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Symmetry in Concurrent Games

Simon Castellan Pierre Clairambault

Ecole Normale Supérieure de Lyon, France

Glynn Winskel

Computer Laboratory, University of Cambridge, UK

Abstract—Behavioural symmetry is introduced into concurrent
games. It expresses when plays are essentially the same. A char-
acterization of strategies on games with symmetry is provided.
This leads to a bicategory of strategies on games with symmetry.
Symmetry helps allay the perhaps overly-concrete nature of
games and strategies, and shares many mathematical features
with homotopy. In the presence of symmetry we can consider
monads for which the monad laws do not hold on the nose but
do hold up to symmetry. This broadening of the concept of monad
has a dramatic effect on the types concurrent games can support
and allows us, for example, to recover the replication needed to
express and extend traditional game semantics.

I. INTRODUCTION

In game semantics of programming languages a type of

a program is represented by a game, and the program itself

by a strategy in the game. The approach is very flexible:

game semantics has managed to capture accurately a wide

variety of features of higher-order programming languages,

including state, control, exceptions, and many others. Game

semantics follows the methodology of denotational semantics,

and interprets complex programs compositionally in terms of

interpretations of their components. Game semantics is also

operational: moves in a game correspond to computation steps.

As such it is increasingly exploited to provide a syntax-free

operational semantics for programming languages, a much

needed tool for the analysis and verification of programs.

Concurrency is a central concern in computer science.

Reflecting the traditions of concurrency theory, game seman-

tics for concurrent programs come in two styles: based on

interleavings and on partial-orders. Of these, the historical

focus has been on interleaving, giving models of various

programming languages [1], [2], even a model-checking tool

[3]. Partial-order methods have the strength of supporting

reasoning about dependency directly, but are at a more pre-

liminary stage. Abramsky and Melliès proposed in [4] a

framework for concurrent games based on closure operators,

re-understood later by Melliès and Mimram in terms of

asynchronous transition systems [5], [6]; Faggian and Piccolo

have also presented strategies as partial orders [7]. In [8],

Rideau and Winskel gave a new foundation based on event

structures, generalizing all previous approaches and allowing

nondeterminism. It is this framework we refer to as concurrent

games.

When developing a game semantics, one has to deal with

the low-level aspect of games—some identities that hold op-

erationally do not hold automatically in games. An important

example of such phenomena occurs in the replication of

resources in programming languages: whereas two accesses

to the same resource might be indistinguishable operationally,

they can correspond to different and unrelated events in

the game. In this sense, games are overly-concrete. In the

history of game semantics [9], this has been alleviated by

introducing symmetry into games. Informally, symmetry in a

game concerns when one play of a game is essentially the same

as another. Our treatment of symmetry in concurrent games,

where plays can be highly-distributed, stems from earlier work

on symmetry in event structures [10] and makes use of a

general method of open maps for defining bisimulation in

a variety of models [11]. Briefly, a symmetry in a game is

expressed as a bisimulation equivalence (given as a span of

open maps) that says when two plays are similar according

to the symmetry. This feature considerably enhances the

mathematical theory of concurrent games. Symmetry comes

to share many features with homotopy—symmetric plays are

like homotopic paths—which plays a role in its mathematical

development.

a) Contributions.: Firstly, we introduce concurrent

games with symmetry. This involves a new definition of the

copycat strategy and of composition, which now have to

respect symmetry. As in [8], we characterize strategies, for

which copycat behaves like an identity w.r.t. composition. This

leads to the construction of a bicategory (up to symmetry)

of concurrent games with symmetry and symmetry-respecting

strategies. Secondly, we give two illustrations of how this

framework can be used to model logics and programming

languages. The first is a presentation within concurrent games

of the construction of [12], using an adaptation of AJM games

[9] to model classical linear logic (CLL). The second is a

concurrent games presentation of HO games [13], giving a

concurrent and non-deterministic notion of innocent strategies

(in the sense of Hyland and Ong), and a new proof that

standard innocent strategies are stable under composition.

b) Related work.: In sequential games, the notion of

symmetry that is closest to ours is that of AJM games

[9], and in particular its variant in [12]. In asynchronous

games, Melliès expressed symmetry by giving groups acting

on the game [14], reindexing the events. Restricting to a

polarized deterministic setting, it should be possible to refor-

mulate Melliès’ approach in terms of concurrent games with

symmetry—left however for future work.

c) Outline.: In Section II, we present event structures,

and their extension with symmetry and polarity. In Section

III, we give the main contribution of this paper, the bicategory

of concurrent games with symmetry and concurrent strategies.

In Section IV we give two important applications: concurrent



generalizations of AJM games and HO games, showing how

concurrent games with symmetry extend the games of tradi-

tional game semantics.

