposed mainly based
on k—means related methods.§. [4]-[7]) or Gaussian mixture model®.g.[6], [8]-[10]). In [7], Lo
et al. propose the use af-distributions mixtures instead of Gaussian mixtures, ay #ilow to better
handle outliers, due to their heavier tail.

In [11], [12], an information geometry approach allows tdine similarity measures between sets of
cytometry data facilitating data interpretation by clinits and resulting in a low dimension representation
of the data. This approach is somewhat related to the onegeghere since it jointly considers multiple
cytometry data sets.

The contributions of this work are twofold) we introduce a cell population sorting method based
on a non-negative block tensor decomposition of the dattodriams. The key point is that it is a
fully multidimensional approach in which cell sorting isrdaccording to the response of the different
sub-populations to a parameter (the CCCP concentratignisrpaper). The model identifiability is also
studied. The main advantages of our methods are: it is alfulhsunsupervised (the only input parameter

is the number of sub-populations sought in the data), it isp@rametric (there is no underlying parametric
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probability density function) and it is not much affected the overlapping of the sub-population
distributions.ii) we prove that there is a relationship between flow cytomeng bulk spectroscopy

data, and propose a joint processing approach of the twordatklities. This improves the separation
accuracy and provides a more complete description of thiyzethcell populations. This joint modality

data analysis can be regarded as a data fusion approachgmsed in [13] in the context of polarized
Raman spectroscopy. This type of data fusion approach Hasdja lot of interest recently in various
domains of application (seeqg.[14], [15]).

The remainder of this paper is organized as follows: in the section, we introduce the notations
and some general assumptions that are used throughoutaihés;pn section Ill, the data model for the
proposed approach is derived and the link between speofrgsand cytometry data is highlighted; in
section IV we analyze the identifiability of the proposed mlodnd propose a three-step algorithm for
sorting the cell sub-populations; section V gives an illatibn of applicability of the proposed approach to
the study of the T47D cell line mitochondrial membrane ptiétms a function of the CCCP decoupling
agent concentration. It includes the experiment desonpénd the results of the proposed approach

applied to different datasets; some conclusions are givesection VI.

[l. PRELIMINARIES

Lowercase lettersi{ y, . . . ) denote scalars, boldface lowercasgey, . . . ) are used for vectors, boldface
capitals X,Y,...) symbolize matrices and tensors are written in boldfacégcaphic capital letters
(X,Y,...). A tensoror N-way array (V > 3) can be seen as the generalization of matrices to the
multidimensional case. The number of dimensidnss called theorder of the tensor. Thus, a vector
is a first order tensor, a matrix is a second order teresor,Consider a 3-way data array (third order

tensor)X (I x J x K) admitting the following decomposition in a sum &f terms:

K

X:Zakobkock (1)
k=1

whereay (I x 1), bi(J x 1) andci(L x 1) are vectors ands” denotes the outer product. The three
dimensions ofX are referred to asnodes The quantitya, o by o ¢; represents a rank-1 tensor and
the decomposition in (1) is commonly known ass\MDECOMP/PARAFAC (CP) [16], [17]. If K is
the minimum number of rank-1 tensors that yield exacly than K is called therank of the CP

decomposition. An alternative notation for (1) is

X =[A,B,C], (2)
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whereA = [a; ...ak]|, B=[b;...bg]andC = [c; ... cx]| denote the component/loading matrices. All
these notions, defined here for the 3-way case, generataiglgforwardly toN-way arrays vV > 3).

For simplicity, throughout this paper, the noise/erronten data model expressions will be ignored,
which nothing detracts from the generality of the presemtexdhod. To introduce the theoretical data
model in section Ill, continuous probability density fuiocts (dfs) should be employed. However, in
practice, the recorded data are represented by histogneaplyjng discretized versions of thepdfs. For
the clarity of the presentation, we will use lowercase tstte denote the continuoyslfs and boldface
lowercase for their discretized versions. The length ofuéetors representing the discretizedfs (.e.
the number of bins) will not be explicitly mentioned, unlésss crucial for the comprehension of the
presentation. Also, for simplification, the distinctionntimuous/discretizegdf will not always be made

in the text, but can be easily deduced from the context.

[1l. DATA MODEL
A. The probability density function of N-dimensional floooyetry data

Consider N-dimensional flow cytometry data. Each of the ywed cells yields a lengttiv vector
measuring the amplitudes &f different wavelength values of the emitted fluorescenchtlighe set
of measurements collected on a populationMfdifferent cells can be gathered in/ x M matrix
X = [x1---xp], Wherex,, = [2,(1), -+ , 2, (N)]T andm = 1,..., M. As illustrated in figure 1, this
data matrixX can be characterized by if§-variate pdf denoted byp(x) = P(x,, = x). An estimation
of this pdf can be obtained by calculating the histogram of data which M-dimensional (N-D) array
having, for each dimension, a number of points equal to thebar of bins on which the histogram was
calculated. The number of bins should be large enough to hauficient resolutionife the ability to
distinguish differentpdfs) but not too large to have a reasonable noise (error). Faxpkriments, the

number of bins was fixed t60 along each dimension.

B. The bilinear model of sequence of N-D pdfs

Let us consider a cell population composedfilifferent sub-populations. A sub-population is defined
as a set of cells exhibiting identical/similar behaviorghwespect to the variation of a physical parameter.
We represent théV-D data points in the analyzed sample by ff p(x) of the measurement vectar

This pdfis expressed as a mixture &f density functionsf, corresponding to thé sub-populations:
K

P(xp = %) =p(x) = > axfr(x) 3)
k=1
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Fig. 1: Transforming thé N x M) matrix X into N-D histograms; illustrations foN = 2 and 3.

with Zszl a = 1. Assume that we study the response of this cell populaticih@ovariation of some
physical parameter, denotaedhereafter. For each value of a flow cytometry dataset can be recorded,
resulting in a sequence of flow cytometry data matrices. Hepach data matrix obtained for a given

physical condition yields @df denoted byp(x, s), that can be modeled as:

K
p(x,5) = > ag(s)fi(x). 4)
k=1

The sequence aV-D histograms, obtained for different valuessofcan thus be gathered into(& +1)-
D array (tensor) denoted bf. By unfolding this tensor along the dimensions correspogdo the N

different wavelengths, we obtain a matiix that admits the following bilinear factorization:
P = AFT. (5)

In (5), P has a number of rows equal to the number of values of the paeamtethe columns of
A, symbolized bya; (kK = 1,..., K), contain the mixing coefficients of th& sub-populations for
the different values of; the columns ofF are the “unfolded”N-D density functionsf;, of the K

sub-populations.

