
HAL Id: hal-00990027
https://hal.science/hal-00990027

Submitted on 12 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Biequivalence of Locally Cartesian Closed
Categories and Martin-Löf Type Theories

Pierre Clairambault, Peter Dybjer

To cite this version:
Pierre Clairambault, Peter Dybjer. The Biequivalence of Locally Cartesian Closed Categories and
Martin-Löf Type Theories. Mathematical Structures in Computer Science, 2014, 24 (05), pp.e240501.
�10.1017/S0960129513000881�. �hal-00990027�

https://hal.science/hal-00990027
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

The Biequivalence

of Locally Cartesian Closed Categories

and Martin-Löf Type Theories

PIERRE CLAIRAMBAULT1† and PETER DYBJER2

1 CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon,

Laboratoire LIP, 46 Allée d’Italie, 69364 Lyon, France.

pierre.clairambault@ens-lyon.fr

2 Department of Computer Science and Engineering,

Chalmers University of Technology, S-412 96 Göteborg, Sweden.

peterd@chalmers.se

Received 3 May 2012; Revised 28 August 2013

Seely’s paper Locally cartesian closed categories and type theory contains a well-known

result in categorical type theory: that the category of locally cartesian closed categories

is equivalent to the category of Martin-Löf type theories with Π,Σ, and extensional

identity types. However, Seely’s proof relies on the problematic assumption that

substitution in types can be interpreted by pullbacks. Here we prove a corrected version

of Seely’s theorem: that the Bénabou-Hofmann interpretation of Martin-Löf type theory

in locally cartesian closed categories yields a biequivalence of 2-categories. To facilitate

the technical development we employ categories with families as a substitute for

syntactic Martin-Löf type theories. As a second result we prove that if we remove

Π-types the resulting categories with families with only Σ and extensional identity types

are biequivalent to left exact categories.

1. Introduction

It is “well-known” that locally cartesian closed categories (lcccs) are equivalent to Martin-

Löf’s intuitionistic type theory (Martin-Löf, 1982; Martin-Löf, 1984). But is this result

actually known? The original proof of (Seely, 1984) contains a flaw, and although the

papers by (Curien, 1993) and (Hofmann, 1994) address this flaw, they only show that

Martin-Löf type theory can be interpreted in locally cartesian closed categories, but

not that this interpretation is an equivalence of categories provided the type theory has

Π,Σ, and extensional identity types. Here we complete the work and fully rectify Seely’s

† This research was conducted while the first author was in the University of Bath, supported by
the (UK) EPSRC grant RC-CM1025 and then in the University of Cambridge, supported by the
ERC Advanced Grant ECSYM. We would also like to acknowledge the support of the (Swedish)
Vetenskapsr̊adet grant “Types for Proofs and Programs” for the second author.

P. Clairambault and P. Dybjer 2

result except that we do not prove an equivalence of categories but a biequivalence of

2-categories. In fact, a significant part of the endeavour has been to find an appropriate

formulation of the result, and in particular to find a suitable notion analogous to Seely’s

“interpretation of Martin-Löf theories”.

1.1. The coherence problem.

Seely interpreted substitution in types in Martin-Löf theories by pullbacks in lcccs. For

each type substitution we thus need a choice of pullbacks, and this determines the inter-

pretation of the type constructors in the lccc. However, type substitution is also defined

syntactically by induction on the type structure, and thus fixed by this interpretation,

and there is no reason why the result of this syntactic operation should coincide strictly

with the initial choice of pullbacks.

In the paper Substitution up to isomorphism (Curien, 1993) described the fundamental

nature of this problem. He set out

... to solve a difficulty arising from a mismatch between syntax and semantics: in locally carte-

sian closed categories, substitution is modelled by pullbacks (more generally pseudo-functors),

that is, only up to isomorphism, unless split fibrational hypotheses are imposed. ... but not all

semantics do satisfy them, and in particular not the general description of the interpretation in

an arbitrary locally cartesian closed category. In the general case, we have to show that the iso-

morphisms between types arising from substitution are coherent in a sense familiar to category

theorists.

To solve the problem Curien introduced a new calculus with explicit substitutions for

Martin-Löf type theory. This calculus has special terms which witness the application of

the type equality rule, and these equality witnesses are interpreted as isomorphisms in

lcccs. The remaining coherence problem is to show that Curien’s calculus is equivalent

to the usual formulation of Martin-Löf type theory. Curien proved this result by cut-

elimination. It is worth-while noting that this result was proved for a calculus with

Π-types and Σ-types, but without (extensional) identity types.

Somewhat later, (Hofmann, 1994) gave an alternative solution based on a technique

which had been used by (Bénabou, 1985) for constructing a split fibration from an arbi-

trary fibration. In this way Hofmann constructed a model of Martin-Löf type theory with

Π-types, Σ-types, and extensional identity types from an lccc. Hofmann used Cartmell’s

categories with attributes (cwas) as his notion of model. This is a split notion of model of

Martin-Löf type theory, hence the relevance of Bénabou’s construction. However, Seely

wanted to prove an equivalence of categories, and (Hofmann, 1994) conjectured:

We have now constructed a cwa over C which can be shown to be equivalent to C in some

suitable 2-categorical sense.

Here we spell out and prove this result, and thus fully rectify Seely’s theorem. It should

be apparent from what follows that this is not a trivial exercise. In our setting the result

is a biequivalence analogous to Bénabou’s (much simpler) result: that the 2-category of

fibrations (with non-strict morphisms) is biequivalent to the 2-category of split fibrations

(with non-strict morphisms).

The Biequivalence of LCCCs and ML type theories 3

1.2. Our reformulation

As already mentioned, we have not only corrected but also reformulated Seely’s result.

We shall now motivate why our reformulation is an improvement while simultaneously

the corrected 2-dimensional version of the result. There are three main differences and

we discuss each one in turn.

Categories with families instead of syntactic Martin-Löf theories. Seely’s aim was to

relate “syntax” to categorical “semantics”, but what is Martin-Löf type theory “syn-

tactically”? If we compare the syntax and inference rules used by Martin-Löf and other

authors, we note that different versions usually differ from each other in detail. Moreover,

they are usually not completely presented. To remedy this situation (Martin-Löf, 1992)

introduced an explicit substitution calculus (see also (Tasistro, 1993)) with the objec-

tive of providing a complete and rigorous definition of intuitionistic type theory, and in

particular a rigorous treatment of substitution. We shall not employ this substitution

calculus directly, but instead the closely related categories with families (cwfs) (Dybjer,

1996). Cwfs are models of a variable-free variant of Martin-Löf’s substitution calculus

which can be defined using category-theoretic terminology. A cwf is a pair (C, T) where C

is the category of contexts and substitutions, and T : Cop → Fam is a functor. An object

Γ of C represents a context x1 : A1, . . . , xn : An and an arrow γ : ∆ → Γ represents a

substitution x1 = a1, . . . , xn = an, where a1 : A1, . . . , an : An are terms in the context

∆. The object part T (Γ) represents the family of sets of terms {a | Γ ⊢ a : A}A indexed

by types A in context Γ, and the arrow part T (γ) performs the substitution of γ in types

and terms. The full definition will be given below where we also discuss the equivalence

with syntactic Martin-Löf theories.

Cwfs are closely related to Cartmell’s cwas and the essentially equivalent type-categories

in (Pitts, 2000). Cwfs arise by reformulating the axioms of cwas so that they can be read

as a syntactic substitution calculus similar to Martin-Löf’s. The direct connection with

syntax is the reason why we prefer cwfs to cwas or other categorical notions of model of

dependent types.

Pseudo cwf-morphisms instead of Seely’s interpretations of Martin-Löf theories. One

advantage of our approach compared to Seely’s is that we get a natural definition of

morphism of cwfs that preserves the structure of cwfs up to isomorphism. In contrast

Seely’s notion of “interpretation of Martin-Löf theories” is defined indirectly via the

construction of an lccc associated with a Martin-Löf theory, and basically amounts to

a functor preserving structure between the corresponding lcccs, rather than directly as

something that preserves all the “structure” of Martin-Löf theories.

Democratic cwfs instead of Seely’s categories of closed types. Seely turned a given Martin-

Löf theory into a category where the objects are closed types and the morphisms from

type A to type B are closed terms of type A → B. Such categories are the objects of

Seely’s “category of Martin-Löf theories”.

Cwfs on the other hand model open types and terms. However, to prove our biequiv-

P. Clairambault and P. Dybjer 4

alences we need the additional requirement that they are democratic. This means that

each context is represented by a type. To build local cartesian closed structure in the cat-

egory of contexts we use available constructions on types and terms, and by democracy

such constructions can be moved back and forth between types and contexts. Since Seely

worked with closed types only he had no need for democracy.

While carrying out the proof we noticed that if we remove Π-types the resulting 2-

category of cwfs with only Σ and extensional identity types is biequivalent to the 2-

category of left exact (or finitely complete) categories. We present this result in parallel

with the main result. This result would not have been possible in Seely’s setting where

morphisms are functions of type A→ B and hence Π-types cannot be removed.

1.3. Plan of the paper.

An equivalence of categories consists of a pair of functors which are inverses up to natural

isomorphism. Biequivalence is the appropriate notion of equivalence for bicategories (Le-

inster, 1999). Instead of functors we have pseudofunctors which only preserve identity and

composition up to isomorphism. Instead of natural isomorphisms we have pseudonatural

transformations which are inverses up to invertible modification.

A 2-category is a strict bicategory, and the remainder of the paper consists of construct-

ing two biequivalences of 2-categories. In Section 2 we briefly introduce the standard

version of extensional Martin-Löf type theory where substitution is a meta-operation.

We also show a version with explicit substitutions. We then define cwfs and explain

how they arise as models of a variant of the explicit substitution calculus. We also show

how to turn a cwf into an indexed category. In Section 3 we define the 2-categories

CwFIextΣ
dem of democratic cwfs which support extensional identity types and Σ-types and

CwFIextΣΠ
dem of democratic cwfs which also support Π-types. We also define the notions

of pseudo cwf-morphism and pseudo cwf-transformation. In Section 4 we define the 2-

categories FL of left exact categories and LCC of lcccs. We show that there are forgetful

2-functors U : CwFIextΣ
dem → FL and U : CwFIextΣΠ

dem → LCC. In section 5 we construct

the pseudofunctors H : FL → CwFIextΣ
dem and H : LCC → CwFIextΣΠ

dem based on the

Bénabou-Hofmann construction. In section 6 we prove that H and U give rise to the

biequivalences of FL and CwFIextΣ
dem and of LCC and CwFIextΣΠ

dem . Section 7 concludes.

Finally, minor lemmas from sections 3, 4, 5 and 6 have been relegated to an appendix.

At the end of the paper, the reader will find a complete index of notations.

2. Martin-Löf Type Theory and Categories with Families

In this section we introduce Martin-Löf type theory with extensional identity types, Σ-

types, and Π-types. We first present the ordinary version where substitution is a meta-

operation and then a substitution calculus (Martin-Löf, 1992) where substitution is ex-

plicit, that is, it is a syntactic construct. A slight modification of this substitution calculus

leads to the cwf-calculus, the models of which are cwfs which support extensional identity

types, Σ-types and Π-types.

We explain why the cwf-calculus is equivalent to the substitution calculus and to the

The Biequivalence of LCCCs and ML type theories 5

standard presentation of Martin-Löf type theory. Thus cwfs which support extensional

identity types, Σ- and Π-types is an appropriate substitute for Seely’s Martin-Löf theo-

ries.

Comparison with the equivalence of simply typed lambda calculus and cccs. In this paper

we relate extensional Martin-Löf type theory and lcccs using an explicit substitution

calculus and cwfs as stepping stones. It may be worth-while pointing out that also the

correspondence between the simply typed lambda calculus and cccs can be explained

using similar stepping stones.

To this end we note that if the set of types in context Γ does not depend on Γ, then

Π-types degenerate to →-types, and cwfs which support Π-types are precisely models

of the simply typed lambda calculus. Such simply typed cwfs can be used as a similar

stepping stone when explaining the correspondence between the simply typed lambda

calculus and cccs, as cwfs when explaining the correspondence between Martin-Löf type

theory and lcccs. The following table summarizes the situation.

simply typed lambda calculus Martin-Löf type theory with Iext, Σ and Π
λσ-calculus (Abadi et al., 1990) Martin-Löf’s substitution calculus with Iext, Σ and Π
simply typed cwfs cwfs which support Iext, Σ and Π
cccs lcccs

Note that the two top rows are syntactic calculi and the two bottom rows are categorical

“semantic” notions. Cwfs constitute a “sweet spot” in the spectrum between “syntax”

and “semantics”: on the one hand they are a categorical notion of model and on the

other hand they directly give rise to a variable free explicit substitution calculus.

2.1. Extensional Martin-Löf Type Theory

The extensional version of intuitionistic type theory was introduced by (Martin-Löf,

1982) and further explained in (Martin-Löf, 1984). Here we consider this theory with

only three type formers: extensional identity I, disjoint union Σ, and cartesian product

Π of a family of types. We also assume an unspecified set of base types.

If we use de Bruijn indices instead of ordinary variables, the grammars for types and

terms are respectively

A ::= IA(a, a) | Σ(A,A) | Π(A,A) | X

a ::= n | rA,a | pair(a, a) | π1(a) | π2(a) | λ(a) | ap(a, a)

Here X is a base type, n is a de Bruijn index, and rA,a is the canonical proof of the

reflexivity of identity IA(a, a).

Contexts Γ are here lists of types. We also introduce substitutions γ as lists of terms:

Γ ::= [] | Γ·A

γ ::= 〈〉 | 〈γ, a〉

The inference rules for extensional identity types are

P. Clairambault and P. Dybjer 6

I-formation:
Γ ⊢ A type Γ ⊢ a : A Γ ⊢ a′ : A

Γ ⊢ IA(a, a′) type

I-introduction:
Γ ⊢ a : A

Γ ⊢ rA,a : IA(a, a)

I-elimination:
Γ ⊢ c : IA(a, a

′)

Γ ⊢ a = a′ : A

Γ ⊢ c : IA(a, a
′)

Γ ⊢ c = rA,a : IA(a, a′)

Note that neither of the above I-elimination rules are valid for intensional identity

types which instead have elimination and equality rules for the operator J (Martin-Löf,

1975; Martin-Löf, 1986).

We refer to (Martin-Löf, 1984) for the other inference rules of extensional type theory.

When formulating these rules we make use of the meta-operation of substitution. We

can define the operations of simultaneous substitution A[γ] and a[γ] respectively of a

list of terms γ for the free variables in a type A or a term a by induction on A and a,

respectively. Moreover, we can define the composition δ ◦ γ of substitutions δ and γ and

an identity substitution idΓ = 〈· · · 〈〈〉, n−1〉 · · · , 0〉, where n is the length of Γ. Note that

all these are meta-operations on syntax.

2.2. Explicit Substitution Calculus for Martin-Löf Type Theory

An explicit substitution calculus for the theory is obtained by instead introducing new

type and term constructors for the above mentioned meta-operations. To this end we

add the following productions to the above grammars:

A ::= · · · | A[γ]

a ::= · · · | a[γ]

γ ::= · · · | idΓ | γ ◦ γ

There are typing rules for these new constructions and equations which ensure that the

explicit substitution calculus is equivalent to the original version of Martin-Löf type

theory.

In this way we arrive at a substitution calculus similar to the one in (Martin-Löf,

1992) (see also (Tasistro, 1993)), although Martin-Löf’s calculus uses ordinary variables

rather than de Bruijn indices and has some other features such as a special judgement

for subcontexts.