II. PRELIMINARIES

A. Event structures

An event structure comprises (E,≤,Con), consisting of a

set E, of events which are partially ordered by ≤, the causal

dependency relation, and a nonempty consistency relation Con

consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The (finite) configurations, C(E), of an event structure E

consist of those finite subsets x ⊆ E which are

Consistent: x ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

We say an event structure is elementary when the consistency

relation consists of all finite subsets of events. For X ⊆ E we

write [X]E for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of

X; note if X ∈ Con, then [X]E ∈ Con is a configuration. In

games the relation of immediate dependency e _ e′, meaning

e and e′ are distinct with e ≤ e′ and no event in between,

will play a very important role. For configurations x, y, we

use x−⊂y to mean y covers x, i.e. x ⊂ y with nothing in

between, and x
e
−Ð⊂y to mean x ∪ {e} = y for an event e ∉ x.

We sometimes use x
e
−Ð⊂, expressing that event e is enabled

at configuration x, when x
e
−Ð⊂y for some y.

A (partial) map of event structures f ∶ E → E′ is a partial

function f ∶ E ⇀ E′ from the events of E to the events of E′

such that for all configurations x ∈ C(E),

fx ∈ C(E′) & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .

Maps compose as functions. We say a map is total when it is

total as a function; then f restricts to a bijection x ≅ fx on

x ∈ C(E). Say a total map of event structures is rigid when

it preserves causal dependency. We write E (resp. Ep) for the

category of event structures with total (resp. partial). These two

categories have coproducts, binary products and pullbacks.

Proposition 1. Finite configurations of a product A × B

in E correspond to secured bijections θ ∶ x ≅ y between

configurations x ∈ C(A) and y ∈ C(B), such that the order

generated on θ by taking (a, b) ≤ (a′, b′) if a ≤A a or b ≤B b′

is a partial order. The correspondence respects inclusion.

Individual configurations inherit an order from the ambient

event structure and can themselves be regarded as finite ele-

mentary event structures. Viewed this way, an inclusion x ⊆ y
between configurations induces a rigid map x↪ y between the

configurations regarded as event structures. The configurations

of an event structure form a non-empty family of finite partial

orders closed under rigid inclusions. Conversely, given such a

rigid family, we can build an event structure:

Proposition 2. Let Q be a rigid family, a non-empty family of

finite partial orders closed under rigid inclusions, i.e. if q ∈ Q
and q′ ↪ q is a rigid inclusion (regarded as a map of event

structures) then q′ ∈ Q. The family Q determines an event

structure Pr(Q) =def (P,≤,Con):
● the events P are the finite partial orders in Q with a top

element (the primes),

● the causal dependency relation p′ ≤ p holds when there

is a rigid inclusion from p′ ↪ p;

● for any finite X ⊆ P , X ∈ Con iff there is q ∈ Q and rigid

inclusions p↪ q for all p ∈X .

If x ∈ C(P ) then ⋃x, the union of the partial orders in x,

is in Q. The function x ↦ ⋃x is an order-isomorphism from

C(P ), ordered by inclusion, to Q, ordered by rigid inclusions.

B. Symmetry

We endow event structures with symmetry. A relation of

symmetry on an event structure expresses when two configu-

rations are essentially the same and is expressed as a form of

bisimulation equivalence, based on open maps [11].

1) Open maps: Open maps are a generalisation of func-

tional bisimulations, known from transition systems. Let C be

a category with a distinguished subcategory P of path objects

with path-extension maps. A map f ∶ A → B in C is open if

it satisfies a path-lifting property:

p //

m
��

A
f��

q //

;;

B.

Any commuting square, with m ∶ p→ q in P , factors into two

commuting triangles as shown. Bisimulation is then expressed

as a span of open maps.

2) Event structures with symmetry: The way we equip

event structures with symmetry is an instance of the following

general construction. Let X be an object of a category C.

Recall that a relation on X is an object X̃ and pair of maps

lX , rX ∶ X̃ → X—so forming a span—which are jointly-

monic. A map between objects with relations f ∶ (X, X̃) →
(Y, Ỹ ) is a map f ∶ X → Y in C for which there is a

necessarily unique map f̃ ∶ X̃ → Ỹ in C such that flX = lY f̃
and frX = rY f̃ . If C has products, then a relation on X

can equivalently be given by a mono X̃ ↣ X ×X . If C has

pullbacks we can formulate diagrammatically the requirement

that X̃ be an equivalence relation—see [10].

If C is equipped with a class of open maps, we say

that a relation lX , rX ∶ X̃ → X is a symmetry in X if

it is an equivalence relation with both lX and rX open;

this amounts to X̃ being a bisimulation equivalence. A map

f ∶ (X, X̃) → (Y, Ỹ ) necessarily preserves symmetry. We

obtain a category CS of objects with symmetry and symmetry-

preserving maps. Given two maps f, g ∶ (X, X̃)→ (Y, Ỹ ) they

are equal up to symmetry, written f ∼ g, if there is a necessarily

unique map h ∶ X → Ỹ in C such that f = lY h and g = rY h.