C. The BlockEaANDECOMP/PARAFAC model of sequence @¥-D pdfs

Assuming the independence of each coordinate ef [x1,--- ,zx]”, the multivariatepdf f;(x) can
be factorized as a product of univariatepdfs: fx(x) = fl(21)- f2(x2)--- f¥ (zn). Thus the data array

can be written as a CP model of ord®r+ 1:

K
P:Zakofk,lo”’ofk,N' (6)
k=1
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Equation (6) clearly expressesd+ 1 CP model of rankK which can be alternatively written as:
’P:HAaFla"'7FN]]7 (7)

whereA = [ay,...,ag| andF, = [f,,... . fx ], withn =1,..., N. The link between models (7) and
(5) is obtained by unfoldingP into a matrix, according toP = A(F; ®---® Fy)7, where " stands
for the Khatri-Rao product. Thus, we ha¥e=F; © - -- © F . Admittedly, assuming the independence
of each coordinate at does not allow to represent general probability densityction. Restricting our
attention to the case of bi-dimensional density functioNs € 2), we propose to adopt for the data
the rank{Ly, L, 1) Block Component Model, equally known as Block&DECOMP/PARAFAC (BCP)
model, introduced by De Lathauwer in [1], [2]. By doing soisitpossible to consider the more general
case of non-separabledfs. In fact, this is nothing but performing a low rank approatian of the

(discretized)pdfs. Hence, thé N + 1)-D data array can be written as:

K
P=> a,oE, (8
k=1

where the rankl, matricesE, can be decomposed as:
Lk Lk T
E; = Zfilgg ° flle,2 = Zfli,1fllc,2 . 9)
1=1 =1

A graphical illustration of this model is given on figure 2.

) | |
_- \ ! RS

7 \ | Tl -
T eee el T T .oe gL
fll.]fllAZ + + flLlflLZ fll(lfII\Q + + f[’(]flle

Fig. 2: Graphical illustration of the rankty, L, 1) BCP model ofP.

The BCP model can be seen as a CP model in which some of thengpadctors (columns) of the
matrix A are collinear. The model in (8) can be easily generalizeddbdr dimensional ¥ > 2) data.
The higher-dimensional case does not yield more complicdd¢a processing situations, since it is known
that higher-order CP models require less restrictive iflability conditions. For example, some 4-order

CP models, with collinear loading in at most three modes paogably identifiable [18].
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D. Joint analysis of fluorescence cytometry and bulk spsctpy data

The question investigated in this subsection is the folmuiis there a formal link between the
fluorescence spectra and the cytometry data for a given oglllption? We are going to show that
the answer is actually yes, allowing us to propose a jointyasigof the two types (modalities) of data.
A bulk fluorescence spectrum corresponds to the fluoresameesured on a large number of cells. In
that respect, it can be seen as an average of all the indielldluorescence spectra. Thus, considering

the variation of the same physical parametethe measured spectra(s) can be written as:

m(s) = /5& p(X, s)dx. (10)

The vectorx containsx as a “sub-vector”, and therefore we can write

K
P&, s) = ag(s)fi(X), (11)
k=1
where the mixing coefficients(s) are the same as in eq. (10). By replacing (11) in (10), we obtai
K K
m(s) = Y a(s) /ifk(ic)dic = a(s)f. (12)
k=1 —_— k=1

£
If we regroup the set of spectra (after normalization to emitrgy) recorded for the different values of

s on the rows of a matriXM, the following mixture model can be written:
M = AFT. (13)

In (13), the columns off* are the vectord), and correspond to spectra characterizing the (averaged)
spectral response of thE cell sub-populations and the mixing matri is exactly the same as in the
cytometry data model (5). We are now able to propose the joidel by gathering the two models (5)
and (13) into a single one. This is possible because of themmmmmixing matrix A. We follow an
approach quite similar to the one proposed in [13] which iss$n concatenating the data matrides

and M according to:
T

P M]=A (14)

F
The joint use of a sequence of fluorescence flow cytometry pact©scopy data provides a very complete
description of cell population. It yields a decompositidrttte whole population into homogeneous sub-

populations characterized by their common:

1In reality, the data vectox is obtained by integrating the emitted light over a wavetkrigterval AX around the different

“colors” used by the cytometer. However, for small valuesof, eq. (11) is a good approximation pfXx, s).
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- probability density function
- (averaged) spectral response

- response to a physical parameter.

IV. MODEL IDENTIFIABILITY AND DATA PROCESSING

The problem at hand can be embedded in the general framevarkmenegative approximation of
non-negative tensors using multilinear decompositiotés 15 still an open problem but a milestone was
reached with the work of Lim and Comon [19] where it is provhdttnon-negativity ensures the well
posedness of the non-negative tensor approximation. Asiomexd in [19], this can actually be associated
to the sparse naive Bayes probabilistic modelddf [20], since the underlying probabilistic model is a
mixture of densities having independent variables. Herggaene step further since, by using the BCP,
we can relax the independence assumption. However, thdiques the validity of the non-negative
BCP as an approximation tool is an open problem which woukkde to be studied. We did not pay
further attention to this point, but as a first attempt tosilhate the regularization property of the non-
negativity, we show that rankl;, L, 1) exact non-negative BCP decomposition can be unique without
any additional assumption. This is not the case for gene@P Binless some other constraints (such
as orthogonality) are enforced. In section lll, it was shawat NMF was involved in all the different
models considered. In that respect, uniqueness of the NM¥sp central role and in the sequel we
recall some results on the NMF uniqueness and we give a sufficiondition which allows to check
directly on the data if a NMF is likely to be unique. We then tisese results to study the uniqueness
of the non-negative BCP and we give some practical conseggeof theses results. To conclude this

section, we present the three different steps of the dateepsing algorithm.