2.3. Categories with Families

As mentioned above we shall use categories with families (cwfs) instead of the usual above

mentioned syntactic presentation of Martin-Löf type theory. Cwfs can be presented as

models of a variable-free generalized algebraic formulation of the most basic rules of

dependent type theory (Dybjer, 1996). This cwf-calculus can be seen as arising from

The Biequivalence of LCCCs and ML type theories 7

the explicit substitution calculus above by (i) removing the de Bruijn indices n and (ii)

adding constructors for projections

a ::= · · · | qΓ,A

γ ::= · · · | pΓ,A

with appropriate typing rules and equations, such as the projection laws pΓ,A ◦〈γ, a〉 = γ

and qΓ,A[〈γ, a〉] = a. The first projection pΓ,A is the display map (Taylor, 1999) for the

type A in context Γ in categorical semantics. The second projection qΓ,A represents the

rule of assumption for the last variable 0 : A in the context Γ·A.

The equivalence of the cwf-calculus and the explicit substitution calculus is obtained

in one direction by translating a de Bruijn number n to a term q[pn] and in the other

direction by translating qΓ,A to the de Bruijn number 0 and pΓ,A to 〈· · · 〈〈〉, n−1〉 · · · , 1〉,

where n is the length of Γ.

The models of this calculus are cwfs which support extensional identity types, Σ-, and

Π-types as defined below.

The definition of cwfs can be presented using category-theoretic terminology as follows.

Definition 1. Let Fam be the category of families of sets defined as follows. An object is

a pair (A,B) where A is a set and B(x) is a family of sets indexed by x ∈ A. A morphism

with source (A,B) and target (A′, B′) is a pair consisting of a function f : A → A′ and

a family of functions g(x) : B(x) → B′(f(x)) indexed by x ∈ A.

Note that Fam is equivalent to the arrow category Set→.

Definition 2. A category with families (cwf) (C, T) consists of the following data:

— A base category C. Its objects represent contexts and its morphisms represent sub-

stitutions. The identity map is denoted by idΓ : Γ → Γ and the composition of maps

γ : ∆ → Γ and δ : Ξ → ∆ is denoted by γ ◦ δ or more briefly by γδ : Ξ → Γ.

— A functor T : Cop → Fam. T (Γ) is a pair, where the first component represents the set

Type(Γ) of types in context Γ, and the second component represents the type-indexed

family (Γ ⊢ A)A∈Type(Γ) of sets of terms in context Γ. We write a : Γ ⊢ A for a term

a ∈ Γ ⊢ A. Moreover, if γ is a morphism in C, then T (γ) is a pair consisting of the

type substitution function A 7→ A[γ] and the type-indexed family of term substitution

functions a 7→ a[γ].

— A terminal object [] of C which represents the empty context and a terminal map

〈〉∆ : ∆ → [] which represents the empty substitution.

— A context comprehension which to an object Γ in C and a type A ∈ Type(Γ) associates

an object Γ·A of C, a morphism pΓ,A : Γ·A→ Γ of C and a term qΓ,A ∈ Γ·A ⊢ A[pΓ,A]

such the following universal property holds: for each object ∆ in C, morphism γ : ∆ →

Γ, and term a ∈ ∆ ⊢ A[γ], there is a unique morphism δ = 〈γ, a〉 : ∆ → Γ·A, such

that pΓ,A ◦δ = γ and qΓ,A[δ] = a. (We remark that a related notion of comprehension

for hyperdoctrines was introduced by (Lawvere, 1970).)

P. Clairambault and P. Dybjer 8

We often omit some arguments of operations and write id instead of idΓ, pA or p instead

of pΓ,A, etc. Moreover, we often write composition as juxtaposition: γδ = γ ◦ δ.

The details of the interpretation of Martin-Löf type theory in cwfs can be found in

(Hofmann, 1996). The equivalence of cwfs and Martin-Löf type theory is proved by

(Mimram, 2004).

2.4. Support for Type Formers

We shall now define what it means that a cwf supports extra structure corresponding to

the various type formers of Martin-Löf type theory. These definitions amount to a direct

encoding of the inference rules for these type formers in the variable-free language of

cwfs.

Definition 3. A cwf supports extensional identity types provided the following conditions

hold:

Form. If A ∈ Type(Γ) and a, a′ : Γ ⊢ A, there is IA(a, a
′) ∈ Type(Γ),

Intro. If a : Γ ⊢ A, there is rA,a : Γ ⊢ IA(a, a),

Elim. If c : Γ ⊢ IA(a, a
′) then a = a′ and c = rA,a,

and we also have stability under substitution: if γ : ∆ → Γ then

IA(a, a
′)[γ] = IA[γ](a[γ], a

′[γ])

rA,a[γ] = rA[γ],a[γ]

Definition 4. A cwf supports Σ-types iff the following conditions hold:

Form. If A ∈ Type(Γ) and B ∈ Type(Γ·A), there is Σ(A,B) ∈ Type(Γ),

Intro. If a : Γ ⊢ A and b : Γ ⊢ B[〈id, a〉], there is pair(a, b) : Γ ⊢ Σ(A,B),

Elim. If c : Γ ⊢ Σ(A,B), there are π1(c) : Γ ⊢ A and π2(c) : Γ ⊢ B[〈id, π1(c)〉] such that

π1(pair(a, b)) = a

π2(pair(a, b)) = b

pair(π1(c), π2(c)) = c

and we also have stability under substitution. If γ : ∆ → Γ then

Σ(A,B)[γ] = Σ(A[γ], B[〈γ ◦ p, q〉])

pair(a, b)[γ] = pair(a[γ], b[γ])

π1(c)[γ] = π1(c[γ])

π2(c)[γ] = π2(c[γ])

Note that in a cwf which supports extensional identity types and Σ-types surjective

pairing, pair(π1(c), π2(c)) = c, follows from the other conditions (Martin-Löf, 1984).

Definition 5. A cwf supports Π-types iff the following conditions hold:

Form. If A ∈ Type(Γ) and B ∈ Type(Γ·A), there is Π(A,B) ∈ Type(Γ).

Intro. If b : Γ·A ⊢ B, there is λ(b) : Γ ⊢ Π(A,B).

The Biequivalence of LCCCs and ML type theories 9

Elim. If c : Γ ⊢ Π(A,B) and a : Γ ⊢ A then there is a term ap(c, a) : Γ ⊢ B[〈id, a〉] such

that

ap(λ(b), a) = b[〈id, a〉]

λ(ap(c[p], q)) = c

and we also have stability under substitution. If γ : ∆ → Γ then

Π(A,B)[γ] = Π(A[γ], B[〈γ ◦ p, q〉])

λ(b)[γ] = λ(b[〈γ ◦ p, q〉])

ap(c, a)[γ] = ap(c[γ], a[γ])

2.5. Democracy

Finally, we introduce democracy, a notion which is used in our proof for moving con-

structions back and forth between contexts and types.

Definition 6. A cwf (C, T) is democratic iff for each object Γ of C there is Γ ∈ Type([])

and an isomorphism Γ ∼=γΓ []·Γ. Each substitution δ : ∆ → Γ can then be represented by

the term δ = q[γΓδγ
−1
∆] : []·∆ ⊢ Γ[p].

Democracy does not correspond to a construction in Martin-Löf type theory. However,

a cwf generated inductively by the standard rules of Martin-Löf type theory (or by the

rules for the cwf-calculus) is democratic provided it supports a one element type N1 and

Σ-types, since we can define [] = N1 and Γ·A = Σ(Γ, A[γ−1
Γ]).

2.6. The Indexed Category of Types in Context

We shall now define the indexed category associated with a cwf. This will play a crucial

role and in particular introduce the notion of isomorphism of types.

Proposition 1 (The Context-Indexed Category of Types). If (C, T) is a cwf,

then we can define a functor T : Cop → Cat as follows:

— The objects of T (Γ) are types in Type(Γ). If A,B ∈ Type(Γ), then a morphism in

T (Γ)(A,B) is a morphism f : Γ·A→ Γ·B in C such that pf = p.

— If γ : ∆ → Γ in C, then T (γ) : Type(Γ) → Type(∆) maps an object A ∈ Type(Γ) to

A[γ] and a morphism δ : Γ·A→ Γ·B to 〈pA[γ], qB [δ〈γ◦pA[γ], qA[γ]〉]〉 : ∆·A[γ] → ∆·B[γ].

We write A ∼=f B if f : A → B is an isomorphism in T (Γ). If a : Γ ⊢ A, we write

{f}(a) = q[f〈id, a〉] : Γ ⊢ B for the coercion of a to type B and a =f b if a = {f}(b).

Coercions compose, as we can check by the following direct calculation.

{f2}({f1}(a)) = q[f2〈id, q[f1〈id, a〉]〉]

= q[f2〈pf1〈id, a〉, q[f1〈id, a〉]〉]

= q[f2〈p, q〉f1〈id, a〉]

= q[f2f1〈id, a〉]

= {f2f1}(a)

P. Clairambault and P. Dybjer 10

where we use the definition of coercions and manipulation of cwf combinators. Coercions

also preserve substitution, in the sense that for all δ : ∆ → Γ, isomorphic types A ∼=f A
′

in Type(Γ) and term a : Γ ⊢ A we have ({f}(a))[δ] = {T (δ)(f)}(a[δ]) (see Lemma 7 in

the Appendix for details).

Seely’s category ML of Martin-Löf theories (Seely, 1984) is essentially the category

of categories T ([]) of closed types. We have the following alternative formulation of

democracy:

Proposition 2. (C, T) is democratic iff the functor from T ([]) to C, which maps a closed

type A to the context []·A, is an equivalence of categories.

2.7. Fibres, slices and lcccs.

Seely’s interpretation of type theory in lcccs relies on the idea that a type A ∈ Type(Γ)

can be interpreted as its display map, that is, a morphism with codomain Γ (correspond-

ing to our pΓ,A). For instance, the type list(n) of lists of length n : nat is interpreted

as the function l : list → nat which to each list associates its length. Hence, types

and terms in context Γ are interpreted in the slice category C/Γ, since terms are inter-

preted as global sections. Syntactic types are connected with types-as-display-maps by

the following result, an analogue of which was one of the cornerstones of Seely’s paper.

Proposition 3. If (C, T) is democratic and supports extensional identity and Σ-types,

then T (Γ) and C/Γ are equivalent categories for all Γ.

Proof. To each object (type) A in T (Γ) we associate the object pA in C/Γ. A morphism

from A to B in T (Γ) is by definition a morphism from pΓ,A to pΓ,B in C/Γ.

Conversely, to each object δ : ∆ → Γ of C/Γ we associate a type in Type(Γ). This is

the inverse image x : Γ ⊢ Inv(δ)(x) which is defined type-theoretically by

Inv(δ)(x) = Σy : ∆.IΓ(x, δ(y))

written in ordinary notation. In cwf combinator notation it becomes

Inv(δ) = Σ(∆[〈〉], IΓ[〈〉](q[γΓp], δ[〈〈〉, q〉]) ∈ Type(Γ)

These associations yield an equivalence of categories since pInv(δ) and δ are isomorphic

in C/Γ:

Γ·Inv(δ)

ξδ
++

mm

ξ−1
δ

pInv(δ)
$$

∆

δ~~
Γ

The isomorphism is defined as follows:

ξδ = γ−1
∆ 〈〈〉, π1(q)〉

ξ−1
δ = 〈δ, pair(q[γ∆], rΓ[〈〉])〉

It is easy to show that they have the right types, and that ξδξ
−1
δ = id∆. For the other

The Biequivalence of LCCCs and ML type theories 11

equality, we have ξ−1
δ ξδ = 〈δγ−1

∆ 〈〈〉, π1(q)〉, pair(π1(q), rΓ[〈〉])〉. By the property of exten-

sional identity types q[γΓp] and δ[〈〈〉, π1(q)〉] are equal terms in context Γ · Inv(δ), so

γ−1
Γ 〈〈〉, q[γΓp]〉 = p and γ−1

Γ 〈〈〉, δ[〈〈〉, π1(q)〉]〉 = δγ−1
∆ 〈〈〉, π1(q)〉 are equal substitutions.

Likewise, rΓ[〈〉] = π2(q) by uniqueness of identity proofs, therefore ξ−1
δ ξδ = idΓ·Inv(δ).

It is easy to see that T (Γ) has binary products if the cwf supports Σ-types and expo-

nentials if it supports Π-types. Simply define A×B = Σ(A,B[p]) and BA = Π(A,B[p]).

Hence by Proposition 9 it follows that C/Γ has products and C has finite limits in any

democratic cwf which supports extensional identity types and Σ-types. If it supports

Π-types too, then C/Γ is cartesian closed and C is locally cartesian closed.

3. The 2-Category of Categories with Families

3.1. Pseudo Cwf-Morphisms

A notion of strict cwf-morphism between cwfs (C, T) and (C′, T ′) was defined by (Dy-

bjer, 1996). It is a pair (F, σ), where F : C → C
′ is a functor and σ : T

•
→ T ′F is a

natural transformation of family-valued functors, such that terminal objects and context

comprehension are preserved on the nose. Here we need a notion of pseudo cwf-morphism

analogous to that of strict cwf-morphism, but which only preserves cwf-structure up to

coherent isomorphism. The pseudo-natural transformations needed to prove our biequiv-

alences will be families of cwf-morphisms which do not preserve cwf-structure on the

nose.

Definition 7. A pseudo cwf-morphism from (C, T) to (C′, T ′) is a pair (F, σ) where:

— F : C → C
′ is a functor,

— For each context Γ in C, σΓ is a Fam-morphism from TΓ to T ′FΓ. We will write

σΓ(A) : Type
′(FΓ), where A : Type(Γ), for the type component and σAΓ (a) : FΓ ⊢′

σΓ(A), where a : Γ ⊢ A, for the term component of this morphism.

The following preservation properties must be satisfied:

— Substitution is preserved: For each context δ : ∆ → Γ in C and A ∈ Type(Γ), there

is an isomorphism of types θA,δ : σΓ(A)[Fδ] → σ∆(A[δ]) such that substitution in

terms is also preserved, that is, σ
A[γ]
∆ (a[γ]) =θA,γ

σAΓ (a)[Fγ].

— The terminal object is preserved: F [] is terminal, let ι : [] → F [] be the isomosrphism.

— Context comprehension is preserved: The context F (Γ·A), along with the projections

F (pΓ,A) and {θ−1
A,p}(σ

A[p]
Γ·A (qΓ,A)), is a context comprehension of FΓ and σΓ(A). Note

that the universal property of context comprehension provides a unique isomorphism

ρΓ,A : F (Γ·A) → FΓ·σΓ(A) which preserves projections in the following sense:

F (pA) = pσΓ(A)ρΓ,A (a)

σ
A[p]
Γ·A (qA) = {θA,p}(qσΓA[ρΓ,A]) (b)

These data must satisfy naturality and coherence laws which amount to the fact that if we

extend σΓ to a functor σΓ : T (Γ) → T
′F (Γ), then σ is a pseudonatural transformation

P. Clairambault and P. Dybjer 12

from T to T
′F . This functor is defined by σΓ(A) = σΓ(A) on an object A and σΓ(f) =

ρΓ,BF (f)ρ
−1
Γ,A on a morphism f : A→ B.

More explicitely, pseudonaturality of σ amounts to the following coherence and natu-

rality laws.

— Identity. For all A ∈ Type(Γ), we have θA,id = idFΓ·σΓ(A),

— Coherence. For all δ : Ξ → ∆ and γ : ∆ → Γ, the following diagram commutes.

FΞ·σΓ(A)[F (γδ)]

T
′(Fδ)(θA,γ)))

θA,γδ
// FΞ·σΞ(A[γδ])

FΞ·σ∆(A[γ])[F (δ)]

θA[γ],δ

55

— Naturality. For all δ : ∆ → Γ in C, A,B ∈ Type(Γ) and f : A → B in T (Γ), the

following diagram commutes in T
′(F∆).