The category CS is more fully described as enriched in the

category of equivalence relations and so, because equivalence

relations are a degenerate form of category, as a 2-category in



which the 2-cells are instances of the equivalence. This view

informs the constructions in such categories which are often

very simple examples of the (pseudo- and bi-) constructions

of 2-categories. In particular, objects A and B are equivalent,

written A ≃ B, if there are maps f ∶ A → B and g ∶ B → A

such that fg ∼ idB and gf ∼ idA.

We can take advantage of the concrete nature of event

structures to give an explicit description of symmetries

there, a characterization which is independent of whether the

category of event structures carries rigid, total or partial maps,

though for definiteness assume the category is E . A symmetry

in an event structure E determines a mono Ẽ ↣ E ×E, thus

a subset of C(E × E), and so by Proposition 1 a family

of bijections between finite configurations of E. In this

way, a symmetry in an event structure E corresponds to

an isomorphism family comprising a non-empty family of

bijections θ ∶ x ≅E y between pairs of finite configurations of

E such that:

(i) for all identities idx ∶ x ≅E x, where x ∈C(E); if θ ∶ x ≅E y,

then the inverse θ−1 ∶ y ≅E x; and if θ ∶ x ≅E y and ϕ ∶ y ≅E z,

then their composition ϕ ○ θ ∶ x ≅E z.

(ii) for θ ∶ x ≅E y whenever x′ ⊆ x with x′ ∈ C(E), then there

is a (necessarily unique) y′ ∈ C(E) with y′ ⊆ y such that the

restriction θ′ ∶ x′ ≅E y′.

(iii) for θ ∶ x ≅E y whenever x ⊆ x′ for x′ ∈ C(E), there is an

extension of θ to θ′ so θ′ ∶ x′ ≅E y′ for some (not necessarily

unique) y′ ∈ C(E) with y ⊆ y′.

The isomorphism family makes precise the sense in which a

symmetry expresses when two configurations are essentially

the same. Note that (ii) implies that the bijections in the

isomorphism family respect the partial order of causal de-

pendency on configurations inherited from E; the bijections

in an isomorphism family are isomorphisms between the

configurations regarded as elementary event structures.

An event structure with symmetry A corresponds to an

isomorphism family ≅A of the underlying event structure of

A [10]. There are straightforward reformulations of what it

means for a map to preserve symmetry or for two maps to

be equal up to symmetry in terms of isomorphism families.

A total map f ∶ A → B preserving symmetry amounts to

x
θ
≅A y implying fx

f̃θ
≅B fy, where f̃ θ is the composite

bijection fx ≅ x
θ
≅A y ≅ fy; while f ∼ g, for two total

maps f, g ∶ A → B preserving symmetry, iff fx
ϕx

≅B gx for all

x ∈ C(A), where ϕx is the composite bijection fx ≅ x ≅ gx.

We define the category ES (resp. ESp) to consist of event

structures with symmetry, with total (resp. partial) maps.

Proposition 3. Any map f ∶ A→ B in ESp has a partial-total

factorization as a composite

A
pV // (A↓V )

f1 // B

where: V =def {a ∈ A ∣ f(a) is defined} is the domain of def-

inition of f ; A ↓V =def (V,≤V ,ConV ) with v ≤V v′ iff v ≤A

v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ ConA & X ⊆ V ; its

isomorphism family is given by θ ∶ x ≅A↓V y iff θ extends to

θ′ ∶ [x]A ≅A [y]A; the map pV ∶ A → A ↓ V is the partial

map acting as identity on V and undefined elsewhere; and f1
is a total map acting as f on V . If f ∼ g ∶ A → B in ESp,

then the domains of definition of f and g are the same, V say,

and f1 ∼ g1 in their partial-total factorizations f = f1pV and

g = g1pV .

Through the addition of symmetry event structures can

represent a much richer class of categories than mere partial

orders. The finite configurations of an event structure with

symmetry can be extended by inclusion or rearranged bijec-

tively under an isomorphism allowed by the symmetry. In

this way an event structure with symmetry determines, in

general, a category of finite configurations with maps those

injections obtained by repeatedly composing the inclusions

and allowed isomorphisms. By property (ii) in the definition

of isomorphism family any such map factors uniquely as an

isomorphism of the symmetry followed by an inclusion.

3) Constructions: We review from [10] important construc-

tions in ES .

a) Products: First, ES has binary products.

Theorem 4. Let A and B be objects in ES . Their product in

ES is given by (A×B; lA×lB , rA×rB ∶ Ã×B̃ → A×B), based

on the product A×B in E , and sharing the same projections,

π1 ∶ A ×B → A and π2 ∶ A ×B → B. Let f, f ′ ∶ C → A and

g, g′ ∶ C → A in ES . If f ∼ f ′ and g ∼ g′, then ⟨f, g⟩ ∼ ⟨f ′, g′⟩.

b) Simple parallel composition: The operation of simple

parallel composition of event structures A∥B which juxtaposes

the two event structures A and B—with a finite set of events

consistent if its overlaps with A and B are consistent—and

acts similarly on maps, extends to a functor on ES . The

symmetry on A∥B is Ã∥B̃ with left and right maps lA∥lB
and rA∥rB .

c) Pseudo pullbacks: It will have great bearing on this

paper that, while ES does not have equalizers or pullbacks in

general, it does have pseudo equalizers and pseudo pullbacks.