A. ldentifiability of the non-negative bilinear model

In this section, we address the identifiability of the biinenodel which arises in different contexts
in this work, in particular for models (5) and (13). Such nmgative bilinear models are also involved
in BCP decomposition, as we will show in section IV-B. Assuthat a non-negative matri¥v admits
an exact bilinear model representation:

W =HGT. (15)

Depending on the considered case, the maW%ixmay represent different quantities: matix for the

model (5), matrixM for (5), matrix [P M] for model (14), and matridE;, for the BCP model (8).
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It is well known, that in general the bilinear decomposit{@b) does not admit a unique solution since

for any non-singular matrid it is possible to write:
W=HT T'G" =H GT (16)

which is another admissible solution. Regularization isstineeded to obtain an unique decomposition.
Among the possible additional constraints which can be idensd, we focus on the non-negativity
assumption, leading to the Non-negative Matrix Factoiora{NMF) problem [21]. In order to discuss

the identifiability of the NMF model (15), the notion efmplicial coneneeds to be introduced.

Definition 1 (Simplicial cone)The simplicial conegenerated by a family of vectofg,, }/V_; is

C{gn}) = {w CW = Zangn,an > O} .

n

The order of a simplicial cone is the dimension of the subspace Gpgy}’_;). Based on the definition
above, a necessary and sufficient condition for NMF idetiifig has been provided by Chen in [22]:

Theorem 1 (Necessary and sufficient uniqueness conditizenoting /IC the convex hull of the data
matrix W, the decomposition oW according toW = HGT', H>0,G>0is unique if and only if
the simplicial cone?(G), such ask c C(G), is uniqué.

Clearly, Theorem 1 does not provide any numerical conditiorcheck if a NMF is unique or not. This
motivated the work of [23] from which it appears that unigess relies on the number of zero entries
in both matricesH and G. New results can also be found in the very recent paper [2d{oftunately,
even if these approaches do give numerical rules to checi\NiM& model is identifiable, they do not
provide any effective mean to check directly from the datdn&@ NMF is unique. This is the goal of the
following proposition and corollary. However, before gpiany further, it is necessary to introduce the
notion of monomial matrixand and some related properties.

Definition 2 (Monomial matrix)A positive matrixT of dimension(p, p) is called a monomial matrix

if every row and every column of this matrix contains exaathe non-null element [25], that is
Vi=1,...,p, Jk;ty, >0 andtj, =0Vj # . a7

Property 1 (see [26])An arbitrary positive square matriX' has a positive inverse matrix if and only

if T is a monomial matrix. The' ! is also monomial.

2The notationH > 0 means that each entry of the matiik is non-negative
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10

Property 2 (see [26]):Each monomial matriXI' may be decomposed & = AU, where A is a
positive diagonal matrix an@J is a permutation matrix, that is, a monomial matrix whose -nero
elements are equal tb. Such a transformation, when applied @ vyields the scaling and ordering
indeterminacies.

We are now ready to formulate a sufficient condition for thejuaness of NMF, from which we derive
another sufficient condition, which can be applied diretdlythe data.

Proposition 1 (Sufficient Uniqgueness Conditiofthe decomposition oW into H and G according
to

W =HG”, withG>0H >0, (18)

is unique if the following conditions are satisfied:

(B1) There exists a submatrix &1 of dimension(K, K) which is monomial.

(B2) There exists a submatrix & of dimension(X, K) which is monomial.

Proof : See the appendixl]
From this result, we may immediately deduce the followingotiary which gives a sufficient condition
on W to admit a unigue non-negative factorization.

Corollary 1: The decomposition oW into H and G according to
W=HG " withH>0,G >0, (19)
is unique if the following condition is satisfied:
(C1) After line and column permutations, the matrix W can be written as:

Wi @ Wy

Wy Wy
whereW; is a non-singular diagonal matrix of dimensioR, K).

The proof of this corollary is trivial using the fact that ampegative monomial matrix can be factorized

only as a product of two other non-negative monomial madricethe same size.

B. Identifiability of the non-negative BCP model

Before addressing the BCP model identifiability, some ueiggss results of the CP decomposition
must be presented. A key notion to the uniqueness of the Céhgaasition is due to Kruskal [27], and

relies on the concept of “Kruskal-rank” or simptyrank. Thek-rank of anl x K matrix A, denoted by
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11

ka, is the maximum valué € N such that every columns ofA are linearly independent. By definition,

the k-rank of a matrix is less than or equal to its classical rantusKal proved that [27]
ka + kB +kc >2K +2 (20)

is a sufficient condition for ensuring the uniqueness of the de@composition in (1). Furthermore, it
becomes a necessary and sufficient condition in the &ase2 or 3.

This condition no longer holds when one matrix (sAy has ak-rank equal tol, that is, when the
matrix A has collinear columns. Unfortunately, this is what happemghe BCP model. In this case,
we have to resort to the notion of partial uniqueness whicamadhat only “part of the model” can be
unique (see [28], [29] for details). Restricting our atientto the BCP decomposition at hand, and based

on the results of [29], the identifiability oA is ensured if:
ra + kB + kc > 2K + 2, (21)

wherer, is the classical rank of matriA. In particular, in the case consideredBf and C are full-
column rank matrices, the identifiability oX requires onlyra > 2. Some other identifiability results
for A can be found in [29].

The key point is that, provided can be uniquely estimated from the data, theorem 3.1 of [29]
ensures that the identifiability of the entire CP model caragsessed by checking the identifiability of
several independent lower-rank CP models. Coming backadtBP problem (8) at hand, this means
that the uniqueness of the decomposition can be assessaddsyigating the uniqueness of each bilinear
sub-problem (9). In general, uniqgueness cannot be guamed the bilinear problem is unique up to
rotational ambiguities. This is thessential uniquenessf BCP, as introduced by De Lathauwer in [2].
However, in the particular case of non-negatpdfs, the results of section 3 can be used. This means
that the BCP decomposition (8) is unique if the uniqueness @ ensured and the non-negative bilinear
factorizations (9) are unique. This result clearly showes ititerest of non-negativity for the uniqueness

of CP-like decompositions.