σΓ(A)[Fδ]
θA,δ

//

T
′(Fδ)(σΓ(f))

��

σ∆(A[δ])

σ∆(T (δ)(f))

��
σΓ(B)[Fδ]

θB,δ
// σ∆(B[δ])

From this definition we can prove that all cwf structure is preserved.

Proposition 4. All pseudo cwf-morphisms (F, σ) from (C, T) to (C′, T ′) preserve sub-

stitution extension in the sense that, if δ : ∆ → Γ in C and a : ∆ ⊢ A[δ], then

F (〈δ, a〉) = ρ−1
Γ,A〈Fδ, {θ

−1
A,δ}(σ

A[δ]
∆ (a))〉

Proof. The required equality boils down to the following two equations.

pρΓ,AF (〈δ, a〉) = Fδ

q[ρΓ,AF (〈δ, a〉)] = {θ−1
A,δ}(σ

A[δ]
∆ (a))

The proof of the first equality is straightforward, using (a):

pρΓ,AF (〈δ, a〉) = F (p)F (〈δ, a〉)

= Fδ

The Biequivalence of LCCCs and ML type theories 13

However, the proof of the second is far more subtle and relies on many properties of

pseudo cwf-morphisms and cwf combinators:

q[ρΓ,AF (〈δ, a〉)] =1 {θ−1
A,p}(σ

A[p]
Γ·A (q))[F (〈δ, a〉)]

=2 q[θ−1
A,p〈id, σ

A[p]
Γ·A (q)〉][F (〈δ, a〉)]

= q[θ−1
A,p〈F (〈δ, a〉), σ

A[p]
Γ·A (q)[F (〈δ, a〉)]〉]

=3 q[θ−1
A,p〈F (〈δ, a〉), {θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (q[〈δ, a〉]))〉]

= q[θ−1
A,p〈F (〈δ, a〉), {θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (a))〉]

= q[〈p, q[θ−1
A,p〈F (〈δ, a〉)p, q〉]〉〈id, {θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (a))〉]

=4 q[T ′(F (〈δ, a〉))(θ−1
A,p)〈id, {θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (a))〉]

=2 {T ′(F (〈δ, a〉))(θ−1
A,p)}({θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (a)))

=5 {θ−1
A,δ}(σ

A[δ]
∆ (a))

Equality (1) is by (b), equalities (2) by definition of coercions, equality (3) by preservation

of substitution in terms, equality (4) by definition of T ′, equality (5) by the coherence

requirement on θ and the fact that coercions compose. All the other steps are by simple

manipulations on cwf combinators.

As an aside, recall that for each substitution δ : ∆ → Γ and type A ∈ Type(Γ) in a

cwf we have the following pullback square:

∆·A[δ]
〈δpA,qA〉

//

pA[δ]

��

Γ·A

pA

��
∆

δ // Γ

It is no surprise that these pullback squares will play an important role in the technical

development, and it will be particularly useful to know how they are preserved by a

pseudo cwf-morphism (F, σ) from (C, T) to (C′, T ′). From equality (a) we know that the

first projection is preserved, so the preservation of the pullback square above amounts

to the equality F (〈δp, q〉) = ρ−1
Γ,A〈F (δ)p, q〉θ

−1
A,δρ∆,A[δ], which is established by a direct

calculation (see Lemma 8 in the Appendix).

In a cwf, terms can be converted into sections of display maps and vice versa. From the

definition of pseudo cwf-morphisms, it follows that they behave coherently with respect

to this conversion.

Proposition 5. If (F, σ) is a pseudo cwf-morphism from (C, T) to (C′, T ′), then its

action on terms is determined by its action on sections: for all a ∈ Γ ⊢ A

σAΓ (a) = q[ρΓ,AF (〈id, a〉)]

P. Clairambault and P. Dybjer 14

Proof. This follows from preservation of substitution extension (Proposition 4):

F (〈id, a〉) = ρ−1
Γ,A〈id, {θ

−1
A,id}σ

A
Γ (a)〉

but θA,id = id by coherence of θ, hence the result is proved.

Proposition 6. Pseudo cwf-morphisms are stable under composition.

Proof. If (F, σ) : (C0, T0) → (C1, T1) and (G, τ) : (C1, T1) → (C2, T2) are two pseudo

cwf-morphisms, we define their composition as (GF, τσ) where:

(τσ)Γ(A) = τFΓ(σΓ(A))

(τσ)AΓ (a) = τ
σΓ(A)
FΓ (σAΓ (a))

If the other components of (F, σ) are denoted by θF , ρF and those of (G, τ) by θG, ρG,

we define:

θA,δ = τF∆(θ
F
A,δ)θ

G
σΓ(A),Fδ

All the components are now defined, and we can show that the conditions hold.

— Preservation of substitution on terms. Direct calculation, if a : Γ ⊢ A and δ : ∆ → Γ

in C0.

(τσ)
A[δ]
∆ (a[δ]) =1 τ

σ∆(A[δ])
F∆ (σ

A[δ]
∆ (a[δ]))

=2 τ
σ∆(A[δ])
F∆ ({θFA,δ}(σ

A
Γ (a)[Fδ]))

=3 q[ρGF∆,σ∆(A[δ])G(〈id, {θ
F
A,δ}(σ

A
Γ (a)[Fδ])〉)]

=4 q[ρGF∆,σ∆(A[δ])G(〈id, q[θ
F
A,δ〈id, σ

A
Γ (a)[Fδ]〉]〉)

=5 q[ρGF∆,σ∆(A[δ])G(θ
F
A,δ〈id, σ

A
Γ (a)[Fδ]〉)]

=6 q[τF∆(θ
F
A,δ)ρ

G
F∆,σΓ(A)[Fδ]G(〈id, σ

A
Γ (a)[Fδ]〉)]

= q[τF∆(θ
F
A,δ)〈p, q〉ρ

G
F∆,σΓ(A)[Fδ]G(〈id, σ

A
Γ (a)[Fδ]〉)]

=7 q[τF∆(θ
F
A,δ)〈id, q[ρ

G
F∆,σΓ(A)[Fδ]G(〈id, σ

A
Γ (a)[Fδ]〉)]〉]

=4 {τF∆(θ
F
A,δ)}(q[ρ

G
F∆,σΓ(A)[Fδ]G(〈id, σ

A
Γ (a)[Fδ]〉)])

=3 {τF∆(θ
F
A,δ)}(τ

σΓ(A)[Fδ]
F∆ (σAΓ (a)[Fδ]))

=2 {τF∆(θ
F
A,δ)}({θ

G
σΓ(A),Fδ}(τ

σΓ(A)
FΓ (σAΓ (a))[GFδ]))

=8 {θA,δ}(τ
σΓ(A)
FΓ (σAΓ (a))[GFδ])

=1 {θA,δ}((τσ)
A
Γ (a)[GFδ])

Equalities annotated by (1) come from the definition of τσ, (2) is preservation of

substitution for σ or τ , (3) is Proposition 5, (4) is by definition of coercions, (5) uses

pθFA,δ = p and basic manipulations with cwf combinators, (6) is by definition of τ ,

(7) uses preservation of p by (G, τ) and basic manipulations with cwf combinators,

and (8) is by definition of θ.

— Preservation of the terminal object. Trivial from the preservation of the terminal

object by F and G.

The Biequivalence of LCCCs and ML type theories 15

— Preservation of context comprehension. Using preservation of context comprehension

from (F, σ) and (G, τ) we define:

GF (Γ·A)
G(ρFΓ,A)

// G(FΓ·σΓ(A))
ρGFΓ,σΓA

// GFΓ·(τσ)Γ(A)

Isomorphisms compose, and hence GF (Γ·A) is also a context comprehension of GFΓ

and (τσ)Γ(A). We must check that the corresponding projections are those required

by the definition. This is easy for the first projection:

pρGFΓ,σΓA
G(ρFΓ,A) = G(p)G(ρFΓ,A)

= GFp

But more intricate for the second.

q[ρGFΓ,σΓA
G(ρFΓ,A)] =1 {(θGσΓA,p)

−1}(τ
σΓ(A)[p]
FΓ·σΓA

(q))[G(ρFΓ,A)]

=2 {(θGσΓA,p)
−1}({(θG

σΓ(A)[p],ρF
Γ,A

)−1}(τ
σΓ(A)[Fp]
F (Γ·A) (q[ρFΓ,A])))

=3 {(θGσΓA,Fp)
−1}(τ

σΓ(A)[Fp]
F (Γ·A) (q[ρFΓ,A]))

=4 {(θGσΓA,Fp)
−1}(τ

σΓ(A)[Fp]
F (Γ·A) ({(θFA,p)

−1}(σ
A[p]
Γ·A (q))))

=5 {(θGσΓA,Fp)
−1}({τF (Γ·A)((θ

F
A,p)

−1)}(τ
σΓ·A(A[p])
F (Γ·A) (σ

A[p]
Γ·A (q))))

=6 {θ−1
A,[p]}((τσ)

A[p]
Γ·A (q))

Here (1) is Equation (b) on ρG, (2) is preservation of substitution on terms, (3) is

coherence for θG, (4) is Equation (b) of the second projection by ρF , (5) is Lemma 9

(see Appendix), and (6) is by definition of θ and τσ.

Finally, by unfolding the definitions we can conclude that for all contexts Γ

(τσ)Γ = τFΓ ◦ σΓ

Hence the necessary coherence and naturality conditions amount to the stability of

pseudonatural transformations under composition.

3.2. Preservation of structure

If cwfs support other structure, we need to define what it means that cwf-morphisms

preserve this extra structure up to isomorphism.

3.2.1. Preservation of Σ-types. First, we consider Σ-types. Since the isomorphism (Γ·A)·

B ∼= Γ·Σ(A,B) holds in an arbitrary cwf which supports Σ-types, it follows that pseudo

cwf-morphisms preserve Σ-types, since they preserve context comprehension. More pre-

cisely, we have

Proposition 7. A pseudo cwf-morphism (F, σ) from (C, T) to (C′, T ′), where both cwfs

support Σ-types, also preserves them in the sense that there is an isomorphism:

σΓ(Σ(A,B)) ∼=sA,B
Σ(σΓ(A), σΓ·A(B)[ρ−1

Γ,A])

P. Clairambault and P. Dybjer 16

such that projections are preserved up to isomorphism. For any term Γ ⊢ c : Σ(A,B), or

terms a : Γ ⊢ A and b : Γ ⊢ B[〈id, a〉].

σAΓ (π1(c)) = π1({sA,B}(σ
Σ(A,B)
Γ (c)))

σ
B[〈id,π1(c)〉]
Γ (π2(c)) = {θB,〈id,π1(c)〉}(π2({sA,B}(σ

Σ(A,B)
Γ (c))))

σ
Σ(A,B)
Γ (pair(a, b)) = {s−1

A,B}(pair(σ
A
Γ (a), {θ

−1
B,〈id,a〉}(σ

B[〈id,a〉]
Γ (b))))

Proof. First we have the two following substitutions:

〈pp, pair(q[p], q)〉 : Γ·A·B → Γ·Σ(A,B)

〈p, π1(q), π2(q)〉 : Γ·Σ(A,B) → Γ·A·B

It is straightforward to check that they define an isomorphism γA,B : Γ·A·B → Γ·Σ(A,B).

Note that from γA,B , the projections can be recovered by, for c : Γ ⊢ Σ(A,B):

π1(c) = q[pγ−1
A,B〈id, c〉] π2(c) = q[γ−1

A,B〈id, c〉]

Let us write γ′A,B for the similar isomorphism on objects of the category C
′. We now

form the isomorphism sA,B as the following composition of isomorphisms:

FΓ·σΓ(Σ(A,B)) ∼=ρ−1
Γ,Σ(A,B)

F (Γ·Σ(A,B))

∼=F (γ−1
A,B

) F (Γ·A·B)

∼=ρΓ·A,B
F (Γ·A)·σΓ·A(B)

∼=〈ρΓ,Ap,q〉 FΓ·σΓ(A)·σΓ·A(B)[ρ−1
Γ,A]

∼=γ′

σΓ(A),σΓ·A(B)[ρ
−1
Γ,A

]

FΓ·Σ(σΓ(A), σΓ·A(B)[ρ−1
Γ,A])

Preservation of projections and pairing follows from an intricate calculation on cwf com-

binators. We omit it to avoid making the development heavier, since we will not use it.

3.2.2. Preservation of identity types and democracy.

Definition 8. Let (F, σ) be a pseudo cwf-morphism between cwfs (C, T) and (C′, T ′)

which support identity types and democracy, respectively.

— (F, σ) preserves identity types provided σΓ(IA(a, a
′)) ∼= IσΓ(A)(σ

A
Γ (a), σ

A
Γ (a

′));

— (F, σ) preserves democracy provided σ[](Γ) ∼=dΓ FΓ[〈〉], and the following diagram

commutes:

FΓ
FγΓ //

γFΓ ��

F ([]·Γ)
ρ
[],Γ��

[]·FΓ oo
〈〈〉,q〉

F []·FΓ[〈〉] oo
dΓ

F []·σ[](Γ)

Proposition 8. If (F, σ) : (C, T) → (C′, T ′) and (G, τ) : (C′, T ′) → (C′′, T ′′) preserve

identity types (resp. democracy), then so does (G, τ) ◦ (F, σ).

The Biequivalence of LCCCs and ML type theories 17

Proof. This is trivial for identity types. For democracy, we must check that the iso-

morphism dGFΓ : GF []·(τσ)[](Γ) → GF []·GFΓ[〈〉] defined by

dGFΓ = GF []·τF [](σ[](Γ))

(ρG
F [],σ[]Γ

)−1

// G(F []·σ[]Γ)
G(dFΓ)

// G(F []·FΓ[〈〉])
G(〈〈〉,q〉)

// G([]·FΓ)
ρG
[],FΓ

// G[]·τ[]FΓ
dGFΓ // G[]·GFΓ[〈〉]

satisfies the coherence law. This follows by simple diagram chase.

3.2.3. Preservation of Π-types.

Definition 9. Let (C, T) and (C′, T ′) be cwfs supporting Π-types, and (F, σ) a pseudo

cwf-morphism. Then (F, σ) preserves Π-types iff for each types A ∈ Type(Γ) and B ∈

Type(Γ·A) there is an isomorphism in T
′(Γ):

σΓ(Π(A,B)) →iA,B
Π(σΓ(A), σΓ·A(B)[ρ−1

Γ,A])

such that for any substitution δ : ∆ → Γ, for any terms c : ∆ ⊢ Π(A,B)[δ] and a : Γ ⊢

A[δ], we have:

σ
B[〈δ,a〉]
Γ (ap(c, a)) = {θB,〈δ,a〉}(ap({T

′(Fδ)(iA,B)θ
−1
Π(A,B),δ}(σ

Π(A,B)
Γ (c), {θ−1

A,δ}(σ
A
Γ (a)))))

Note that from this definition, it follows that abstraction is preserved as well, in the

following sense:

σ
Π(A,B)
Γ (λ(b)) = {i−1

A,B}(λ(σ
B
Γ·A(b)[ρ

−1
Γ,A]))

This property will not be used directly and follows from later developments (Lemma 2),

so we omit the direct proof.

Likewise, later developments (Lemma 2) will entail that preservation of Π-types is

stable under composition of pseudo cwf-morphisms.

3.3. Pseudo Cwf-Transformations

Definition 10 (Pseudo cwf-transformation). Let (F, σ) and (G, τ) be two cwf-

morphisms from (C, T) to (C′, T ′). A pseudo cwf-transformation from (F, σ) to (G, τ)

is a pair (φ, ψ) where φ : F
•
→ G is a natural transformation, and for each Γ in C and

A ∈ Type(Γ), a morphism ψΓ,A : σΓ(A) → τΓ(A)[φΓ] in T
′(FΓ), natural in A and such

that the following diagram commutes:

σΓ(A)[Fδ]
T

′(Fδ)(ψΓ,A)
//

θA,δ

��

τΓ(A)[φΓF (δ)]

T
′(φ∆)(θ′A,δ)

��
σ∆(A[δ])

ψ∆,A[δ]

// τ∆(A[δ])[φ∆]

where θ and θ′ are the isomorphisms witnessing preservation of substitution in types in

the definition of pseudo cwf-morphism.