We give their definition and refer the reader to [10] for proofs.

Maps f, g ∶ B → C have a pseudo equalizer i ∶ E → B,

i.e. fi ∼ gi and for any map i′ ∶ E′ → A such that fi′ ∼ gi′,
there is a unique map h ∶ E′ → E such that i′ = ih. The object

E can be described as having configurations those x ∈ C(B)
for which fx

ϕx

≅C gx, where ϕx is the bijection induced by x;

its isomorphism family is the restriction of that on B.

Maps f ∶ A → C, g ∶ B → C have a pseudo pullback

given as the pseudo equalizer of fπ1, gπ2 ∶ A ×B → C. We

summarize its properties: The pseudo pullback comprises an

object D and maps π1 ∶ D → A and π2 ∶ D → B such that

fπ1 ∼ gπ2 which satisfies the further property that for any

object D′ and maps p1 ∶ D
′ → A and p2 ∶ D

′ → B such

that fp1 ∼ gp2, there is a unique map h ∶ D′ → D such that

p1 = π1h and p2 = π2h. The pseudo pullback is defined up to

isomorphism, and sometimes written A ×C B.

Concretely, a configuration in C(A×C B) corresponds to a



a triple

x, fx
θ
≅C gy, y

where the composite x ≅ fx
θ
≅C gy ≅ y is a secured bijection

between x ∈ C(A) and y ∈ C(B) in the sense of Proposition 1.

4) Homotopy: We remark that the category ES has the

structure of a homotopy category. In particular it has path

objects. From the pseudo pullback

Ã
lA
��

rA
��

A

idA
  
∼ A

idA
��

A

we recover Ã, the symmetry on A, but as an object in ES
itself equipped with symmetry

̃̃
A. This universal property is

that associated with a path object generally written AI , where

I stands for (a generalization of) the unit interval: asserting

θ ∶ x ≅A y, that a bijection between two configurations is in

the isomorphism family of A, is analogous to specifying a

path from x to y. (There are also cylinder objects in ES .)

Later, in defining the copycat strategy we shall make es-

sential use of the fact that in (A, Ã), an event structure with

symmetry, the symmetry Ã itself possesses a symmetry
̃̃
A.

Concretely, a configuration of Ã corresponds to an element of

the isomorphism family θ ∶ x≅Ay and a configuration of
̃̃
A to

a pair ϕ1, ϕ2 in a commuting square mediating between θ1
and θ2 in the isomorphism family of A:

x1

≅ϕ1 A

≅A
θ1

y1
≅

ϕ2A

x2
≅A
θ2

y2

Lemma 5. Let f ∶ A→ B and g ∶ B → C be maps in ES with

pseudo pullback P with maps π1 ∶ P → A and π2 ∶ P → B.

Then, P̃ , as an object in ES , with maps π̃1 and π̃2 is a pseudo

pullback of f̃ and g̃ in ES .

C. Adding polarity

Games and strategies will be represented in terms of event

structures where events are moves of Player or Opponent,

signified by events carrying a polarity, + for Player and − for

Opponent. Formally, an event structure with polarity comprises

an event structure A with a function polA ∶ A → {+,−}
assigning a polarity to each event. Maps are assumed to

preserve polarity.

The addition of polarity to an event structure A means that

the ⊆-order on its finite configurations is now obtained as

compositions (⊆− ∪ ⊆+)+ of two more fundamental orders,

where for x, y ∈ C∞(A),

x ⊆− y iff x ⊆ y & polA(y ∖ x) ⊆ {−} , and

x ⊆+ y iff x ⊆ y & polA(y ∖ x) ⊆ {+} .

More surprisingly there is a new partial order, the Scott order,

between configurations which is intimately related to copycat

strategies. The Scott order ⊑A is defined to be (⊇− ∪ ⊆+)+.

(We use ⊇− for the converse order to ⊆−.) The Scott order

possesses a unique factorization: for x, y ∈ C∞(A),

y ⊑A x ⇐⇒ ∃!z ∈ C∞(A). y ⊇− z ⊆+ x

—it is an easy exercise to show that z is necessarily x ∩ y.

Not only do the configurations of copycat strategies of A

correspond to pairs of configurations in the Scott order, but

also strategies in A correspond to certain, simply-described,

discrete fibrations over (C(A),⊑A)—see [15] for the full story.

Given this we can expect a variation on the Scott order to play

a role in strategies in games with symmetry.

An event structure with polarity and symmetry (henceforth

an e.p.s.) consists of (E, Ẽ), an event structure with polarity

also endowed with a symmetry Ẽ. The categories EPS and

EPSp of such objects have maps preserving both symmetry

and polarity, which are respectively total and partial.