C. From theory to practice

The theoretical identifiability results presented in theviwus subsections, all involve the identifiability
of the NMF model. However, they may be a bit difficult to intexpfor users who are not familiar with
matrix factorization. In this subsection, we first give sognaphical illustrations corresponding to practical

situations for which the NMF identifiability is ensured ortndhe figure 3 gives 4 examples of data
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matrices consisting in the superposition of 3 rank-1 nogatigee matrices. The left data matrix of the top
row satisfies the condition of corollary 1, meaning that i&megative rank-3 decomposition is unique.
That on the right of the top row gives an example where Dorsbkondition [23] is fulfilled; thus, its

non-negative rank-3 decomposition is also unique. On timdrary, the two bottom row matrices do not

admit a unique solution since the necessary condition df iR4#ot fulfilled (see also [30]).

[
|

I
g &

Fig. 3: Four data matrices admitting a NMF decompositione Tlo matrices at the top of the figure

admit a unique decomposition. Nothing can be said by exagitiie bottom line matrices.

This discussion on the identifiability of the BCP model natiyr brings up the following question:
is the uniqueness of the BCP decomposition really imporitamractical applications? This is actually
a question which deserves to be discussed in detail sinceguioproblem of approximating the-D
pdfs represented by the matric&;,, the rotational ambiguities do not matter. Indeed, re@asllof
the rotational ambiguities, the reconstructigg remains the same. Nevertheless, if the objective is the
biological interpretation of the results, then uniqguen#ésss matter because it turns out tpafs having
complex shapes result from mixtures of sub-populationsabieky in a similar way. To illustrate the idea,
let us consider a simple analogy: consider a population czexgb of children and adults having to run
away from danger and observed with a device measuring tlghthand the weight of each individual.
Roughly, 3 types of behavior are expected to be observedstadaning sub-population (the adults), a
slow running sub-population (children) and a last sub-paan composed of adults holding children’s
hands and therefore running faster than children but sldhen adults. From a decomposition point
of view this is a single sub-population since they are all mgwat the same speed, but if the goal is
to interpret the experiment, the uniqueness of the BCP dposition would allow the population of
adults and children running together to be decomposed itttsaonly and children only, without any

ambiguity.
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D. Algorithms for data processing

The data processing method proposed in this paper condisitse® steps. The first two steps deal
with the processing of the flow cytometry data while the thadtiresses the coupling (fusion) of the flow
cytometry data with the cell fluorescence spectra.

1) Estimation of the probability density function&n estimation of the flow cytometry datadf is
obtained by computing th&-D histograms of the data. The developed matlab functionireg to define
the number of bins (one for each dimension) on which the drsims are calculated.

2) Non-negative BCP decomposition of the dakor the needs of this step, the non-negative BCP
algorithm developed in the tensorlab toolbox [31] can balu®ée also developed a procedure to estimate
the ranksL, and K of the decomposition. It first consists in performing a nagative high-rank CP
decomposition of the data. Thanks to the partial uniquepegzerties of the CP model [29], the matrix
containing the collinear loadings is ensured to be unigueractice, because of the noise/error terms,
the estimated loading may not be strictly collinear. The sthaollinear loadingsj.e. those presenting
a correlation greater than a specified threshold (typidally, are collapsed into a single loading by an
averaging procedure. ThE resulting averaged loadings are gathered into a full coluamk matrix A.
The corresponding loadings of the other two modes are gaditerform matrice&y, £ = 1,..., K. This
results in a non-negative BCP decomposition which is useditial solution for the non-negative BCP
algorithm of [31]. Once the non-negative BCP decompositioachieved, the correspondiig-D pdfs
are normalized to have unit sum and the normalization faistdhen transferred on the corresponding
loadings, representing the responses of Ashsub-populations to the physical parameter.

3) Coupling of the flow cytometry data with fluorescence specthere are at least two ways to
couple the two datasets. A first approach is to estimate fimst mhixing matrix A using only the
cytometry fluorescence data. Once mathixis estimated, the source spectra are obtained from the bulk
spectroscopy data by a least-squares procedure underegativity constraints. A second approach is to
actually combine the data into a single data matrix follaysmodel (14) and then to decompose the large
data matrix using a non-negative factorization algoritheny(the Bayesian Positive Source Separation
algorithm developed in [32]). In the next section, only tlesults corresponding to the first approach of
step 3 are presented. In fact, no significant difference waswed between the two different approaches.
The reason is that, in the considered example, the unigaarfdbe corresponding rank-2 non-negative
matrix factorization is provably unique. The interestedder is referred to [30], where a necessary and

sufficient condition for having the uniqueness of the ranKMF is provided.
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The next section illustrates the effectiveness of the pgegdapproach on real flow cytometry and spec-
troscopy data. These data result from an experiment aintisgueying the response of the mitochondrial

membrane potential of a particular cell line to a decouphggnt.

V. ANALYZING MITOCHONDRIAL MEMBRANE POTENTIAL WITH JC-1
A. Mitochondrial membrane potential

Mitochondrial membrane potentiaA@m) is an important indicator of the mitochondrial membrane
integrity and mitochondrial efficacy through the couplingtleen oxidative phosphorylation and ATP
synthesis. IndeedA¥m is an indicator of cell viability since a drastic decreasetiié potential is
associated with cytochrome release during apoptosis [33], [34]. The membrane permdgatJC-