P. Clairambault and P. Dybjer 18

Pseudo cwf-transformations can be composed both vertically (denoted by (φ′, ψ′) •

(φ, ψ)) and horizontally (denoted by (φ′, ψ′)(φ, ψ)), and these compositions are associa-

tive and satisfy the interchange law. Note that just as coherence and naturality laws

for pseudo cwf-morphisms ensure that they give rise to pseudonatural transformations

(hence morphisms of indexed categories) σ to τ , this definition means that pseudo cwf-

transformations from (F, σ) to (F, τ) correspond to modifications from σ to τ .

We note in passing that pseudo cwf-morphisms preserve coercions, in the sense that if

(F, σ) is a pseudo cwf-morphism from (C, T) to (C′, T ′) and for all morphism f : A→ B

in T (Γ), for each term a : Γ ⊢ A we have that σBΓ ({f}(a)) = {σΓ(f)}(σ
A
Γ (a)) (see Lemma

9 in the Appendix).

3.4. 2-Categories of Cwfs with Extra Structure

As a consequence of the preservation properties in Proposition 8 we have several different

2-categories of structure-preserving pseudo cwf-morphisms.

Definition 11. LetCwFIextΣ
dem be the 2-category of small democratic categories with fam-

ilies which support extensional identity types and Σ-types. The 1-cells are cwf-morphisms

preserving democracy and extensional identity types (and Σ-types automatically) and the

2-cells are pseudo cwf-transformations.

Moreover, let CwFIextΣΠ
dem be the sub-2-category of CwFIextΣ

dem where also Π-types are

supported and preserved.

4. Forgetting Types and Terms

In this section we provide the first components of our biequivalences, which will be

forgetful 2-functors:

Proposition 9. The forgetful 2-functors

U : CwFIextΣ
dem → FL

U : CwFIextΣΠ
dem → LCC

defined as follows on 0-, 1-, and 2-cells

U(C, T) = C

U(F, σ) = F

U(φ, ψ) = φ

are well-defined.

Here, FL and LCC are respectively the 2-categories of categories with finite limits and

locally cartesian closed categories defined below. By definition, U already is a 2-functor

from CwF to Cat.

We already proved as corollaries of Proposition 3 that if (C, T) supports Σ-types,

identity types and democracy, then C has finite limits; and if (C, T) also supports Π-

The Biequivalence of LCCCs and ML type theories 19

types, then C is an lccc. Hence U sends a 0-cell in CwFIextΣ
dem to a 0-cell in in FL and a

0-cell in CwFIextΣΠ
dem to a 0-cell in LCC.

For 1-cells we shall prove in Proposition 10 that if (F, σ) preserves identity types

and democracy, then F preserves finite limits; and in Proposition 12 that if (F, σ) also

preserves Π-types then F preserves the locally cartesian closed structure.

There is nothing to prove for 2-cells.

4.1. Preservation of finite limits

We shall prove that CwFIextΣ
dem is biequivalent to the following 2-category.

Definition 12. Let FL be the 2-category of small categories with finite limits (left exact

categories). The 1-cells are functors preserving finite limits (up to isomorphism) and the

2-cells are natural transformations.

FL is a sub(2-)category of the 2-category of categories: we do not provide a choice of

finite limits.

Recall that in the presence of a terminal object, finite limits can be obtained by pull-

backs or by binary products and equalizers. That a functor F : C → D preserves finite

limits means it preserves the limiting cone, i.e. the image of any universal cone is a uni-

versal cone. Alternatively F preserves the terminal object and the image of any pullback

diagram is a pullback diagram (or the image of a product (resp. equalizer) diagram is

a product (resp. equalizer) diagram). By the universal property of limits, it suffices to

check that any well-chosen universal cone is universal.

Let (F, σ) be a pseudo cwf-morphism between (C, T) and (C′, T ′) which are democratic

cwfs supporting Σ-types and identity types. We wish to prove that F preserves pullbacks.

We remark first that we already know that F preserves some pullbacks. Indeed by the

cwf structure, for each context Γ, type A ∈ Type(Γ), and substitution γ : ∆ → Γ, we

have the chosen pullback:

∆·A[γ]
〈γp,q〉

//

p

��

Γ·A

p

��
∆

γ
// Γ

The fact that this chosen pullback is preserved follows easily from the fact that (F, σ)

preserves substitution and context comprehension. However, we need to show that F

preserves arbitrary pullbacks, not only those of display maps along substitutions. In Sec-

tion 2.7, we already showed that any substitution can be (up to isomorphism) presented

as a display map using the inverse image construction, allowing in particular to con-

struct arbitrary pullbacks. For these pullbacks to be preserved, the key observation is

the following lemma, showing that the inverse image construction is preserved.

Lemma 1 (Preservation of inverse image). Let (C, T) and (C′, T ′) be cwfs sup-

porting democracy, Σ-types and identity types and let (F, σ) be a pseudo cwf-morphism

P. Clairambault and P. Dybjer 20

preserving them. Moreover, suppose that δ : ∆ → Γ is a morphism in C, then there is an

isomorphism in C
′:

ζ : F (Γ·Inv(δ)) ∼= FΓ·Inv(Fδ)

such that pζ = F (p).

Proof. We first remark that the type constructors Σ and I preserves isomorphisms, in

a sense made formal in Lemma 10 in the Appendix. From that, the isomorphism boils

down to an intricate calculation on cwf combinators, detailed in the appendix.

Now, we can show that pseudo cwf-morphisms preserving democracy, Σ-types and

identity types preserve finite limits. In fact we prove more: the property turns out to be

an equivalence.

Proposition 10. Let (F, σ) be a pseudo cwf-morphism preserving democracy between

(C, T) and (C′, T ′) supporting democracy, Σ-types and identity types. Then (F, σ) pre-

serves identity types if and only if F preserves finite limits.

Proof. If. Let a, a′ : Γ ⊢ A be two terms in (C, T). Then, IA(a, a
′) ∈ Type(Γ) is such

that pIA(a,a′) is an equalizer of 〈id, a〉, 〈id, a′〉 : Γ → Γ·A. If F preserves equalizers then

F (pIA(a,a′)) : F (Γ · IA(a, a
′)) → F (Γ) is an equalizer of F (〈id, a〉) and F (〈id, a′〉). By

preservation of cwf structure, it immediately follows that F (pIA(a,a′)) must also be an

equalizer of 〈id, σAΓ (a)〉 and 〈id, σAΓ (a
′)〉. But since (C′, T ′) supports identity types, these

already have an equalizer

p : FΓ·IσΓ(A)(σ
A
Γ (a), σ

A
Γ (a

′))

It follows that σΓ(IA(a, a
′)) ∼= IσΓ(A)(σ

A
Γ (a), σ

A
Γ (a

′)).

Only if. Suppose (F, σ) preserves identity types. We already know that F preserves the

terminal object. To prove that it preserves pullbacks, take f : ∆ → Γ and f ′ : ∆′ → Γ.

As explained in Section 2.7, we know that f (resp. f ′) is isomorphic to pInv(f) (resp.

pInv(f ′)) in C/Γ. Therefore to check that F preserves pullbacks, it suffices to check the

chosen pullback:

Γ·Inv(f)·Inv(f ′)[p]
〈pp,q〉

//

p

��

Γ·Inv(f ′)

p

��
Γ·Inv(f)

p
// Γ

is preserved. But by Lemma 1 and preservation of substitution and context comprehen-

sion, the image of this pullback is isomorphic to the following pullback:

FΓ·Inv(Ff)·Inv(Ff ′)[p]
〈pp,q〉

//

p

��

FΓ·Inv(Ff ′)

p

��
FΓ·Inv(Ff)

p
// FΓ

which concludes the proof.

The Biequivalence of LCCCs and ML type theories 21

4.2. Preservation of locally cartesian closed structure

We shall prove that CwFIextΣΠ
dem is biequivalent to the following 2-category.

Definition 13. Let LCC be the 2-category of small locally cartesian closed categories.

The 1-cells are functors preserving local cartesian closed structure (up to isomorphism),

and the 2-cells are natural transformations.

Similarly to FL we do not assume chosen structure in LCC: it is a sub(2-)category of

FL.

For completeness, let us recall what is meant by preservation of the locally cartesian

closed structure.

A locally cartesian closed category can be defined as a category with a terminal object

such that every slice category is cartesian closed. Equivalently, it is a category with finite

limits such that for any f : A → B, the pullback functor f∗ : C/B → C/A has a right

adjoint Πf : C/A → C/B. As usual, the existence of this right adjoint can be expressed

by a universal property. If g : A→ B and f : B → C are morphisms, define a dependent

product of g along f is a diagram of the form:

P
ev

�� ��

// D

Πf (g)

��
A

g
// B

f
// C

which is universal among any such diagram over g and f , as described below.

P ′

�� ��

��

// D′

��

��
P

�� ��

// D

��
A // B // C

Therefore, a category with finite limits C is locally cartesian closed if for any g : A→ B

and f : B → C, there is a dependent product diagram. A functor F : C → D preserves

dependent product if the image of a dependent product diagram is a dependent product

diagram. Finally, a functor F : C → D preserves the lccc structure iff it preserves finite

limits and dependent products — this is equivalent to the fact that F preserves the

terminal object and for all object A in C, the functor F/A : C/A → C/FA preserves

cartesian closure.

We wish now to prove that (F, σ) preserves Π-types if and only if F preserves dependent

products. The first step is to notice that Π-types in a cwf (C, T) naturally equip the base

category C with dependent products diagrams along display maps.

Proposition 11. Let (C, T) be a cwf supporting Π-types, let Γ be a context in C, let

A ∈ Type(Γ) and B ∈ Type(Γ·A), then the following diagram is an dependent product

P. Clairambault and P. Dybjer 22

diagram, where evA,B = 〈pΠ(A,B)[pA], ap(qΠ(A,B)[pA], qA[pΠ(A,B)[pA]])〉.

Γ·A·Π(A,B)[pA]
evA,B

{{

pΠ(A,B)[pA]

��

〈pApΠ(A,B)[pA],qΠ(A,B)[pA]〉
// Γ·Π(A,B)

pΠ(A,B)

��
Γ·A·B

pB // Γ·A
pA // Γ

It is referred to as the chosen dependent product of pB along pA.

Proof. The verification is mostly straightforward: take another (chosen) pullback

∆·A[δ]
f

��
〈δp,q〉

��

p
// ∆

δ

��
Γ·A·B

p
// Γ·A

p
// Γ

Then necessarily, f = 〈δp, q, b〉 for some term b : ∆ ·A[δ] ⊢ B[〈δp, q〉]. Then, we form

〈δ, λ(b)〉 : ∆ → Γ·Π(A,B), from which we obtain 〈δp, q, λ(b)[p]〉 : ∆·A[δ] → Γ·A·Π(A,B)[p].

We check that it satisfies the required equations. First, it is straightforward to establish

that 〈δ, λ(b)〉p = 〈pp, q〉〈δp, q, λ(b)[p]〉 using basic manipulation of cwf combinators. For

the other equation, we calculate:

evA,B〈δp, q, λ(b)[p]〉 =1 〈p, ap(q, q[p])〉〈δp, q, λ(b)[p]〉

= 〈δp, q, ap(λ(b)[p], q)〉

=2 〈δp, q, ap(λ(b[〈pp, q〉]), q)〉

=3 〈δp, q, b[〈pp, q〉][〈id, q〉]〉

= 〈δp, q, b〉

where (1) is by definition of ev, (2) is by stability of λ under substitution, (3) is by the

computation rule of Π-types, and the rest is by simple manipulations of cwf combinators.

For uniqueness, take another h : ∆ → Γ·Π(A,B). Necessarily, h = 〈δ, c〉 for some term

c : ∆ ⊢ Π(A,B)[δ]. By hypothesis, by forming 〈δp, q, c[p]〉 : ∆·A[δ] → Γ·A·Π(A,B)[p] we

get a substitution such that ev〈δp, q, c[p]〉 = f . We compute:

ev〈δp, q, c[p]〉 = 〈p, ap(q, q[p])〉〈δp, q, c[p]〉

= 〈δp, q, ap(c[p], q)〉

Therefore it follows that ap(c[p], q) = q[f] = b. By η-expansion on Π-types, it follows

that λ(b) = λ(ap(c[p], q)) = c.

The next step is to observe that if (F, σ) is a pseudo cwf-morphism between two cwfs

supporting Π-types, then the definition of (F, σ) preserving Π-types exactly amounts to

F preserving chosen dependent products.

Lemma 2. Let (C, T) and (C′, T ′) be cwfs supporting Π-types, and (F, σ) be a pseudo

cwf-morphism from (C, T) to (C′, T ′). Then (F, σ) preserves Π-types if and only if the

image of any chosen dependent product diagram is a dependent product diagram.

The Biequivalence of LCCCs and ML type theories 23

Proof. Through intricate calculations, we show that the conditions on (F, σ) for preser-

vation of Π-types exactly amount to preservation of chosen dependent product diagrams.

See the appendix for details.

Now, we can characterise preservation of Π-types for a pseudo cwf-morphism (F, σ) as

preservation of dependent products for F . As for preservation of finite limits, we use the

inverse image construction to build a chosen dependent product diagram isomorphic to

any given dependent product diagram.

Proposition 12. Let (C, T) and (C′, T ′) be two cwfs supporting democracy, Π-types, Σ-

types and identity types, and let (F, σ) be a pseudo cwf-morphism preserving democracy.

Then (F, σ) preserves Π-types if and only if F preserves dependent products.

Proof. First, we prove that since (C, T) supports Σ-types and identity types, preserving

dependent products amounts to preserving the chosen dependent products along projec-

tions as generated by Π-types in the cwf structure. Indeed, take an arbitrary dependent

product diagram:

P
h

�� ��

// Θ

Πf (g)

��
Ω

g
// ∆

f
// Γ

By the inverse image construction of Section 2.7, there is a unique isomorphism between

this diagram and the following chosen dependent product diagram, where ξf : pInv(f) → f

is the isomorphism in C/Γ described in Section 2.7.

Γ·Inv(f)·Π(Inv(f), Inv(g)[ξf])[p]
ev

vv

p

��

〈pp,q〉
// Γ·Π(Inv(f), Inv(g)[ξf])

p

��
Γ·Inv(f)·Inv(g)[ξf]

p
// Γ·Inv(f)

p
// Γ

Therefore preserving arbitrary dependent products amount to preserving the chosen de-

pendent products along projections. The proposition follows by Lemma 2.

When defining preservation of Π-types for pseudo cwf-morphisms, we postponed prov-

ing that it was stable under composition. Now it follows immediately from Proposition 12,

since preserving dependent products is stable under composition. Likewise, we mentioned

in Section 3.2.3 that from preservation of Π-types, abstraction was automatically pre-

served. It follows as well from Proposition 12, by the universal property of the dependent

product diagram.

5. Rebuilding Types and Terms

We now construct pseudofunctors in the opposite direction. Following a method due to

Bénabou and extended to type theory by Hofmann we construct a democratic cwf which

supports extensional identity types and Σ-types from a category with finite limits. If we

P. Clairambault and P. Dybjer 24

start with an lccc the resulting cwf also supports Π-types. To get a pseudofunctor we

need to extend this construction to operate also on functors and natural transformations.

Proposition 13. There are pseudofunctors

H : FL → CwFIextΣ
dem

H : LCC → CwFIextΣΠ
dem

defined by

HC = (C, TC)

HF = (F, σF)

Hφ = (φ, ψφ)

on 0-cells, 1-cells, and 2-cells, respectively, where TC, σF , and ψφ are defined in the

following three subsections.