The addition of polarity and symmetry brings a new richness

to the configurations of an event structure. The Scott order

becomes a Scott category, Scott(A), of an e.p.s. A, where now

maps between configurations are obtained as compositions of

(partial injections) ⊇−, ⊆+ and the isomorphism family ≅A.

Maps from y to x in Scott(A) have a unique factorization

y ⊇− y0
θ
≅A x0 ⊆

+ x .

The unique factorization follows from property (ii) of iso-

morphism families and uniqueness of the factorization of the

Scott order. A map f ∶ A → B in EPSp preserves ⊇−, ⊆+

and isomorphism families so extends directly to a functor

f ∶ Scott(A)→ Scott(B) making Scott a functor to Cat.

III. GAMES WITH SYMMETRY

A concurrent game with symmetry is represented by an

e.p.s. A. A pre-strategy in A is a total map σ ∶ S → A in EPS .

A map between pre-strategies, from σ ∶ S → A to σ′ ∶ S′ → A,

is a map f ∶ S → S′ in EPS such that

S

σ %%

f
// S′

σ′��
A

commutes. We say the two pre-strategies σ and σ′ are equiv-

alent, and write σ ≃ σ′, and sometimes f ∶ σ ≃ σ′, when there

are maps f from σ to σ′, and g from σ′ to σ determining an

equivalence S ≃ S′, i.e. such that gf ∼ idS and fg ∼ idS′ ;

isomorphism σ ≅ σ′ occurs when gf = idS and fg = idS′ . A

weak map from σ to σ′ is a map f ∶ S → S′ such that the

triangle above commutes up to ∼ and analogously say σ and

σ′ are weakly equivalent when there are weak maps f and g

making S ≃ S′.
Simple parallel composition extends directly to a functor

A∥B on A and B in EPS . The dual of an e.p.s. A, written

A⊥, has the same underlying event structure with symmetry but

with a reversal of polarities.

Following Joyal [16], a pre-strategy from A to B is a

pre-strategy in the game A⊥∥B. In refining the notion of

pre-strategy to that of strategy we shall follow the guiding



principle of [8]: a strategy is a pre-strategy for which copy-

cat is an identity w.r.t. composition. The next few sections

make this precise and culminate in the definition of strategy

between concurrent games with symmetry.

A. Copycat

Let A be an e.p.s.. Configurations of CCA will correspond

to maps in Scott(A). Recall a map from y to x in Scott(A)
can be put into a unique form

y ⊇− y0
θ
≅A x0 ⊆

+ x .

Define q(x, θ, y) to be the partial order with underlying set

x∥y =def ({1}×x)∪({2}×y), causal dependency that inherited

from A⊥∥A with additional causal dependencies

{(a1, a2) ∈ x0 × y0 ∣ polA(a2) = + & θ(a1) = a2}∪

{(a2, a1) ∈ y0 × x0 ∣ polA⊥(a1) = + & θ(a1) = a2} .

That q(x, θ, y) is indeed a partial order follows as in [8]. The

set of all such partial orders forms a rigid family Q. We define

the event structure of CCA to be Pr(Q). Because Scott is a

functor, the operation CCA is functorial in A. We define the

symmetry on CCA as

CCA

CClA
←Ð CCÃ

CCrA
Ð→ CCA

Note, that in the construction of CCÃ we are using the fact

that Ã possesses a symmetry
̃̃
A—see Section II-B4. The map

γA ∶ CCA → A⊥∥A takes a prime order to its top event.

Lemma 6. The construction (CCA, CClA ,CCrA ∶ CCÃ → CCA)
is an e.p.s. and γA a pre-strategy.

In future we shall overload CCA and write CCA for the

e.p.s. of Lemma 6. From the definitions, C̃CA = CCÃ .

B. Composition

Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be pre-strategies

between games A,B,C. To define their composition first form

the pseudo pullback

P
π1

xx
π2

&&
S∥C

σ∥C &&

∼ A∥T

A∥τxx
A∥B∥C

of the maps on the underlying event structures with symmetry,

ignoring polarities, viz. σ ∶ S → A∥B and τ ∶ T → B∥C. There

is an obvious partial map of event structures A∥B∥C → A∥C
undefined on B and acting as identity on A and C. The partial

maps from P to A∥C, given by following the diagram either

way round the pseudo pullback,

A ∥ T
A∥τ

''
P

π2
<<

π1
""

∼ A ∥ B ∥ C // A ∥ C

S ∥ C
σ∥C

77

are defined on a common subset V ⊆ P—Proposition 3. Form-

ing the partial-total factorization of either map (for preciseness

take the left/lowest) we obtain

P → P ↓V → A∥C .

The resulting total map gives us the composition

τ⊙σ ∶ T⊙S =def P ↓V → A⊥∥C

once we reinstate polarities to make τ⊙σ a map in EPS . The

projection operation P ↓ V hides all events not visible in A

and C.

From Lemma 5, regarding e.g. T̃ as itself an e.p.s., it follows

that T̃⊙S ≅ T̃⊙S̃ and τ̃⊙σ ≅ τ̃⊙σ̃.