1 (5,6, 6-tetrachloroi, 1’, 3, 3'-tetraethylbenzimidazolylcarbocyanine iodide) is ldygesed to monitor
this mitochondrial parameter [35]-[37]. This lipophili@tonic dye enters cells and accumulates in
mitochondria as monomers or oligomers (J-aggregates)ttiabit two different emission spectra often
referred to as green and red respecti¥elC-1 monomers are associated with depolarized mitockeondr
whereas J-aggregates are formed wheblm is high. Thus the mitochondrial membrane potential can be
estimated by following the red/green ratio of the JC-1 dydistinguish between mitochondria with high
or low A¥m. Qualitative and quantitative analysis &f'm is usually performed by flow cytometry after
an excitation of the probe a88nm with an argon laser. After excitation, JC-1 monomers #soence

is measured in the FL1 chanrigl5 — 545nm and the JC-1 aggregates in the FL2 chanfiél- 606nm.
Because of the overlap of the two emission spectra, compiensia needed, around 20-30% of the
green signal (FL1) has to be subtracted from the red sigria?)(FThis compensation value needs to
be well calibrated in each experiment. Recently, Perelmal. [38] have demonstrated that a new
generation cytometer, equipped with another excitatigerlan particular at 405nm, can be used for JC-
1 measurements. These new lasers considerably reducedhamuf the monomers fluorescence (green)
with the J-aggregates fluorescence (red). These findinggliinthe procedure since the fluorescence
compensation can be avoided. However, it is worth ment@nirat, regardless of the laser excitation,
there will be situations where the peak overlapping caneotdmpletely avoided. It is also clear that
changing the laser excitation is not always possible.

The present experimental study aims at validating the mepadata processing approach on real

multicolor flow cytometry data corresponding to the resgoaga cell line to a widely used and well

3We will see, in the sequel, that this has to be understood astiyngreen” or “mostly red” since the emission spectra are

not purely green or red.
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understood uncoupling agent (carbonyl cyanide p-chlceogtihydrazone - CCCP, Sigma-Aldrich). In
particular, we address the following questions:

1) What is the gain of coupling the flow cytometry togetheh whe fluorescence spectroscopyrhis
is an original point since, so far, no previous work proposedouple the two techniques.

2) Is it really necessary to perform the data compensatioW® believe that this is a very important
practical issue since, from our own experience, dependmghe way the compensation is performed,
the analysis results may be strongly affected. Avoiding fire-processing step may certainly represent
a major step in the development of quantitative analysisaw ftytometry.

3) Does the proposed approach bring new insights into thdyasigand the understanding of cytometry
data?: Here, the stake is to evaluate, from a biological perspedtie benefit of an accurate separation

of the contributions of the different cell sub-populations

B. Cell culture and data acquisition

Human ductal breast epithelial tumor cell line, T47D (from@C) was grown in RPMI 1640 medium
supplemented with 10% fetal calf serum, 2mM L-glutamine &ndy/ml Gentamicin aB7°C in a hu-
midified atmosphere containing 5¢40,. The mitochondrial membrane potential-sensitive dye @4
prepared as a stock solution in dimethyl sulfoxide (DMS@n&-Aldrich) and stored at20 °C . Before
use, JC-1 stock solution was dilutéd0 x in assay buffer (delivered by manufacturer). Cells weraeth
following the manufacturer specifications. Briefly, 1 ml afcl cell suspension was centrifuged@ig for
5 minutes at RT. The pellets were resuspendédiml of JC-1 freshly diluted and containing various con-
centrations of carbonyl cyanide p-chlorophenylhydraz@@CP, Sigma-Aldrich). CCCP is an ionophore
used to uncouple oxidative phosphorylation in mitochamdticauses a mitochondrial proton leak, leading
to a depolarization of the mitochondrial membrane. Thuss frequently used as a negative control in
mitochondrial membrane potential measurements by flownegtoy. The concentration of CCCP for
which it is well accepted that the cells are fully depoladizeanges betwees) and 100 pM. Thus, we
chose 6 CCCP concentrations varying betweeand 100 M ([CCCP] =0, 5, 10, 25, 50, 100) to
ensure that the whole CCCP response range is observed.

The samples were incubated fof minutes at37°C in C'O, incubator. At the end of the incubation
period, each tube was washed twice with assay buffer and welte resuspended in3 ml of culture
medium. Half of the cells were analyzed by flow cytometry (BROSCalibur) and the rest by fluorescence
plate reader (Safas). Figure 4 gives an example of expetahéata. This is a sequence of six cytometry

data sets, each one corresponding to a given CCCP condamtrat
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The first step of the processing consists in estimating2tie histograms. For each dimension, the
number of bins is fixed t60 resulting in a50 x 50 data matrix. Then the six matrices are gathered into a
3-way array of dimensiofb0 x 50 x 6). For this data set, the compensation was fixed to have a maximu
separation along the horizontal axis. Figure 5 shows theesponding sequence of fluorescence spectra.

All the spectra are normalized to have a unit energy.

[cceP
. Lam e ke e

700 700 700 700f -

600 600 600 600

500 500 soo| 500

400t " 00| . 400 400

300 300 300{ - 300

2000 . 200 : 200 200} °

200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800

700 700 700 700 700 700

600 600 600 600 600 600

500 500 500 500 500 500

Histograms

400 400 400 00| 400 400

300 300 300 300 300 300

200 ¢ 200 200 200 200 200

200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800

Fig. 4: A sequence of flow cytometry data showing the respongel7D cells to CCCP. The upper line

figures correspond to the data and the lower line figures &edhrespondin@-D histograms.

Fig. 5: A sequence of fluorescence spectra showing the respfnT47D cells to CCCP. All the spectra

are normalized to have unit area.

C. Results and discussion

Figure 6 shows the results of the non-negative BCP decotiposiorresponding to the dataset of

figure 4 (see section III-C) and figure 7 shows the correspundpectral source estimated by the joint
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analysis (see section IlI-D).

The number of block-component is expected to be equal @ highly polarized cell sub-population
whose response to CCCP is expected to decrease and a degblegil sub-population whose response
is expected to increase with the CCCP concentration. Therarpntal parameters, of BCP were
determined after successive trials. The first block ranl8j8, 1) while the second block rank i&, 2, 1).
The responses of the two sub-populations are in very googeaggnt with what was expected.

From a biological point of view, the top left-hand side plat figure 6 represents the distribution of
cells with a low mitochondrial membrane potential (refdrte as “green” fluorescence) while the top
right-hand side figure corresponds to the cells with highoatibndrial membrane potential (referred to as
“red” fluorescence). The associated responses show th&whmitochondrial membrane potential sub-
population increases with the concentration of CCCP witige igh mitochondrial membrane potential
sub-population decreases. In particular, it can be obdetivat the full cell population depolarization
is reached after a concentration &f ;M which is corresponding to the value generally accepted by
practitioners.