Proof. The remainder of this Section contains the proof. We will in turn show the

action on 0-cells, 1-cells, 2-cells, and then prove pseudofunctoriality of H.

5.1. Action on 0-Cells

As explained before, in categorical semantics of dependent types (going back to (Cartmell,

1986)) a type-in-context A ∈ Type(Γ) is represented by a display map, that is, as an

object pΓ,A in C/Γ. A term in Γ ⊢ A is represented as a section of the display map for

A, that is, a morphism a such that pA ◦ a = idΓ. Substitution in types is represented by

pullback. This is essentially the technique used by Seely for interpreting Martin-Löf type

theory in lcccs. However, as we already mentioned, it leads to a coherence problem.

To solve this problem (Hofmann, 1994) used a construction due to (Bénabou, 1985),

which from any fibration builds an equivalent split fibration. In this way Hofmann built

a category with attributes (cwa) from a locally cartesian closed category. He then showed

that this cwa supports Π,Σ, and extensional identity types. This technique essentially

amounts to associating to a type A, not only a display map, but a whole family of display

maps, one for each substitution instance A[δ]. In other words, we choose a pullback

square for every possible substitution. This choice is split and hence solves the coherence

problem. As we shall explain below this family takes the form of a functor, and we refer

to it as a functorial family.

Here we reformulate Hofmann’s construction using cwfs. See (Dybjer, 1996) for the

correspondence between cwfs and cwas.

Proposition 14. Let C be a category with terminal object. Then we can build a demo-

cratic cwf (C, TC) which supports Σ-types. If C has finite limits, then (C, TC) also supports

extensional identity types. If C is locally cartesian closed, then (C, TC) also supports Π-

types.

Proof. A type in TypeC(Γ) is a functorial family, that is, a functor
−→
A : C/Γ → C

→

The Biequivalence of LCCCs and ML type theories 25

such that cod◦
−→
A = dom and if Ω

δα
��

α // ∆

δ
��

Γ

is a morphism in C/Γ, then
−→
A (α) is a pullback

square:

−→
A(δ,α)

//

−→
A(δα)

��

−→
A(δ)
��

Ω
α

// ∆

Following Hofmann, we denote the upper arrow of the square by
−→
A (δ, α).

A term a : Γ ⊢
−→
A is a section of

−→
A (idΓ), that is, a morphism a : Γ → Γ·

−→
A such that

−→
A (idΓ)a = idΓ, where we have defined context extension by Γ·

−→
A = dom(

−→
A (idΓ)).

Substitution in types. Let γ : ∆ → Γ in C and
−→
A ∈ Type(Γ). We define

−→
A [γ] ∈ Type(∆)

as follows.

−→
A [γ](δ) =

−→
A (γδ)

−→
A [γ](δ, α) =

−→
A (γδ, α)

where δ : Ω → ∆ and α : Ξ → Ω. It is easily verified that
−→
A [γ] satisfies the two conditions

for types.

Substitution in terms. Let δ : ∆ → Γ, and a : Γ ⊢
−→
A , that is, a : Γ → Γ ·

−→
A such that

−→
A (idΓ) ◦ a = idΓ. Then a[δ] is defined as the unique mediating arrow in the following

diagram:

∆
a◦δ

))

id∆

%%

a[δ]
((

∆ ◦
−→
A [δ]

−→
A(idΓ,δ) //

−→
A [δ](id∆)
��

Γ·
−→
A

−→
A(idΓ)
��

∆
δ

// Γ

It is a term of type
−→
A [δ] by commutativity of the lower left triangle.

Functoriality. Since substitution in types is defined by composition, the cwf-laws follow

immediately. Functoriality follows from the split choice of pullbacks of
−→
A . Putting all

this together, we now have built a functor TC : Cop → Fam.

Context comprehension. Let Γ ∈ C, and
−→
A ∈ Type(Γ). As mentioned above, we define:

Γ·
−→
A = dom(

−→
A (idΓ))

P. Clairambault and P. Dybjer 26

The first projection is p−→
A

=
−→
A (idΓ) : Γ·

−→
A → Γ. The second projection q−→

A
is defined as

the unique mediating arrow of the following pullback diagram:

Γ·
−→
A

id
Γ·
−→
A

++

id
Γ·
−→
A

&&

q−→
A

((

Γ·
−→
A ·

−→
A [p−→

A
]

−→
A(idΓ,p−→

A
)

//

−→
A [p−→

A
](id

Γ·
−→
A
)

��

Γ·
−→
A

−→
A(idΓ)

��
Γ·

−→
A

p−→
A

// Γ

Suppose now we have δ : ∆ → Γ and a : ∆ ⊢
−→
A [δ]. By definition of terms we have in fact

a : ∆ → ∆·
−→
A [δ]. We define:

〈δ, a〉 =
−→
A (idΓ, δ) ◦ a : ∆ → Γ·

−→
A

It can be checked that for all
−→
A ∈ Type(Γ), δ : ∆ → Γ and a : ∆ ⊢

−→
A [δ] we have

q−→
A
◦ 〈δ, a〉 = 〈〈δ, a〉, a〉, from which it follows easily that the cwf-laws for context com-

prehension are satisfied.

Democracy. The cwf (C, TC) is democratic, since a context Γ is represented by a functorial

family with 〈〉 : Γ → [] as display map. We can easily build such a functorial family by

Γ = “〈〉 ∈ Type([]). We then have []·Γ = dom(“〈〉(id)) = Γ. Thus the isomorphism between

them is trivial.

Σ-types. Let A ∈ Type(Γ) and B ∈ Type(Γ·A). For s : ∆ → Γ, the image of Σ(A,B) is

given by composing the images of A and B. More formally, we define:

Σ(A,B)(s) = A(s) ◦B(A(id, s))

Σ(A,B)(s, α) = B(A(id, s), A(s, α))

The construction of the corresponding pullback square can be illustrated by the following

diagram. Intuitively, the chosen pullbacks for Σ(A,B) are directly obtained by composing

the chosen pullbacks for A and for B.

B(A(id,s),A(s,α))
//

��

B(id,A(id,s))
//

B(A(id,s))

��

Γ·A·B

B(id)

��A(s,α)
//

A(sα)

��

A(id,s)
//

A(s)

��

Γ·A

A(id)

��

α
// B

s
// Γ

It is easy to check that this defines a functor Σ(A,B) : C/Γ → C
→ and that the necessary

equations are satisfied so that we get a type Σ(A,B) ∈ Type(Γ) which satisfies the

corresponding introduction rules, elimination rules and equations.

The Biequivalence of LCCCs and ML type theories 27

Extensional identity types. To build identity types, we require that the base category

has finite limits. Let Γ ∈ C, A ∈ Type(Γ), and a, a′ : Γ ⊢ A. If s : ∆ → Γ, we

define IA(a, a
′)(s) as the equalizer of a[s] and a′[s] (seen as morphisms ∆ → ∆ ·A[s]).

If ∆′

s′

δ // ∆

s��
Γ

is a morphism in C/Γ, we define IA(a, a
′)(δ) as the upper square in the

following diagram:
γ

//

IA(a,a′)(sδ)
��

IA(a,a′)(s)
��

∆′ δ //

a[sδ]
��

a′[sδ]
		

∆

a[s]
��

a′[s]
		

∆′ ·A[sδ]
〈δp,q〉

// ∆·A[s]

where γ is yet to be defined. For this purpose, and to prove that the obtained square is

a pullback, we need the following:

Lemma 3. In the diagram above, if f : dom(f) → ∆′, then f equalizes a[sδ] and a′[sδ]

iff δf equalizes a[s] and a′[s].

Proof. Follows by equational reasoning, exploiting the fact that in this cwf, for any

term a : Γ ⊢ A, we have the rather surprising equality a = 〈idΓ, a〉 (since 〈idΓ, a〉 =

A(idΓ, idΓ) ◦ a = a).

We use this lemma as follows. We know that IA(a, a
′)(sδ) equalizes a[sδ] and a′[sδ], thus

δ ◦ IA(a, a
′)(sδ) equalizes a[s] and a′[s]. Thus by the equalizer property, δ ◦ IA(a, a

′)(sδ)

factors in a unique way through IA(a, a
′)(s), and we define γ to be the unique morphism.

It follows directly from Lemma 3 that this is a pullback square. This construction is

functorial: both conditions (for ids and δ1 ◦ δ2) follow immediately by uniqueness of

the factorisation through the equalizer. Thus we have shown that IA(a, a
′) ∈ Type(Γ).

Introduction and elimination rules, stability under substitution and extensionality all

follow from standard properties of equalizers.

Π-types. If C is an lccc, then the cwf H(C) supports Π-types. Let
−→
A be a functorial

family over Γ and
−→
B over Γ·

−→
A . Then the value of the family Π(

−→
A,

−→
B) at substitution

δ : ∆ → Γ is Π−→
A(δ)

(
−→
B (

−→
A (id, δ))), where Πf is the right adjoint of f∗ in an lccc. If

α : Ω → ∆ and δ : ∆ → Γ, we define a morphism Π(
−→
A,

−→
B)(δ, α) yielding a pullback

diagram. For this purpose, consider the following chain of isomorphisms in C/Ω:

Π−→
A(δα)

−→
B (

−→
A (id, δα)) = Π−→

A(δα)

−→
B (

−→
A (id, δ)

−→
A (δ, α))

∼= Π−→
A(δα)

(
−→
A (δ, α))∗(

−→
B (

−→
A (id, δ)))

∼= α∗(Π−→
A(δ)

−→
B (

−→
A (id, δ)))

The first isomorphism is by uniqueness of the pullback of
−→
B (id, δ) along

−→
A (δ, α), while

the second is by the Beck-Chevalley condition applied to the pullback square of
−→
A (δ, α).

P. Clairambault and P. Dybjer 28

Let us call this isomorphism φ. The action of α∗ also gives a canonical morphism h :

dom(α∗(Π−→
A(δ)

−→
B (

−→
A (id, δ)))) → dom(Π−→

A(δ)

−→
B (

−→
A (id, δ))), thus we define:

Π(
−→
A,

−→
B)(δ, α) = hφ : dom(Π(

−→
A,

−→
B)(δ)) → dom(Π(

−→
A,

−→
B)(δα))

This defines a pullback square since it is obtained from an isomorphism and a pull-

back. Hence the definition of the functorial family Π(
−→
A,

−→
B) is complete, since the equa-

tions come from the universal property of the pullback. The fact that Π(
−→
A,

−→
B)[δ] and

Π(
−→
A [δ],

−→
B [〈δp, q〉]) coincide on objects (of C/Γ) is a straightforward calculation, from

which the fact that they coincide on morphisms can be directly deduced.

The combinators λ and ap come from natural applications of the adjunction (
−→
A (id))∗ ⊣

Π−→
A(id)

, and the computation rules follow from the properties of adjunctions. As in (Hof-

mann, 1994), the behaviour of the combinators λ and ap under substitution is obtained

by reworking the proof of the Beck-Chevalley conditions for lcccs.

5.2. Action on 1-Cells

Suppose that C and C
′ have finite limits and that F : C → C

′ preserves them. As

described in the previous section, C and C
′ give rise to cwfs (C, TC) and (C′, TC′). In

order to extend F to a pseudo cwf-morphism, we need to define, for each object Γ in C,

a Fam-morphism (σF)Γ : TC(Γ) → TC′F (Γ). Unfortunately, unless F is full, it does not

seem possible to embed faithfully a functorial family
−→
A : C/Γ → C

→ into a functorial

family over FΓ in C
′. However, there is such an embedding for display maps (just apply

F) from which we freely regenerate a functorial family from the obtained display map.

The “hat” construction. As remarked by Hofmann, any morphism f : ∆ → Γ in a

category C with a (not necessarily split) choice of finite limits generates a functorial

family f̂ : C/Γ → C
→. If δ : ∆ → Γ then f̂(δ) = δ∗(f), where δ∗(f) is obtained by taking

the pullback of f along δ (δ∗ is known as the pullback functor):

δ∗(f)
��

//

f
��

∆
δ

// Γ

Note that we can always choose pullbacks such that f̂(idΓ) = id∗Γ(f) = f . If Ω

δα
��

α // ∆

δ
��

Γ

is

a morphism in C/Γ, we define f̂(α) as the left square in the following diagram:

f̂(δ,α)
//

f̂(δα)
��

f̂(δ)
��

//

f
��

∆′
α

// ∆
δ

// Γ

This is a pullback, since both the outer square and the right square are pullbacks.

The Biequivalence of LCCCs and ML type theories 29

Translation of types. The hat construction can be used to extend F to types:

σF (
−→
A) =

Ÿ�
F (

−→
A (id))

Note that F (Γ·
−→
A) = F (dom(

−→
A (id))) = dom(F (

−→
A (id))) = dom(σΓ(

−→
A)(id)) = FΓ·σΓ(

−→
A),

so context comprehension is preserved on the nose. However, substitution on types is not

preserved on the nose. Hence we have to define a coherent family of isomorphisms θ−→
A,δ

.

Completion of cwf-morphisms. Fortunately, whenever F preserves finite limits there is a

canonical way to generate all the remaining data.

Lemma 4 (Generation of isomorphisms). Let (C, T) and (C′, T ′) be two cwfs, F :

C → C
′ a functor preserving finite limits, σΓ : Type(Γ) → Type′(FΓ) a family of

functions, and ρΓ,A : F (Γ·A) → FΓ · σΓ(A) a family of isomorphisms such that pρΓ,A =

Fp. Then there exists a unique choice of functions σAΓ on terms and of isomorphisms θA,δ
such that (F, σ) is a pseudo cwf-morphism.

Proof. By item (2) of Proposition 5, the unique way to extend σ to terms is to set

σAΓ (a) = q[ρΓ,AF (〈id, a〉)]. To generate θ, we use the two squares below:

F∆·σΓ(A)[Fδ]
〈(Fδ)p,q〉

//

p

��

FΓ·σΓ(A)

p

��
F∆

Fδ
// FΓ

F∆·σ∆(A[δ])
ρΓ,AF (〈δp,q〉)ρ−1

∆,A[δ]
//

p

��

FΓ·σΓ(A)

p

��
F∆

Fδ
// FΓ

The first square is a substitution pullback. The second is a pullback because F preserves

finite limits and ρΓ,A and ρ∆,A[δ] are isomorphisms. The isomorphism θA,δ is defined as

the unique mediating morphism from the first to the second. It follows from the universal

property of pullbacks that the family θ satisfies the necessary naturality and coherence

conditions. There is no other choice for θA,δ, because if (F, σ) is a pseudo cwf-morphism

with families of isomorphisms θ and ρ, then ρΓ,AF (〈δp, q〉)ρ
−1
∆,A[δ]θA,δ = 〈(Fδ)p, q〉. Hence

if F preserves finite limits, θA,δ must coincide with the mediating morphism.

Preservation of additional structure. As a pseudo cwf-morphism, (F, σF) automatically

preserves Σ-types.

Since the democratic structure of (C, TC) and (C′, TC′) is trivial it is easy to prove that

it is preserved by (F, σF):

Proposition 15. If F : C → C
′ preserves finite limits, then σF preserves democracy.

Proof. The functor F preserves finite limits and thus preserves the terminal object.

Let ι : [] → F [] denote the inverse to the terminal projection. Note that since the two

involved cwfs have been built with Hofmann’s construction, their democratic structure

is trivial; we have []·Γ = Γ and γΓ = id. In particular, we have F ([]·Γ) = F (Γ) = []·FΓ.

Thus to get preservation of the democratic structure, it is natural to choose:

dΓ = 〈ι, q〉ρ−1

[],Γ
: []·σ[](Γ) → []·FΓ[〈〉]

P. Clairambault and P. Dybjer 30

which makes the coherence condition essentially trivial.