C. Strategies

We are interested in necessary and sufficient conditions on

a pre-strategy σ ∶ S → A to ensure σ ≃ γA⊙σ. As we shall

see σ should be equivalent to a pre-strategy which is strong-

receptive, innocent and saturated. (If a pre-strategy σ ∶ S →
A⊥∥B satisfies these conditions, then σ ≃ γB⊙σ⊙γA.)

1) Necessity: We show that for any pre-strategy σ ∶ S → A

the pre-strategy γA⊙σ is necessarily strong-receptive, innocent

and saturated.

A pre-strategy σ is receptive iff for all x ∈ C(S),
σx

a
−Ð⊂ & polA(a) = − implies ∃!s ∈ S. x

s
−Ð⊂ & σ(s) = a . The

pre-strategy σ ∶ S → A, as a map in EPS preserves symmetry,

so is associated with a map σ̃ ∶ S̃ → Ã. Say σ is strong-

receptive if σ̃, and so also σ, is receptive. A pre-strategy σ is

innocent when s _ s′ and (pol(s) = + or pol(s′) = −) implies

σ(s)_ σ(s′).
To specify when a pre-strategy σ ∶ S → A is saturated we

need some background. Form the pseudo pullback

S ×A A
π1

zz
π2

$$
S

σ $$

∼ A

idA
yy

A.

The operation taking σ to its saturation π2 is part of a monad

on pre-strategies in A. Clearly

S
idS

��
σ
��

S

σ ��

A

idA
��

A

commutes. Hence there is a unique map η ∶ S → S ×A A such

that π1η = idS and π2η = σ—thus η is a map from σ to π2.

We say σ is saturated when η is part of an equivalence σ ≃ π2,

i.e. there is a map act ∶ S ×A A→ S such that

S ×A A

π2

##

act // S

σ

��
A



commutes and act η ∼ idS with η act ∼ idS×AA. Concretely,

a finite configuration of S ×A A can be identified with a pair

(x, θ) where x ∈ C(S) and θ ∶ σx ≅A y. The action of act is

to transport the configuration x across θ it to a configuration

x′ =def act(x, θ) with ϕ ∶ x ≅S x′ and σ̃ϕ = θ.

Certain compositions are automatically saturated:

Proposition 7. . The composition τ⊙σ of pre-strategies σ ∶
∅ + //B and τ ∶ B + //C is saturated.

Proof. Adopt the notation of the diagram defining the com-

position τ⊙σ in Section III-B, with A = ∅. Let u ∈ C(T⊙S).
Its down-closure [u] is a configuration in the pseudo pullback

P , and so corresponds to a secured bijection x∥v
ϕ
≅ y where

x ∈ C(S), v ∈ C(C) and y ∈ C(T ). Because we define τ⊙σ
to be got via the left way round the pseudo pullback square

the configuration u is sent to v via τ⊙σ. Consequently, given

θ ∶ v ≅C v′ we can define act(u, θ) to be that configuration

u′ ∈ C(T⊙S) with down-closure x∥v′
x∥θ
≅ x∥v

ϕ
≅ y in the

pseudo pullback.

Lemma 8. γA is strong-receptive, innocent and saturated.

Proof. The construction of CCA directly ensures the inno-

cence and receptivity of γA. The way symmetry of copy-

cat is obtained from CCÃ makes γ̃A equal γÃ so receptive,

guaranteeing strong-receptivity of γA. To see γA is saturated

we require a map act ∶ CCA×A∥AA∥A→ CCA. A configuration

of CCA ×A∥A A∥A corresponds to a configuration of CCA, so

a map in Scott(A)

x ⊇+ x0

θ
≅A y0 ⊆

− y ,

and a configuration of A∥A, so a pair v,w, for which ϕ1 ∶ x ≅A
v and ϕ2 ∶ y ≅A w . This data and the factorization properties

in Scott(A) yield:

x

≅ϕ1 A

⊇+ x0

≅A

≅A
θ

y0≅

A

⊆− y

≅

ϕ2A

v ⊇+ v0 ≅A
θ′

w0 ⊆− w

We take the configuration of CCA got via act to be that

corresponding to

v ⊇+ v0 ≅A
θ′

w0 ⊆− w .

The map act together with η ∶ CCA → CCA ×A∥A A∥A
establishes the equivalence needed for γA to be saturated.

Lemma 9 (Necessity). γA⊙σ is strong-receptive, innocent and

saturated for any pre-strategy σ in A.

Proof. The composition γA⊙σ inherits innocence and recep-

tivity directly from that of γA. Now γ̃A⊙σ ≅ γ̃A⊙σ̃ ≅ γÃ⊙σ̃
whence γ̃A⊙σ inherits receptivity from that of γÃ, making

γA⊙σ strong-receptive. The composition is saturated for gen-

eral reasons—Proposition 7.

2) Sufficiency: We show the conditions strong-receptive,

innocent and saturated are sufficient to ensure that a pre-

strategy σ is equivalent to its composition with copycat γA⊙σ.