As one can see on figure 7 (a), the estimated spectra for theubpopulations are highly correlated.
From a signal processing point of view, separating these gp&ctral signatures using only the bulk
spectroscopy data on figure 5, is a very difficult and challemgproblem. The coupling of the two
data modalities makes this separation possible withoubsimg additional constraints on the source
parameters. From the biological point of view, the estimlapectra provide interesting insights into the
understanding of the average behavior of the two sub-ptpoa Each sub-population, treated or not
with CCCP, exhibits green and red fluorescence correspgrdidC-1 monomers and JC-1 aggregate,
respectively. Cell sub-population with high (respectveiw) mitochondrial membrane potential is more
red than green (respectively more green than red). The a&stiihnspectra also show that, for the two
sub-populations, there are no other discriminant waveéteng their emitted fluorescence light. This
could represent an interesting tool for the efficient chaitthe adequate wavelengths in flow cytometry.

The joint analysis of cytometry and spectroscopy data yaetdmplete characterization of the two types
of cell sub-populations: distribution, fluorescence sgecesponse to CCCP concentration. The cytometry
characterizes the cell sub-populations distribution wihkpect to the fluorescence intensity while the
spectroscopy provides information on the sub-populatistridutions with respect to the wavelength.

To evaluate the reproducibility of the experiments, we adpé it three times. The rank of the BCP
decomposition were fixed to the same values as in the firstriempet. The results of the non-negative

BCP of the other two datasets are given on figure 8 and it appleat the reproducibility of the results is
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quite good: not only the CCCP responses are quite similaalsatthe cell sub-population distributions

are quite similar.
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Fig. 6: Non-negative BCP decomposition results of flow cygtmyn dataset corresponding to the first

experiment

The next experiment objective was twofold:

When using standard cytometry data analysis tools (asgeduy the manufacturer), the red and green
fluorescence analysis of JC-1 always require a user defimagesation procedure which may strongly
affect the quantitative interpretation of the data. As riterdd in [39], compensation is in fact a linear
transformation of the data and therefore, in our experigenis not supposed to affect the response to
CCCP. In the following experiments, the data have been aeguiithout and with compensation.

Having a closer look at thedfs of the cell sub-populations revealed that they were nohadal, which
was rather surprising from a biological point of view, sireceingle cell line is considered. Our conjecture
was that the cell asynchronicity was responsible of thistimoldal distribution, each mode corresponding
to a particular mitochondrial membrane potential assediatith a specific cell cycle phase. Indeed, the

dependance of the mitochondrial membrane potential of #flecgcle phase was already mentioned in
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Fig. 7: Estimation of the pure fluorescence spectra (a) sparding to the first experiment. The mixing

coefficient (b) are those obtained from the non-negative BEEomposition.

[40]-[42]. They showed that there is a global increase ofrtlitechondrial membrane potential of cells
in G2 phase of the cell cycle as compared to cells in G1 phases The next experiment consisted in
studying the distributions of cell sub-populations befaral after synchronization in G1 phase.

This results in a 4 different data set referred to respdgtias: (a) no synchronization and no
compensation, (b) synchronization and no compensatigmdcynchronization and compensation and
(d) synchronization and compensation.

To synchronize cells at the G1 phase of the cell cycle, cefieevexposed to 2 mM thymidine (Sigma-
Aldrich) for 48h. Then, synchronized cells were collectedyunted (TC10 Automated Cell Counter, Bio-
Rad) and adjusted to the density of 300 000 cells/ml for aislgf mitochondrial membrane potential.
The cell cycle synchronization was monitored by measurésnafithe DNA content per cell. The rate of
DNA was estimated by propidium iodide staining. Cells weredi and permeabilized by 70% ice cold
ethanol and stored at20 °C for at least 24h. They were washed with PBS (Phosphate BuffSaline)
and resuspended in 1 ml of DNA staining solution (2g/ml propidium iodide, and 0.5 mg/ml RNase
A in PBS). The labeling of the fluorescent probe was measuyefibly cytometry (Becton, Dickinson,
FACSCalibur). Cell cycle synchronization was verified bywflaytometric analysis of DNA content.
Representative histograms are shown in fig 9. Treatment tmtmidine results in a G1/S-phase arrest

in contrast to untreated cells.
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Fig. 8: Non-negative BCP decomposition of the two datasbktained by repeating the same experiment

as for the dataset on figure 6
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Fig. 9: Cell cycle distribution of T47D untreated (left) oyrehronized (right) with thymidine (2 mM)
for 2 days.

The results of the data processing are shown in figure 10c(d)bOn the one hand, comparing figure
10 (a) and 10(c) as well as 10 (b) and 10 (d), it can be obsehagdttie compensation does not affect
much the shape of the response to CCCP. In other words, by tistnproposed approach, compensation
is no longer necessary. On the other hand, it appears thaytiehronization modifies the shape of the
cell population distributions. Indeed, the not-synchredi low mitochondrial membrane potential sub-
population includes two main modes, one centered3, 300) and a second centered 6450, 400).
This second mode significantly decreases after synchriimizan G1 phase, resulting in a shift toward
the low value of the red and thus increasing the relative mapae of the green. This is much more
visible on the distribution of the high mitochondrial merabe potential sub-population. This can be
attributed to the fact that cells in G1 phase have a lowercahitadrial membrane potential that those in
S and G2 phases which is in accordance with the literatureo,Aboking at the response to CCCP, it
seems to indicate that dynamic of the responses of the lowh@dmitochondrial membrane potential

sub-population is stronger after synchronization.

V1. CONCLUSIONS

In this paper, we proposed a novel flow cytometry data amalysithodology, based on a non-negative
block-Candecomp/Parafac model of the data, and highligtite link between bulk spectroscopy and
flow cytometry data. A sufficient condition allowing to guatee the uniqueness of data decomposition

was also derived. The joint processing of the two data mbeslresults in an effective tool that reveals
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Fig. 10: Non-negative block decomposition results of datmsafter cell synchronization in G1 phase or

not and compensation or not

the full analysis potential of flow cytometry; the approachswalidated on real data produced using
human ductal breast epithelial tumor cell line T47D for whihe mitochondrial membrane potential was
estimated.