All the other type constructors are preserved: for Σ-types it is automatic, for identity

types and Π-types it follows from Propositions 10 and 12.

5.3. Action on 2-Cells

In a similar way as for 1-cells, we shall show that under certain conditions a natural

transformation φ : F
•
→ G, where (F, σ) and (G, τ) are pseudo cwf-morphisms, can be

completed to a pseudo cwf-transformation (φ, ψφ).

Lemma 5 (Completion of pseudo cwf-transformations). Suppose (F, σ) and (G, τ)

are pseudo cwf-morphisms from (C, T) to (C′, T) such that F and G preserve finite lim-

its and φ : F
•
→ G is a natural transformation, then there exists a family of morphisms

(ψφ)Γ,A : σΓ(A) → τΓ(A)[φΓ] such that (φ, ψφ) is a pseudo cwf-transformation from

(F, σ) to (G, τ).

Proof. We set ψΓ,A = 〈p, q[ρ′Γ,AφΓ·Aρ
−1
Γ,A]〉 : FΓ·σΓA → FΓ·τΓ(A)[φΓ]. The coherence

law follows from the universal property of a well-chosen pullback square, see the appendix

for details.

This completion operation on 2-cells commutes with units and both notions of com-

position, as will be crucial to prove pseudofunctoriality of H:

Lemma 6. Completion of pseudo cwf-transformations commutes with both notions of

composition. More precisely, if φ : F
•
→ G and φ′ : G

•
→ H, then

(φ′, ψφ′) • (φ, ψφ) = (φ′ • φ, ψφ′•φ)

Likewise if φ : F
•
→ G and φ′ : F ′ → G′,

(φ′, ψφ′)(φ, ψφ) = (φ′φ, ψφ′φ)

Finally, for all pseudo cwf-morphism (F, σ) we have 1(F,σ) = (1F , ψ1F).

Proof. The first equality is a straightforward verification. The second requires a more

involved calculation similar to the one used to prove Lemma 5, see the appendix. Finally,

the third equality follows from the remark that by definition of ψ1F , we have (ψ1F)Γ,A =

idΓ·σΓA for all Γ, A.

5.4. Pseudofunctoriality of H

First note that H is not a functor, because for F : C → D with finite limits and functorial

family
−→
A over Γ (in C), σΓ(

−→
A) forgets all information on

−→
A except its display map

−→
A (id),

and later extends F (
−→
A (id)) to an independent functorial family.

However, we shall prove:

Proposition 16. H : FL → CwFIextΣ
dem and H : LCC → CwFIextΣΠ

dem are pseudofunctors.

The Biequivalence of LCCCs and ML type theories 31

Proof. First, note that as proved in Lemma 6, H is functorial on 2-cells.

For each C we need an invertible 2-cell HC : Id(C,TC) → H(IdC), this will be the

identity 2-cell since we have in fact H(IdC) = (IdC, σIdC) = Id(C,TC) by construction of

σIdC .

For each two functors F : C → D and G : D → E we need an isomorphism HF,G :

HG ◦ HF → H(G ◦ F), natural in F and G. It is given by HF,G = (1GF , ψ1GF
). The

naturality condition amounts to the commutativity of the following square:

(G, σG)(F, σF)
(1GF ,ψ1GF

)
//

(φ,ψφ)(φ
′,ψφ′)

��

(GF, σGF)

(φ′φ,ψφ′φ)

��
(G′, σG′)(F ′, σF ′)

(1GF ,ψ1GF
)
// (G′F ′, σG′F ′)

This is a direct consequence of Lemma 6. The coherence laws with respect to associativity

of composition and identities also follow from Lemma 6. In fact, Lemma 5 implies that

to check the validity of any equation involving vertical and horizontal compositions of

pseudo cwf-transformations built with Lemma 5 and identity pseudo cwf-transformations,

it suffices to check the equality of the corresponding base natural transformation, ignoring

the modifications.

6. The Biequivalences

Theorem 1. We have the following biequivalences of 2-categories.

FL
H // CwFIextΣ

dem
U

oo LCC
H // CwFIextΣΠ

dem
U

oo

Proof. Since UH = Id (the identity 2-functor) it suffices to construct pseudonatural

transformations of pseudofunctors:

Id
η

// HU
ǫ

oo

which are inverse up to invertible modifications. SinceHU(C, T) = (C, TC), these pseudo-

natural transformations are families of equivalences of cwfs:

(C, T)
η(C,T)

// (C, TC)
ǫ(C,T)

oo

which satisfy the required conditions for pseudonatural transformations.

Construction of η(C,T). Using Lemma 4, we just need to define a base functor, which will

be IdC, and a family σηΓ which translates types (in the sense of T) to functorial families.

This is easy, since types in the cwf (C, T) come equipped with a chosen behaviour under

substitution. Given A ∈ Type(Γ), we define:

σηΓ(A)(δ) = pA[δ]

σηΓ(A)(δ, γ) = 〈γp, q〉

P. Clairambault and P. Dybjer 32

Preservation of type constructors follows from Propositions 10 and 12 and the fact that

the identity functor preserves finite limits and dependent products.

For each pseudo cwf-morphism (F, σ), the pseudonaturality square relates two pseudo

cwf-morphisms whose base functor is F . Hence, the necessary invertible pseudo cwf-

transformation is obtained using Lemma 5 from the identity natural transformation on

F . The coherence conditions are straightforward consequences of Lemma 5.

Construction of ǫ(C,T). As for η, the base functor for ǫ(C,T) is IdC. Using Lemma 4 again

we need, for each context Γ, a function σǫΓ which given a functorial family
−→
A over Γ will

build a syntactic type σǫΓ(
−→
A) ∈ Type(Γ). In other words, we need to find a syntactic

representative of an arbitrary display map, that is, an arbitrary morphism in C. We use

the inverse image:

σǫΓ(
−→
A) = Inv(

−→
A (id)) ∈ Type(Γ)

As for η(C,T), type constructors are preserved by Propositions 10 and 12. The family ǫ is

pseudonatural for the same reason as η above.

Invertible modifications. For each cwf (C, T), we need to define invertible pseudo cwf-

transformations m(C,T) : (ǫη)(C,T) → id(C,T) and m
′
(C,T) : (ηǫ)(C,T) → id(C,T). As pseudo

cwf-transformations between pseudo cwf-morphisms with the same base functor, their

first component will be the identity natural transformation, and the second will be gen-

erated by Lemma 5. The coherence law for modifications is a consequence of Lemma 5.

7. Conclusion

The cwf morphism η(C,T) describes the interpretation of the cwf (C, T) into the cwf

(C, TC) obtained by the Bénabou-Hofmann construction. It is analogous to Hofmann’s

interpretation of a category with attributes in a lccc (Hofmann, 1994). Note that η(C,T) is

a strict cwf morphism, although morphisms in the categories CwFIextΣ
dem and CwFIextΣΠ

dem

in general are only required to be pseudo cwf-morphisms. The strictness of η is important

for an interpretation, since it means that the laws of cwfs are preserved strictly and not

only up to isomorphism.

In order to prove our result we were forced to consider categories of cwfs with pseudo

cwf morphisms. We were unable to prove a (bi)equivalence with categories of cwfs and

strict cwf morphisms. For example, there is no obvious candidate for a strict replacement

for ǫ(C,T) since we must then construct a syntactic type over Γ for each semantic type

over Γ (that is, an object of the slice category over Γ). The need to consider pseudo cwf

morphisms indicates that the connection between Martin-Löf type theory and locally

cartesian closed categories is not as tight as for example the connection between the

simply typed lambda calculus and cartesian closed categories, or between syntactically

defined Martin-Löf type theories and cwfs. So is Martin-Löf type theory with extensional

identity types, Σ- and Π-types, an internal language for lcccs? Yes, it is an internal

language “up to isomorphism”.

The Biequivalence of LCCCs and ML type theories 33

References

Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J.-J. (1990). Explicit substitutions. In ACM

Conference on Principles of Programming Languages, San Francisco.

Bénabou, J. (1985). Fibred categories and the foundation of naive category theory. Journal of

Symbolic Logic, 50:10–37.

Cartmell, J. (1986). Generalized algebraic theories and contextual categories. Annals of Pure

and Applied Logic, 32:209–243.

Curien, P.-L. (1993). Substitution up to isomorphism. Fundamenta Informaticae, 19(1,2):51–86.

Dybjer, P. (1996). Internal type theory. In TYPES ’95, Types for Proofs and Programs, number

1158 in Lecture Notes in Computer Science, pages 120–134. Springer.

Hofmann, M. (1994). On the interpretation of type theory in locally cartesian closed categories.

In Pacholski, L. and Tiuryn, J., editors, CSL, volume 933 of Lecture Notes in Computer

Science. Springer.

Hofmann, M. (1996). Syntax and semantics of dependent types. In Pitts, A. and Dybjer, P.,

editors, Semantics and Logics of Computation. Cambridge University Press.

Lawvere, F. W. (1970). Equality in hyperdoctrines and comprehension schema as an adjoint

functor. In Heller, A., editor, Applications of Categorical Algebra, Proceedings of Symposia in

Pure Mathematics. AMS.

Leinster, T. (1999). Basic bicategories. arXiv:math/9810017v1.

Martin-Löf, P. (1975). An intuitionistic theory of types: Predicative part. In Rose, H. E. and

Shepherdson, J. C., editors, Logic Colloquium ‘73, pages 73–118. North Holland.

Martin-Löf, P. (1982). Constructive mathematics and computer programming. In Logic, Method-

ology and Philosophy of Science, VI, 1979, pages 153–175. North-Holland.

Martin-Löf, P. (1984). Intuitionistic Type Theory. Bibliopolis.

Martin-Löf, P. (1986). Amendment to intuitionistic type theory. Notes from a lecture given in

Göteborg.

Martin-Löf, P. (1992). Substitution calculus. Notes from a lecture given in Göteborg.

Mimram, S. (2004). Decidability of equality in categories with families. Report, Mag-

istère d’Informatique et Modelisation, École Normale Superieure de Lyon, http://www.pps.

jussieu.fr/~smimram/.

Pitts, A. M. (2000). Categorical logic. In Abramsky, S., Gabbay, D. M., and Maibaum, T. S. E.,

editors, Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical Structures,

chapter 2, pages 39–128. Oxford University Press.

Seely, R. (1984). Locally cartesian closed categories and type theory. Math. Proc. Cambridge

Philos. Soc., 95(1):33–48.

Tasistro, A. (1993). Formulation of Martin-Löf’s theory of types with explicit substitutions.

Technical report, Department of Computer Sciences, Chalmers University of Technology and

University of Göteborg. Licentiate Thesis.

Taylor, P. (1999). Practical Foundations of Mathematics. Cambridge University Press.

P. Clairambault and P. Dybjer 34

Appendix A. Additional proofs about cwfs and pseudo cwf morphisms

Lemma 7. Let (C, T) be a cwf. Let δ : ∆ → Γ be a substitution, A ∼=f A
′ isomorphic

types in Type(Γ) and a : Γ ⊢ A be a term. Then:

({f}(a))[δ] = {T (δ)(f)}(a[δ])

Proof. Follows from the following equational reasoning.

({f}(a))[δ] = q[f〈id, a〉δ]

= q[f〈δ, a[δ]〉]

= q[f〈δp, q〉][〈id, a[δ]〉]

= {〈p, q[f〈δp, q〉]〉}(a[δ])

= {T (δ)(f)}(a[δ])

Lemma 8. Let (F, σ) : (C, T) → (C′, T ′) be a pseudo cwf-morphism with families of

isomorphisms θ and ρ. Then for any δ : ∆ → Γ in C and type A ∈ Type(Γ), we have:

F (〈δp, q〉) = ρ−1
Γ,A〈F (δ)p, q〉θ

−1
A,δρ∆,A[δ]

Proof. Direct calculation.

F (〈δp, q〉) =1 ρ−1
Γ,A〈F (δp), {θ

−1
A,δp}(σ

A[δp]
∆·A[δ](q))〉

=2 ρ−1
Γ,A〈F (δp), {θ

−1
A,δp}({θA[δ],p}(q[ρ∆,A[δ]]))〉

=3 ρ−1
Γ,A〈F (δp), {T

′(Fp)(θ−1
A,δ)}(q[ρ∆,A[δ]])〉

=4 ρ−1
Γ,A〈F (δp), q[T

′(Fp)(θ−1
A,δ)〈id, q[ρ∆,A[δ]]〉]〉

=5 ρ−1
Γ,A〈F (δp), q[〈p, q[θ

−1
A,δ〈(Fp)p, q〉]〉〈id, q[ρ∆,A[δ]]〉]〉

= ρ−1
Γ,A〈F (δp), q[θ

−1
A,δ〈Fp, q[ρ∆,A[δ]]〉]〉

=6 ρ−1
Γ,A〈F (δ)pρ∆,A[δ], q[θ

−1
A,δ〈pρ∆,A[δ], q[ρ∆,A[δ]]〉]〉

= ρ−1
Γ,A〈F (δ)p, q[θ

−1
A,δ]〉ρ∆,A[δ]

=7 ρ−1
Γ,A〈F (δ)p, q〉θ

−1
A,δρ∆,A[δ]

where (1) is by preservation of substitution extention (Proposition 4), (2) is by the

preservation law (b) for the second projection, (3) is by coherence of θ, (4) is by definition

of the coercion {T ′(Fp)(θ−1
A,δ)}, (5) is by definition of T ′, (6) is by the preservation law (a)

for the first projection. The other equations use basic manipulation of cwf combinators,

with (7) using additionally that θ−1
A,δ is a morphism in T

′(F∆), so pθ−1
A,δ = p.

Lemma 9. If (F, σ) is a pseudo cwf-morphism from (C, T) to (C′, T ′) and f : A→ B is

a morphism in T (Γ), then the coercion {f} commutes with σ in the following way, for

The Biequivalence of LCCCs and ML type theories 35

each a : Γ ⊢ A:

σBΓ ({f}(a)) = {σΓ(f)}(σ
A
Γ (a))

Proof. Direct calculation.

σBΓ ({f}(a)) =1 q[ρΓ,BF (〈id, {f}(a)〉)]

=2 q[ρΓ,BF (〈id, q[f〈id, a〉]〉)]

=3 q[ρΓ,BF (f〈id, a〉)]

=4 q[σΓ(f)ρΓ,AF (〈id, a〉)]

=3 q[σΓ(f)〈pρΓ,AF (〈id, a〉), q[ρΓ,AF (〈id, a〉)]〉

=5 q[σΓ(f)〈id, q[ρΓ,AF (〈id, a〉)]〉

=2 {σΓ(f)}(q[ρΓ,AF (〈id, a〉)])

=1 {σΓ(f)}(σ
A
Γ (a))

Where (1) is by Proposition 5, (2) by definition of coercions, (3) by basic manipulation

of cwf combinators (for the first instance, noting that f is a morphism in T (Γ)) (4) by

definition of σ and (5) by the law (a) for the preservation of the first projection by F .

Appendix B. Additional proofs about the forgetful 2-functor U

Lemma 10 (Propagation of isomorphisms). Isomorphisms propagate through types

in several different ways. Suppose that you have A,A′ ∈ Type(Γ), B,B′ ∈ Type(Γ ·A),

then

(1) If B ∼= B′, then Σ(A,B) ∼= Σ(A,B′)

(2) If A ∼=f A
′, then Σ(A,B) ∼= Σ(A′, B[f−1])

(3) If A ∼=f A
′ and a, a′ ∈ Γ ⊢ A, then IA(a, a

′) ∼= IA′({f}(a), {f}(a′))

Proof. (1) is obvious, since Γ ·Σ(A,B) is isomorphic to Γ ·A ·B. For (2), we give the

following two isomorphisms:

〈p, pair(q[f〈p, π1(q)〉], π2(q))〉 : Γ·Σ(A,B) → Γ·Σ(A′, B[f−1])

〈p, pair(q[f−1〈p, π1(q)〉], π2(q))〉 : Γ·Σ(A′, B[f−1]) → Γ·Σ(A,B)

A simple calculation shows that they have the right types and that they are inverse of

one another. It is obvious that they are isomorphisms of types. (3) is also obvious since

by extensionality, 〈p, r〉 typechecks in both directions and is its own inverse.