Lemma 10. Let σ ∶ S → A be a pre-strategy. There is a map

I ∶ S → CCA⊙S in EPS , unique up to symmetry, such that

σ = (γA⊙σ)I .

Proof. We sketch the existence part of the proof by describing

how I acts on configurations. Given x ∈ C(S), there is

a secured bijection x∥σx ≅ q(σx, idσx, σx)—the bijection is

that given by x ≅ σx between left components and idσx
between the right. The secured bijection corresponds to a

configuration z of the pseudo pullback (S∥A)×A∥ACCA. The

result of the projection operation is to hide all those events

not above the right component in A∥A, so from z yields a

configuration of CCA⊙S with image σx under γA⊙σ.

Lemma 11. If a pre-strategy σ is strong-receptive, innocent

and saturated, then I ∶ σ ≃ γA⊙σ is an equivalence.

Proof. We require a map K ∶ CCA⊙S → S that with I

establishes an equivalence γA⊙σ ≃ σ. Let u ∈ C(CCA⊙S).
Its down-closure [u] is a configuration in the pseudo pullback

(S∥A) ×A∥A CCA:

(S∥A) ×A∥A CCA
π1

vv
π2

((
S∥A

σ∥A ((

∼ CCA

γAvv
A∥A

As a configuration of the pseudo pullback, [u] corresponds to

a triple, a configuration in S∥A and a configuration in CCA,

mediated by an element of the isomorphism family of A∥A—

see Section II-B3c. A configuration of S∥A corresponds to a

pair of configurations x of S and w of A; a configuration of

CCA to configurations of A in the relations z1 ⊇+ z′1 ≅A z′2 ⊆
−

z2; and the mediating element of the isomorphism family to

a pair σx ≅A z1 and w ≅A z2. From this data we obtain the

composite map

σx ≅A z1 ⊇
+ z′1 ≅A z′2 ⊆

− z2 ≅A w

in Scott(A). This factors uniquely into

σx ⊇+ y1
θ
≅A y2 ⊆

− w .

From innocence it follows (see Lemma 1 of [15]) that there

is a unique x1 ∈ C(S) for which x ⊇+ x1 and σx1 = y1.

Now, the pair x1 and θ ∶ y1 ≅A y2 can be identified with a

configuration of S ×A A. Hence we can apply act to obtain

act(x1, θ) ∈ C(S) with σact(x1, θ) = y2.

Define p(u) =def act(x1, θ). By considering how it acts on

isomorphism families, p extends to a monotonic function

p̃ ∶ C(C̃CA⊙S)→ C(S̃)

such that

∀u ∈ C(CCA⊙S). σ̃ p̃(u) ⊆− γ̃A⊙σ u .



Using Lemma 23 of [8] and the strong-receptivity of σ, we

obtain a unique total map K ∶ CCS⊙S → S such that ∀u ∈
C(CCA⊙S). p(u) ⊆− Ku and γA⊙σ = σK. On checking KI ∼
idS and IK ∼ idCCA⊙S we have the desired equivalence.

Define a strategy to be a pre-strategy which is strong-

receptive, innocent and saturated.

A strategy σ ∶ S → A induces a fibration σ ∶ Scott(S) →
Scott(A). In fact, ⊇− and ⊆+ maps in Scott(A) have cartesian

liftings again as ⊇− and ⊆+ maps, respectively, in Scott(S) be-

cause σ is receptive and innocent [15]—with strong-receptivity

ensuring the appropriate uniqueness—while ≅A maps have

cartesian liftings in ≅S because σ is saturated.

Lemma 12. If σ and τ are strategies, so is τ⊙σ.

Proof. The composition inherits innocence and receptivity

from σ and τ . Because τ̃⊙σ ≅ τ̃⊙σ̃ it also inherits strong

receptivity. Its saturation obtains via Proposition 7 and the

saturation of τ .

3) A ∼-bicategory of games with symmetry: Combining the

above results, we do not quite obtain a bicategory but rather

Strat, a “bicategory up to symmetry” in the following sense:

● its objects are e.p.s.’s—the games;

● its arrows from A to B are strategies σ ∶ A + //B related

by maps of pre-strategies—Strat(A,B) is thus a category

enriched with equivalence relations ∼;
● horizontal composition is given by composition of strategies

⊙, which extends to functors Strat(B,C) × Strat(A,B) →
Strat(A,C) via the universality of pseudo pullback;

● there is a natural isomorphism (derived from the univer-

sality of pseudo pullback) to express the associativity of

composition, but only natural equivalences (derived from the

equivalence of Lemma 11) for left and right identity laws;

● of the usual coherence axioms for bicategories, that for

identity only commutes up to ∼.
Because categories of event structures with symmetry are

degenerate 2-categories, the above describes a special case of

weak 3-category, which we call a ∼-bicategory as it is morally

a bicategory but where the axioms hold up to ∼.
Strat is rich in structure. Observe the duality: a strategy

σ ∶ A + //B corresponds to a strategy σ⊥ ∶ B⊥ + //A⊥. There

is a bijective correspondence between strategies A∥B + //C
and strategies A + // (B⊥∥C), making Strat monoidal closed,

and in fact compact closed, in an extended sense.