The main underlying idea is to exploit the different behawb cell sub-populations with respect to
a physical parameter (the CCCP concentration in this papeif)ke the classically employed clustering
methods, strongly relying on the user expertise, our meteqdires only the knowledge of the number
of sub-populations to be extracted from the data, and is litly sensitive to the overlapping of cell
sub-population distributions. Thus, similarly to Peretnet al. [38], our method also yields an effective

way to avoid compensation, but without requiring the use aifeerent laser excitation adapted to the
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mitochondrial membrane potential measurement with JCeberThe ability of the method to separate
overlapping densities has revealed two sub-populatiotisiwa single cell line in both high and low
mitochondrial membrane potential cell populations. Thiexpected but insightful side result has been
attributed to cells being in different cell cycle phasesjih@ slightly different mitochondrial membrane
potentials. The price to pay for these interesting featisem increased complexity of the experiments
generating the data. However, the joint data processingeapdriment design is a promising research

direction in which biologists and data analysts may devedey fruitful collaborations.

APPENDIX

PROOF OFPROPOSITIONL

Suppose that conditions (B1) and (B2) are satisfied. Afteossible permutation of its columns, the
matrix G can be rewritten as:
gun 0 0 gyx4
G = 0o . 0 :
0 0 9grxk 9xr(r+1)

Similarly, after a possible permutation of its rows, the mxaH can be re-written as:

h11 0
H = 0 hk K
Ayt - hrink

Let us consider the reguldi x K) matrix T = [t;;] whose inverse is note® ! = [tfj] We have

t11911 ... UKY9KK
TGT =
tk1911 - KKIKK
huth, ... hnth
HT™ = ¢ t
hKKth hKKtKK
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from which it turns out thal'G” > 0 andHT ! > 0 if and only if T > 0 andT~! > 0. From property
1, this is equivalent to say thdt is a monomial matrix and according to property 2, the sotutiounique

up to scaling and ordering indeterminacies.

REFERENCES

[1] L. De Lathauwer, “Decompositions of a higher-order wmi block terms - Part I: Lemmas for partitioned matrices,”
SIAM J. Matrix Anal. Appl.vol. 30, no. 3, pp. 1022-1032, 2008.

[2] ——, “Decompositions of a higher-order tensor in blockns - Part II: Definitions and uniquenessSIAM J. Matrix
Anal. Appl, vol. 30, no. 3, pp. 1033-1066, 2008.

[3] A. Bashashati and R. R. Brinkman, “A survey of flow cytomyetiata analysis methodsfdvances in Bioinformaticsol.
2009, Article ID 584603, 2009.

[4] M. F. Wilkins, S. A. Hardy, L. Boddy, and C. W. Morris, “Cgparaison of five clustering algorithms to classify
phytoplankton from flow cytometry dataCytometry vol. 44, no. 3, pp. 210-217, 2001.

[5] Q. T. Zeng, J. P. Pratt, J. Pak, D. Ravnic, H. Huss, and $ehtzer, “Feature-guided clustering of multi-dimensiona
flow cytometry datasetsJournal of Biomedical Informati¢ssol. 40, no. 3, pp. 325-331, Jun. 2007.

[6] J. Frelinger, T. B. Kepler, and C. Chan, “Flow: Statistiwisualization and informatics for flow cytometngource Code
for Biology and Medicingvol. 3, no. 1, p. 10, 2008.

[7] K. Lo, R. R. Brinkman, and R. Gottardo, “Automated gatiofyflow cytometry data via robust model-based clustering,”
Cytometry Part Avol. 73A, no. 4, pp. 321-332, Apr. 2008.

[8] C. E. Pedreira, E. S. Costa, M. E. Arroyo, J. Almeida, andO&fao, “A multidimensional classification approach foeth
automated analysis of flow cytometry datlEFEE Transactions on Biomedical Engineeringl. 55, no. 3, pp. 1155-1162,
2008.

[9] C. Chan, F. Feng, J. Ottinger, D. Foster, M. West, and T.KBpler, “Statistical mixture modeling for cell subtype
identification in flow cytometry,"Cytometry Part Avol. 73A, no. 8, pp. 693-701, Aug. 2008.

[10] M. J. Boedigheimer and J. Ferbas, “Mixture modeling rapph to flow cytometry data,Cytometry Part Avol. 73A,
no. 5, pp. 421-429, May 2008.

[11] K. M. Carter, R. Raich, W. G. Finn, and A. O. Hero, “Infoation preserving component analysis: Data projections for
flow cytometry analysis,IEEE Journal of Selected Topics in Signal Processig. 3, no. 1, pp. 148-158, Feb. 2009.

[12] K. Carter, R. Raich, W. Finn, and A. Hero, “Informatigeometric dimensionality reductionlEEE Signal Processing
Magazine vol. 28, no. 2, pp. 89-99, Mar. 2011.

[13] S. Miron, M. Dossot, C. Carteret, S. Margueron, and OeBfJoint processing of the parallel and crossed polariathan
spectra and uniqueness in blind nonnegative source sepgidEhemometr. Intell. Labvol. 105, no. 1, pp. 7-18, 2011.

[14] E. Acar, M. A. Rasmussen, F. Savorani, T. Naes, and R. ‘Btoderstanding data fusion within the framework of coupled
matrix and tensor factorizationsChemometr. Intell. Labvol. 129, no. 1, pp. 53 — 63, 2013.

[15] M. Sorensen and L. De Lathauwer, “Coupled tensor deawmitipns for applications in array signal processing,” in
Computational Advances in Multi-Sensor Adaptive ProcesgiCAMSAP), 2013 IEEE 5th International Workshop on
IEEE, 2013, pp. 228-231.

[16] J. D. Carroll and J.-J. Chang, “Analysis of individuafferences in multidimensional scaling via an N-way gefization

of “Eckart-Young” decomposition,Psychometrikavol. 35, no. 3, pp. 283-319, Sep. 1970.