Proof of Lemma 1. Exploiting Lemma 10 and preservation of substitution on types and

terms, a careful (but straightforward) calculation derives the following type isomorphism:

σΓ(Inv(δ)) ∼= Σ(F∆[〈〉], I
FΓ[〈〉](C(σ

Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉])), C(σ

Γ[〈〉]

Γ·∆[〈〉]
(q[γΓp]))))

P. Clairambault and P. Dybjer 36

where C(−) is an invertible context given by:

C(M) = {T ′(ι〈〉)(dΓ)θ
−1

Γ,〈〉
}(M)[ρΓ,∆[〈〉]θ∆,〈〉T

′(ι〈〉)(d−1
∆)]

Hence, it remains to show the following equalities:

σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉]) = C−1(Fδ[〈〈〉, q〉]) (1)

σ
Γ[〈〉]

Γ·∆[〈〉]
(q[γΓp]) = C−1(q[γFΓp]) (2)

Let us focus on (1). Using preservation of substitution on terms, coherence of θ and

the basic computation laws in cwfs, we derive:

σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉]) = σ

Γ[p][〈〈〉,q〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉])

=1 {θΓ[p],〈〈〉,q〉}(σ
Γ[p]

[]·∆
(δ)[F (〈〈〉, q〉)])

=2 {θΓ,〈〉}({T
′(F (〈〈〉, q〉))(θ−1

Γ,p
)}(σ

Γ[p]

[]·∆
(δ)[F (〈〈〉, q〉)]))

=3 {θΓ,〈〉}({θ
−1

Γ,p
}(σ

Γ[p]

[]·∆
(δ))[F (〈〈〉, q〉)])

where (1) is by preservation of substitution on terms, (2) is by coherence of θ and (3)

is by Lemma 7.

Let us now focus on σ
Γ[p]

[]·∆
(δ), to see how terms created from substitution using democ-

racy are transformed by the action of the cwf-morphism.

σ
Γ[p]

[]·∆
(δ) =1 σ

Γ[p]

[]·∆
(q[γΓδγ

−1
∆])

=2 σ
Γ[p][γΓδγ

−1
∆

]

[]·∆
(q[γΓδγ

−1
∆])

=3 {θΓ[p],γΓδγ−1
∆

}(σ
Γ[p]

[]·Γ
(q)[F (γΓδγ

−1
∆)])

=4 {θΓ[p],γΓδγ−1
∆

}({θΓ,p}(q[ρ[],Γ])[F (γΓδγ
−1
∆)])

=5 {θΓ[p],γΓδγ−1
∆

}({T ′(F (γΓδγ
−1
∆))(θΓ,p)}(q[ρ[],Γ][F (γΓδγ

−1
∆)]))

=6 {θΓ,pγΓδγ−1
∆

}(q[ρ[],ΓF (γΓδγ
−1
∆)])

=7 {θΓ,p}(q[ρ[],ΓF (γΓδγ
−1
∆)])

where (1) is by Definition 6, (2) is by uniqueness of the morphism [] · ∆ → [] (since

[] is terminal), (3) is by preservation of substitution on terms, (4) is by law (b) for the

preservation of second projection, (5) is by Lemma 7, (6) is by coherence of θ, and (7) is

by uniqueness of the morphism []·∆ → [], since [] is terminal.

The Biequivalence of LCCCs and ML type theories 37

Using this, we continue simplifying σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉]):

σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉])

= {θΓ,〈〉}({θ
−1

Γ,p
}(σ

Γ[p]

[]·∆
(δ))[F (〈〈〉, q〉)])

=1 {θΓ,〈〉}({θ
−1

Γ,p
}({θΓ,p}(q[ρ[],ΓF (γΓδγ

−1
∆)]))[F (〈〈〉, q〉)])

=2 {θΓ,〈〉}(q[ρ[],ΓF (γΓδγ
−1
∆ 〈〈〉, q〉)])

=3 {θΓ,〈〉}(q[ρ[],Γρ
−1

[],Γ
d−1
Γ 〈ιp, q〉γFΓF (δ)γ

−1
F∆〈〈〉, q〉d∆ρ[],∆F (〈〈〉, q〉))

= {θΓ,〈〉}(q[d
−1
Γ 〈ιp, q〉γFΓF (δ)γ

−1
F∆〈〈〉, q〉d∆ρ[],∆F (〈〈〉, q〉))

where (1) is by the previous calculation, (2) is by composition of coercions and (3) is

by preservation of democracy by F .

We now focus on the subterm d∆ρ[],∆F (〈〈〉, q〉):

d∆ρ[],∆F (〈〈〉, q〉) =1 d∆ρ[],∆ρ
−1

[],∆
〈F (〈〉), {θ−1

∆,〈〉
}(σ

∆[〈〉]

Γ·∆[〈〉]
(q))〉

=2 d∆〈F 〈〉, {θ
−1

∆,〈〉
}({θ∆[〈〉],p}(q[ρΓ,∆[〈〉]]))〉

=3 d∆〈ι〈〉, {θ
−1

∆,〈〉
θ∆[〈〉],p}(q[ρΓ,∆[〈〉]]))〉

=4 d∆〈ι〈〉, {T
′(Fp)(θ−1

∆,〈〉
)}(q[ρΓ,∆[〈〉]]))〉

where (1) is by preservation of substitution extension (Proposition 4), (2) is by equality

(b) for preservation of the second projection, (3) is by preservation of the terminal object

and composition of coercions, (4) is by coherence of θ.

We now focus on the subterm {T ′(Fp)(θ−1

∆,〈〉
)}(q[ρΓ,∆[〈〉]]):

{T ′(Fp)(θ−1

∆,〈〉
)}(q[ρΓ,∆[〈〉]]) =1 q[T ′(Fp)(θ−1

∆,〈〉
)〈id, q[ρΓ,∆[〈〉]]〉]

=2 q[〈p, q[θ−1

∆,〈〉
〈(Fp)p, q〉]〉〈id, q[ρΓ,∆[〈〉]]〉]

= q[θ−1

∆,〈〉
〈(Fp), q[ρΓ,∆[〈〉]]〉]

=3 q[θ−1

∆,〈〉
〈pρΓ,∆[〈〉], q[ρΓ,∆[〈〉]]〉

= q[θ−1

∆,〈〉
ρΓ,∆[〈〉]]

where (1) is by definition of coercions, (2) is by definition of T ′, (3) is by equality

(a) for preservation of the first projection, and the rest is by basic manipulations of cwf

combinators.

Replacing that in the previous calculation, we further calculate:

P. Clairambault and P. Dybjer 38

d∆ρ[],∆F (〈〈〉, q〉) = d∆〈ι〈〉, q[θ
−1

∆,〈〉
ρΓ,∆[〈〉]]〉

=1 d∆〈ι〈〉, q〉θ
−1

∆,〈〉
ρΓ,∆[〈〉]

= 〈pd∆〈ι〈〉, q〉, q[d∆〈ι〈〉, q〉]〉θ
−1

∆,〈〉
ρΓ,∆[〈〉]

=1 〈p, q[d∆〈ι〈〉, q〉]〉θ
−1

∆,〈〉
ρΓ,∆[〈〉]

=2 T
′(ι〈〉)(d∆)θ

−1

∆,〈〉
ρΓ,∆[〈〉]

where (1) is by terminality of [], (2) is by definition of T ′, and the rest is by basic

manipulations of cwf combinators.

Using this, we can finish converting σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉]):

σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉]) = {θΓ,〈〉}(q[d

−1
Γ 〈ιp, q〉γFΓF (δ)γ

−1
F∆〈〈〉, q〉d∆ρ[],∆F (〈〈〉, q〉))

=1 {θΓ,〈〉}(q[d
−1
Γ 〈ιp, q〉γFΓFδγ

−1
F∆〈〈〉, q〉T

′(ι〈〉)(d∆)θ
−1

∆,〈〉
ρΓ,∆[〈〉]])

=2 {θΓ,〈〉}(q[d
−1
Γ 〈ι〈〉, q[γFΓFδγ

−1
F∆〈〈〉, q〉T

′(ι〈〉)(d∆)θ
−1

∆,〈〉
ρΓ,∆[〈〉]]〉])

=3 {θΓ,〈〉}(q[d
−1
Γ 〈ι〈〉, F δ[〈〈〉, q〉][T ′(ι〈〉)(d∆)θ

−1

∆,〈〉
ρΓ,∆[〈〉]]〉])

= {θΓ,〈〉}(q[〈p, q[d
−1
Γ 〈ι〈〉p, q〉]〉〈id, F δ[〈〈〉, q〉][T ′(ι〈〉)(d∆)θ

−1

∆,〈〉
ρΓ,∆[〈〉]]〉])

=4 {θΓ,〈〉}({T
′(ι〈〉)(d−1

Γ)}(Fδ[〈〈〉, q〉][T ′(ι〈〉)(d∆)θ
−1

∆,〈〉
ρΓ,∆[〈〉]]))

=5 {θΓ,〈〉T
′(ι〈〉)(d−1

Γ)}(Fδ[〈〈〉, q〉][T ′(ι〈〉)(d∆)θ
−1

∆,〈〉
ρΓ,∆[〈〉]])

= C−1(Fδ[〈〈〉, q〉])

where (1) is by the previous calculation, (2) is by terminality of [] and basic manip-

ulation of cwf combinators, (3) is by definition of democracy (Definition 6), (4) is by

defintion of T ′ and of coercions, (5) is by composition of coercions, and the rest is either

by definition or basic manipulation of cwf combinators.

We get the required expression. The case of Equation (2) is similar but less intricate,

so we skip the details.

Proof of Lemma 2. Consider a chosen dependent product in C. We want to characterize

the fact that its image by F is still a dependent product diagram, i.e. that the following

is a dependent product.

F (Γ·A·Π(A,B)[p])
F (ev)

ww
F (p)

��

F (〈pp,q〉)
// F (Γ·Π(A,B))

F (p)

��
F (Γ·A·B)

F (p)
// F (Γ·A)

F (p)
// F (Γ)

Let us denote this diagram by D. By preservation of cwf structure, the “base” F (Γ·A·B) →

The Biequivalence of LCCCs and ML type theories 39

F (Γ·A) → FΓ of D is isomorphic to the following chain of projections:

F (Γ·A·B)
F (p)

//

〈ρΓ,A(Fp),q[ρΓ·A,B]〉

��

F (Γ·A)
F (p)

//

ρΓ·A

��

FΓ

id

��
FΓ·σΓ(A)·σΓ·A(B)[ρ−1

Γ,A]
p

// FΓ·σΓ(A)
p

// FΓ

The fact that D is a dependent product diagram is then equivalent to the existence

of a (necessarily unique) isomorphism between it and the chosen dependent product

diagram for Π(σΓ(A), σΓ·A(B)[ρ−1
Γ,A]) extending the isomorphism between their bases

displayed earlier. In other word, D is a dependent product diagram iff there exists

iA,B : σΓ(Π(A,B)) → Π(σΓ(A), σΓ·A(B)[ρ−1
Γ·A]) and f : F (Γ·A·Π(A,B)[p]) → FΓ·σΓ(A)·

Π(σΓ(A), σΓ·A(B)[ρ−1
Γ,A])[p], preserving the isomorphism between the bases of the two

diagrams, and such that the following diagram commutes:

F (Γ·A·B) oo
F (ev)

〈ρΓ,A(Fp),q[ρΓ·A,B]〉

��

F (Γ·A·Π(A,B)[p])
F (〈pp,q〉)

//

f

��

F (Γ·Π(A,B))

iA,BρΓ,Π(A,B)

��

FΓ·σΓ(A)·σΓ·A(B)[ρ−1
Γ,A]

oo ev
FΓ·σΓ(A)·Π(σΓ(A), σΓ·A(B)[ρ−1

Γ,A])[p]
〈pp,q〉

// FΓ·Π(σΓ(A), σΓ·A(B)[ρ−1
Γ,A])

It follows that necessarily, f = 〈ρΓ,A(Fp), q[iA,BρΓ,Π(A,B)F (〈pp, q〉)]〉, making the right

hand side square commute.

We have established that F preserves dependent products if and only if for any A ∈

Type(Γ) and B ∈ Type(Γ·A), the following equality holds:

ev〈ρΓ,A(Fp), q[iA,BρΓ,Π(A,B)F (〈pp, q〉)]〉 = 〈ρΓ,A(Fp), q[ρΓ·A,B]〉F (ev) (3)

Clearly, this holds if and only if for any δ : ∆ → Γ in C, for any c : ∆ ⊢ Π(A,B)[δ] and

a : ∆ ⊢ A[δ], the equality holds when both sides are pre-composed by F (〈δ, a, c〉). We

evaluate the left hand side of Equation (3) pre-composed by F (〈δ, a, c〉).

ev〈ρΓ,A(Fp), q[iA,BρΓ,Π(A,B)F (〈pp, q〉)]〉F (〈δ, a, c〉)

=1 〈p, ap(q, q[p])〉〈ρΓ,A(Fp), q[iA,BρΓ,Π(A,B)F (〈pp, q〉)]〉F (〈δ, a, c〉)

= 〈p, ap(q, q[p])〉〈ρΓ,AF (〈δ, a〉), q[iA,BρΓ,Π(A,B)F (〈δ, c〉)]〉

= 〈ρΓ,AF (〈δ, a〉), ap(q[iA,BρΓ,Π(A,B)F (〈δ, c〉)], q[ρΓ,AF (〈δ, a〉)])〉

=2 〈Fδ, {θ−1
A,δ}(σ

A[δ]
∆ (a)), ap(q[iA,B〈Fδ, {θ

−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c)〉], q[〈Fδ, {θ−1

A,δ}(σ
A[δ]
∆ (a))〉])〉

= 〈Fδ, {θ−1
A,δ}(σ

A[δ]
∆ (a)), ap(q[iA,B〈Fδ, {θ

−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c)〉], {θ−1

A,δ}(σ
A[δ]
∆ (a))〉

where (1) is by definition of ev, (2) is by preservation of substitution extension (Propo-

sition 4), and the other equalities are by standard manipulation of cwf combinators. We

further evaluate the subterm q[iA,B〈Fδ, {θ
−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c)〉]:

P. Clairambault and P. Dybjer 40

q[iA,B〈Fδ, {θ
−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c)〉]

= q[〈p, q[iA,B〈(Fδ)p, q〉]〉〈id, {θ
−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c))〉]

=1 {T ′(Fδ)(iA,B)}({θ
−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c)))

=2 {T ′(Fδ)(iA,B)θ
−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c))

where (1) is by definition of T ′ and of the application of coercions {θ}(a), and (2) is

by compatibility of the application of coercions with composition. The other equalities

are by standard manipulations of cwf combinators. So far, we have established that the

left hand side of Equation (3) pre-composed with F (〈δ, a, c〉) is equal to:

〈Fδ, {θ−1
A,δ}(σ

A[δ]
∆ (a)), ap({T ′(Fδ)(iA,B)θ

−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c)), {θ−1

A,δ}(σ
A[δ]
∆ (a)))〉

Let us now evaluate the right hand side. We calculate:

〈ρΓ,A(Fp), q[ρΓ·A,B]〉F (ev)F (〈δ, a, c〉)

=1 〈ρΓ,A(Fp), q[ρΓ·A,B]〉F (〈p, ap(q, q[p])〉)F (〈δ, a, c〉)

= 〈ρΓ,AF (〈δ, a〉), q[ρΓ·A,BF (〈δ, a, ap(c, a)〉)]〉

=2 〈Fδ, {θ−1
A,δ}(σ

A[δ]
∆ (a)), q[〈F (〈δ, a〉), {θ−1

B,〈δ,a〉}(σ
B[〈δ,a〉]
∆ (ap(c, a)))〉]〉

= 〈Fδ, {θ−1
A,δ}(σ

A[δ]
∆ (a)), {θ−1

B,〈δ,a〉}(σ
B[〈δ,a〉]
∆ (ap(c, a)))〉

where (1), is by definition of ev, (2) is by preservation of substitution extension (Propo-

sition 4), and the other equalities are by standard manipulations of cwf combinators.

So we have established that Equation (3) pre-composed with F (〈δ, a, c〉) amounts to

the equality between

〈Fδ, {θ−1
A,δ}(σ

A[δ]
∆ (a)), ap({T ′(Fδ)(iA,B)θ

−1
Π(A,B),δ}(σ

Π(A,B)[δ]
∆ (c)), {θ−1

A,δ}(σ
A[δ]
∆ (a)))〉

and

〈Fδ, {θ−1
A,δ}(σ

A[δ]
∆ (a)), {θ−1

B,〈δ,a〉}(σ
B[〈δ,a〉]
∆ (ap(c, a)))〉

whose right projection is exactly the condition required of pseudo cwf-morphisms for

preservation of Π-types.

Appendix C. Additional proofs about the pseudofunctor H

Proof of Lemma 5. We set ψΓ,A = 〈p, q[ρ′Γ,AφΓ·Aρ
−1
Γ,A]〉 : FΓ ·σΓA → FΓ ·τΓ(A)[φΓ].

To check the coherence law, we apply the universal property of a well-chosen pullback

square (exploiting the fact that G preserves finite limits).

F∆·τ∆(A[δ])[φ∆]
〈φ∆p,q〉

//

p

��

G∆·τ∆(A[δ])
ρ′Γ,AG(〈δp,q〉)(ρ′∆,A[δ])

−1

//

p

��

GΓ·τΓ(A)

p

��
F∆

φ∆

// G∆
Gδ

// GΓ

The Biequivalence of LCCCs and ML type theories 41

The two paths T ′(φ∆)(θ
′
A,δ)T

′(Fδ)(ψΓ,A) and ψ∆,A[δ]θA,δ of the coherence diagram be-

have in the same way with respect to this pullback. Here is the calculation for the first

path of the coherence diagram:

ρ′Γ,AG(〈δp, q〉)(ρ
′
∆,A[δ])

−1〈φ∆p, q〉T
′(φ∆)(θ

′
A,δ)T

′(Fδ)(ψΓ,A)

=1 〈(Gδ)p, q〉θ′A,δ
−1

〈φ∆p, q〉T
′(φ∆)(θ

′
A,δ)T

′(Fδ)(ψΓ,A)

=2 〈(Gδ)p, q〉θ′A,δ
−1

〈φ∆p, q〉〈p, q[θ
′
A,δ〈φ∆p, q〉〉T

′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉θ′A,δ
−1

〈φ∆p, q[θ
′
A,δ〈φ∆p, q〉〉T

′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉θ′A,δ
−1

〈pθ′A,δ〈φ∆p, q〉, q[θ
′
A,δ〈φ∆p, q]〉〉T

′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉〈φ∆p, q〉T
′(Fδ)(ψΓ,A)

=2 〈(Gδ)p, q〉〈φ∆p, q〉〈p, q[ψΓ,A〈(Fδ)p, q〉]〉

= 〈(Gδ)φ∆p, q[ψΓ,A〈(Fδ)p, q〉]〉

=3 〈(Gδ)φ∆p, q[ρ
′
Γ,AφΓ·Aρ

−1
Γ,A〈(Fδ)p, q〉]〉

=4 〈φΓ(Fδ)p, q[ρ
′
Γ,AφΓ·Aρ

−1
Γ,A〈(Fδ)p, q〉]〉

= 〈φΓp, q[ρ
′
Γ,AφΓ·Aρ

−1
Γ,A]〉〈(Fδ)p, q〉

=5 〈pρ′Γ,AφΓ·Aρ
−1
Γ,A, q[ρ

′
Γ,AφΓ·Aρ

−1
Γ,A]〉〈(Fδ)p, q〉

= ρ′Γ,AφΓ·Aρ
−1
Γ,A〈(Fδ)p, q〉

where (1) is by Lemma 8, (2) is by definition of T ′, (3) is by definition of ψ and a basic

manipulation of cwf combinators, (4) is by naturality of φ, (5) is by naturality of φ again

and law (a) for preservation of the first projection, and the rest is by basic manipulation

of cwf combinators.

We now simplify the second path in the diagram:

ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
〈φ∆p, q〉ψ∆,A[δ]θA,δ

=1 ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
〈φ∆p, q〉〈p, q[ρ

′
∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ]]〉θA,δ

= ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
〈φ∆p, q[ρ

′
∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ]]〉θA,δ

=2 ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
〈pρ′∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ], q[ρ

′
∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ]]〉θA,δ

= ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
ρ′∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ]θA,δ

= ρ′Γ,AG(〈δp, q〉)φ∆·A[δ]ρ
−1
∆,A[δ]θA,δ

=3 ρ′Γ,AφΓ·AF (〈δp, q〉)ρ
−1
∆,A[δ]θA,δ

= ρ′Γ,AφΓ·Aρ
−1
Γ,AρΓ,AF (〈δp, q〉)ρ

−1
∆,A[δ]θA,δ

=4 ρ′Γ,AφΓ·Aρ
−1
Γ,A〈(Fδ)p, q〉

where (1) is by definition of ψ, (2) is by naturality of φ and equality (a) for the

preservation of the first projection, (3) is by naturality of φ, (4) is Lemma 8 and the rest

are basic manipulations of cwf combinators.

Proof of Lemma 6. The first equality is a straightforward verification. The second

P. Clairambault and P. Dybjer 42

requires a more involved calculation similar to the one used to prove Lemma 5. Assume

that we have the following situation:

(C, T)

(F,σ)
--

(G,τ)

11 (C
′, T ′)

(F ′,σ′)
--

(G′,τ ′)

11 (C
′′, T ′′)

Let us call θ and ρ the components of (F, σ), θ′ and ρ′ the components of (F ′, σ′), ϑ and

̺ the components of (G, τ) and ϑ′ and ̺′ the components of (G′, τ ′). Let us also consider

natural transformations φ : F
•
→ G and φ′ : F ′ •

→ G′. Let us recall that the vertical

composition of pseudo cwf-transformations follows those of 2-cells in the 2-category of

indexed categories over arbitrary bases, which means (φ, ψφ)(φ
′, ψφ′) = (φφ′,m), where

mΓ,A is obtained by:

σ′
FΓ(σΓA)

σ
′

FΓ((ψφ)Γ,A)
// σ′
FΓ(τΓA[φΓ])

θ′τΓA,φΓ

−1

// σ′
GΓ(τΓA)[F

′φΓ]
T

′′(F ′φΓ)((ψφ′)GΓ,τΓA)
// τ ′GΓ(τΓA)[φ

′
GΓF

′(φΓ)]

which the following calculation relates to (ψφφ′)Γ,A:

mΓ,A =1 T
′′(F ′φΓ)((ψφ′)GΓ,τΓA)θ

′
τΓA,φΓ

−1
σ

′

FΓ((ψφ)Γ,A)

=2 〈p, q[(ψφ′)GΓ,τΓA〈(F
′φΓ)p, q〉]〉θ

′
τΓA,φΓ

−1
ρ′FΓ,τΓA[φΓ]

F ′((ψφ)Γ,A)ρ
′
FΓ,σΓA

−1

=3 〈p, q[(ψφ′)GΓ,τΓA〈(F
′φΓ)p, q〉θ

′
τΓA,φΓ

−1
ρ′FΓ,τΓA[φΓ]

F ′((ψφ)Γ,A)ρ
′
FΓ,σΓA

−1
]〉

=4 〈p, q[(ψφ′)GΓ,τΓAρ
′
GΓ,τΓAF

′(〈φΓp, q〉)ρ
′
FΓ,τΓA[φΓ]

−1
ρ′FΓ,τΓA[φΓ]

F ′((ψφ)Γ,A)ρ
′
FΓ,σΓA

−1
]〉

= 〈p, q[(ψφ′)GΓ,τΓAρ
′
GΓ,τΓAF

′(〈φΓp, q〉)F
′((ψφ)Γ,A)ρ

′
FΓ,σΓA

−1
]〉

=5 〈p, q[〈p, q[̺′GΓ,τΓAφ
′
GΓ·τΓAρ

′
GΓ,τΓA

−1
ρ′GΓ,τΓAF

′(〈φΓp, q〉)F
′((ψφ)Γ,A)ρ

′
FΓ,σΓA

−1
]〉]〉

= 〈p, q[̺′GΓ,τΓAφ
′
GΓ·τΓAF

′(〈φΓp, q〉)F
′((ψφ)Γ,A)ρ

′
FΓ,σΓA

−1
]〉

=6 〈p, q[̺′GΓ,τΓAφ
′
GΓ·τΓAF

′(〈φΓp, q〉〈p, q[̺Γ,AφΓ·Aρ
−1
Γ,A]〉)ρ

′
FΓ,σΓA

−1
]〉

= 〈p, q[̺′GΓ,τΓAφ
′
GΓ·τΓAF

′(〈φΓp, q[̺Γ,AφΓ·Aρ
−1
Γ,A]〉)ρ

′
FΓ,σΓA

−1
]〉

=7 〈p, q[̺′GΓ,τΓAφ
′
GΓ·τΓAF

′(〈p̺Γ,AφΓ·Aρ
−1
Γ,A, q[̺Γ,AφΓ·Aρ

−1
Γ,A]〉)ρ

′
FΓ,σΓA

−1
]〉

= 〈p, q[̺′GΓ,τΓAφ
′
GΓ·τΓAF

′(̺Γ,AφΓ·Aρ
−1
Γ,A)ρ

′
FΓ,σΓA

−1
]〉

=8 〈p, q[̺′GΓ,τΓAG
′(̺Γ,A)φ

′
G(Γ·A)F

′(φΓ·A)F
′(ρ−1

Γ,A)ρ
′
FΓ,σΓA

−1
]〉

=9 〈p, q[ρG
′G

Γ,A (φφ′)Γ·Aρ
F ′F
Γ,A

−1
]〉

=10 (ψφφ′)Γ,A

where (1) is by definition of m, (2) is by definition of T ′′ and σ
′. The step (3) exploits

basic manipulation of cwf combinators along with the equality

pθ′τΓA,φΓ

−1
ρ′FΓ,τΓA[φΓ]

F ′((ψφ)Γ,A)ρ
′
FΓ,σΓA

−1
= p

which itself follows from the fact that each instance of θ and ψ commutes with the first

projection, and from the Equality (a) for the preservation of the first projection. Step (4)

is by Lemma 8, step (5) is by definition of ψφ′ , (6) by definition of ψφ, (7) is by naturality

of φ′ and equality (a) for preservation of the first projection, (8) is by naturality of φ′,

The Biequivalence of LCCCs and ML type theories 43

(9) is by definition of ρG
′G, of φφ′ and ρF

′F , and (10) is by definition of ψφφ′ . The rest

is by basic manipulation of cwf combinators.

Finally, the third equality follows from the remark that by definition of ψ1F , we have

(ψ1F)Γ,A = idΓ·σΓA for all Γ, A.

P. Clairambault and P. Dybjer 44

Appendix. List of Notations

Γ·A . 7

Context extension operation.

Type(Γ) . 7

Types in context Γ, first component of T (Γ) for a cwf (C, T).

Γ ⊢ A . 7

Terms of type A for A ∈ Type(Γ), elements of T (Γ)(A) for a cwf (C, T).

pΓ,A, pA, p . 7

First projection pΓ,A : Γ·A→ Γ.

qΓ,A, qA, q . 7

Second projection qΓ,A : Γ·A ⊢ A[pΓ,A].

〈γ, a〉 . 7

Substitution extension operation.

[] . 7

Terminal object (empty context).

〈〉 . 7

Terminal projection (empty substitution).

IA(a, a
′) . 8

Identity type on terms Γ ⊢ a : A and Γ ⊢ a′ : A.

rA,a, r . 8

Reflexivity term (of type IA(a, a) ∈ Type(Γ)).

Σ(A,B) . 8

Σ-type of A ∈ Type(Γ) and B ∈ Type(Γ·A).

pair(a, b) . 8

Pairing of a : Γ ⊢ A and b : Γ ⊢ B[〈id, a〉].

π1(c) . 8

First projection of c : Γ ⊢ Σ(A,B).

π2(c) . 8

Second projection of c : Γ ⊢ Σ(A,B).

Π(A,B) . 8

Π-type of A ∈ Type(Γ) and B ∈ Type(Γ·A).

λ(b) . 8

Abstraction λ(b) : Γ ⊢ Π(A,B) from b : Γ·A ⊢ B.

ap(c, a) . 8

Application ap(c, a) : Γ ⊢ B[〈id, a〉] of c : Γ ⊢ Π(A,B) and a : Γ ⊢ A.

Γ . 9

Representation of a context Γ as a type Γ ∈ Type([]) by democracy.

γΓ . 9

Iso γΓ : Γ → []·Γ (democracy).

δ . 9

Representation of δ : ∆ → Γ as a term []·∆ ⊢ Γ[p] by democracy.

{f}(a) . 9

Coercion of a term a : Γ ⊢ A to type B through an iso A ∼=f B.

The Biequivalence of LCCCs and ML type theories 45

T . 9

Indexed category T : Cop → Cat obtained from a cwf (C, T).

Inv(δ) . 10

Inverse image Inv(δ) ∈ Type(Γ) of δ : ∆ → Γ.

ξδ . 10

Iso from pInv(δ) : Γ·Inv(δ) → Γ to δ : ∆ → Γ in C/Γ.

σ, ς, τ . 11

Natural transformation σ : T
•
→ T ′F of (F, σ) : (C, T) → (C′, T ′)..

θ, ϑ . 11

Family of isos θA,δ : σΓ(A)[Fδ] → σ∆(A[δ]) for (F, σ) : (C, T) → (C′, T ′).

σΓ(A) . 11

Application of (F, σ) to a type A ∈ Type(Γ).

σAΓ (a) . 11

Application of (F, σ) to a term a : Γ ⊢ A.

ρ, ̺ . 11

Family of isos ρΓ,A : F (Γ·A) → FΓ·σΓ(A) for (F, σ) : (C, T) → (C′, T ′).

ι . 11

Iso ι : [] → F [] for F preserving the terminal object [].

σ . 11

Pseudonatural transformation σ from T to T
′F for (F, σ) : (C, T) → (C′, T ′).

dΓ . 16

Iso σ[](Γ) ∼=dΓ FΓ[〈〉] for (F, σ) preserving democracy.

iA,B . 17

Iso iA,B : σΓ(Π(A,B)) → Π(σΓ(A), σΓ·A(B)[ρ−1
Γ,A]) for (F, σ) preserving Π-types.

ψ . 17

Family ψΓ,A : σΓ(A) → τΓ(A)[φΓ] for (φ, ψ) : (F, σ) → (G, τ).

CwFIextΣ
dem . 18

2-category of small democratic cwfs supporting identity types and Σ-types.

CwFIextΣΠ
dem . 18

2-category of small democratic cwfs supporting identity types, Σ-types and Π-types.

FL . 19

2-category of small categories with finite limits.

LCC . 21

2-category of locally cartesian closed categories.
−→
A . 24

Functorial family, i.e. functor
−→
A : C/Γ → C→.

−→
A (δ, α) . 25

Upper arrow of the square
−→
A (α) for α : δ → δα in C/Γ.