March 27, 2014 DRAFT



25

[17] R. A. Harshman, “Foundations of the PARAFAC procediMedels and conditions for an ‘explanatory’ multimodal farct
analysis,”UCLA Working Papers in Phoneticsol. 16, pp. 1-84, Dec. 1970.

[18] D. Brie, S. Miron, F. Caland, and C. Mustin, “An uniqussecondition for the 4-way CANDECOMP/PARAFAC model
with collinear loadings in three modes,” International Conference on Acoustics, Speech and SigradeBsing, ICASSP
2011 2011.

[19] L.-H. Lim and P. Comon, “Nonnegative approximations rafnnegative tensors,). Chemometr.vol. 23, no. 7-8, pp.
432-441, 20089.

[20] D. Lowd and P. Domingos, “Naive bayes models for proligbestimation,” in Proceedings of the 22nd international
conference on Machine learning ACM, 2005, pp. 529-536.

[21] D. D. Lee and H. S. Seung, “Learning the parts of objegtsnbn-negative matrix factorizationNature vol. 401, no.
6755, pp. 788-791, 1999.

[22] J. C. Chen, “Nonnegative rank factorisation of nontiggamatrices,”’Linear Algebra Applicat. vol. 62, pp. 207-217,
1984.

[23] D. Donoho and V. Stodden, “When does non-negative mdactorization give a correct decomposition into parts?” i
Advances in Neural Information Processing Systems Tambridge, United States: MIT Press, 2003.

[24] K. Huang, N. Sidiropoulos, and A. Swami, “Non-negativ@trix factorization revisited: Uniqueness and algoritfon
symmetric decompositionJEEE Trans. Signal Processingol. 62, no. 1, pp. 211-224, 2014.

[25] J. Van den Hof, “Realization of positive linear systeirisinear Algebra Applicat.vol. 256, pp. 287-308, 1997.

[26] R. Berman and B. Plemmonklonnegative matrices in the Mathematical ScienceSiam., 1994.

[27] J. B. Kruskal, “Three-way arrays: Rank and uniquenebdritinear decompositions, with application to arithneeti
complexity and statistics'inear Algebra Applicat.vol. 18, no. 2, pp. 95-138, 1977.

[28] J. M. F. ten Berge, “Partial uniqueness in CANDECOMPRA&AC,” J. Chemometrvol. 18, no. 1, pp. 12-16, May 2004.

[29] X. Guo, S. Miron, D. Brie, and A. Stegeman, “Uni-mode grattial uniqueness conditions for CANDECOMP/PARAFAC
of three-way arrays with linearly dependent loadingdAM J. Matrix Anal. Appl.vol. 33, no. 1, pp. 111-129, 2012.

[30] S. Moussaoui, D. Brie, and J. Idier, “Non-negative seuseparation: Range of admissible solutions and condition
the uniqueness of the solution,” IEEE International Conference on Acoustics, Speech, agdabiProcessing, ICASSP
2005 2005.

[31] L. Sorber, M. Van Barel, and L. De Lathauwer, “Tensoriahb0,” http://esat.kuleuven.be/sista/tensorlab/, 20A8ailable
online, February 2013].

[32] S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. @eet, “Separation of non-negative mixture of non-negative
sources using a Bayesian approach and MCMC sampliB§E Trans. Signal Processingol. 54, no. 11, pp. 4133-4145,
November 2006.

[33] N. Zamzami, T. Hirsch, B. Dallaporta, P. Petit, and Go&mer, “Mitochondrial implication in accidental and pragmed
cell death: apoptosis and necrosi3,Bioenerg Biomembwol. 29, no. 2, pp. 185-193, 1997.

[34] A. Cossarizza and S. Salvioli, “Analysis of mitochoiredduring cell death,Meth Cell Biol vol. 63, pp. 467-486, 2001.

[35] M. Reers, T. Smith, and L. Chen, “J-aggregate formatidra carbocyanine as a quantitative fluorescent indicator of
membrane potential Biochemistry vol. 30, no. 18, pp. 4480-4486, 1991.

[36] S. Salvioli, A. Ardizzoni, C. Franceschi, and A. Cosgaa, “Jc-1, but not dioc6(3) or rhodamine 123, is a reliable
fluorescent probe to assess delta psi changes in intact ioefiications for studies on mitochondrial functionalitiyaring
apoptosisl,"FEBS Lett vol. 411, no. 1, pp. 77-82, 1997.

March 27, 2014 DRAFT



26

[37] A. Mathur, Y. Hong, B. Kemp, A. B. AA, and J. D. ErusalimgK'Evaluation of fluorescent dyes for the detection of
mitochondrial membrane potential changes in culturedicargocytes,”Cardiovasc Resvol. 46, no. 1, pp. 126-138, 2000.

[38] A. Perelman, C. Wachtel, M. Cohen, S. Haupt, H. Shapiemd A. Tzur, “Jc-1. alternative excitation
wavelengths facilitate mitochondrial membrane potentigtometry,” Cell Death Dis 2012. [Online]. Available:
http://dx.doi.org/10.1038/cddis.2012.171

[39] B. Rajwa, “Just compensation®ytometry Part Avol. 79, no. 12, pp. 973-974, 2011.

[40] M. Martinez-Diez, G. Santamaria, A. D. Ortega, and J.Qvezva, “Biogenesis and dynamics of mitochondria durirey th
cell cycle: significance of 3'UTRs,PLoS Onevol. 1, no. 1, p. €107, 2006.

[41] S. M. Schieke, J. M. Jr., and T. Finkel, “Coordinationnsitochondrial bioenergetics with G1 phase cell cycle pesgion.”
Cell Cycle vol. 7, no. 12, pp. 1782 — 1787, 2008.

[42] W. Xiong, Y. Jiao, W. Huang, M. Ma, M. Yu, Q. Cui, and D. TafRegulation of the cell cycle via mitochondrial gene
expression and energy metabolism in HeLa celAgita biochimica et biophysica Sinicaol. 44, no. 4, pp. 347-358, 2012.

March 27, 2014 DRAFT