To be more precise, and to relate to standard game seman-

tics, we can quotient out the higher-dimensional structure to

obtain a category. The category Strat/≃ has e.p.s.’s as objects,

and ≃-equivalence classes of strategies σ ∶ S → A⊥ ∥ B as

morphisms from A to B. The ∼-bicategorical structure ensures

that equivalence of strategies is preserved by composition, so

we get a category Strat/≃.

Proposition 13. The category Strat/≃ is compact closed, with

tensor product ∥ and dual (−)⊥.

The compact closed structure of Strat/≃ is not so surpris-

ing: the category is defined in a similar fashion to Joyal’s

category of Conway games [16], which is compact closed as

well. As compact closed categories, they are ∗-autonomous

and hence models of Multiplicative Linear Logic (MLL) [17].

4) Weak strategies: A weak strategy is a pre-strategy which

is weakly equivalent to γA⊙σ; so, directly from this definition,

any weak strategy is weakly equivalent to a strategy. (We do

not have a direct characterization of weak strategies.)

As we shall see, it is sometimes convenient to work with

weak strategies (which need not be saturated) and then com-

pose with copycat to obtain the strategies they represent.

Another potential advantage of weak strategies is that they

are closed under a more general composition than that of

strategies. We can build a ∼-bicategory of weak strategies—

biequivalent to the ∼-bicategory of strategies—in which in-

stead composition is based on a choice of bipullbacks rather

than pseudo-pullbacks. (See [10] for the definition of bipull-

backs of event structures with symmetry.) This extra latitude

in the choice of definition of composition is likely to have

technical advantages when working with sub ∼-bicategories

of games, for which the saturation of strategies seems unnec-

essary or unnatural.

Lemma 14. If two saturated pre-strategies are weakly equiva-

lent they are equivalent. A fortiori, if two strategies are weakly

equivalent they are equivalent.

IV. APPLICATIONS

Once we have symmetry in games we can support a rich

repertoire of (pseudo) monads on e.p.s.’s, and e.g. all the

monads of [10] are undisturbed by the presence of polarity.

Monads to support copying w.r.t. maps of e.p.s.’s can often

translate to monads w.r.t. strategies, and so by duality also

to comonads w.r.t. strategies. Following Girard’s work on

linear logic [18], this opens up the possibility of modelling

programming languages that are not resource-sensitive, in that

(copies of) the same resource can be used multiple times.

We describe, in particular, how AJM games [9] and HO

games [13] generalize and can be recovered from concurrent

games. The (co)monads involved rely pivotally on the presence

of symmetry. Their structure lifts from simple structural maps.

A. Maps as strategies

A structural pair f = (fL, fR) ∶ A→ B comprises

● fL ∶ A→ B, a total map of e.p.s.’s, as left component, and

● fR ∶ B → A, an injective, partial map of event structures,

not necessarily preserving symmetry, as right component,

such that fR ○ fL = idA. (Such pairs correspond to Kahn and

Plotkin’s rigid embeddings if we ignore symmetry.)

A structural pair f ∶ A → B, lifts to a strategy f ∶ S(f) →
A⊥∥B, obtained via a rigid family Q. Whenever

x ⊇+ x′
fL

↦ fL x′
θ
≅B y′ ⊆− y ,

with x,x′ ∈ C(A) and y, y′ ∈ C(B), define a typical q(x, θ, y) ∈
Q to have underlying set x ∥ y, and causal dependency that



inherited from A⊥ ∥ B with additional causal dependencies

{(a, θ(fLa)) ∈ x′ × y′ ∣ polA⊥(a) = −}∪

{(θ(fLa), a) ∈ y′ × x′ ∣ polA⊥(a) = +} .

The event structure S(f) is then defined as Pr(Q), and the

strategy-as-map f ∶ S(f) → A⊥∣∣B by f(q) = a, where a

is the top element of the prime q ∈ S(f). Elements of the

isomorphism family of S(f) correspond to isomorphisms

x1

≅ϕ1 A

⊇+ x′1

≅ϕ2 A

f
↦ f x′1

≅f ϕ2 B

θ
≅B y′1 ⊆−

≅ϕ3 B

y1

≅ϕ4 B

x2 ⊇+ x′2
f
↦ f x′2

θ
≅B y′2 ⊆− y2 .

This induces an isomorphism family because fL preserves

symmetry, which by construction is preserved by f . Addition-

ally, one can check that f is strong-receptive, innocent and

saturated, so a strategy. Note that this lifting operation also

preserves equivalence: if f ∼ g then it is easy to show that f

and g are weakly equivalent, so equivalent by Lemma 14.

The following lemma relates composition of maps to that

of their lifts as strategies.

Lemma 15. Let σ ∶ T → A be a strategy and f ∶ A→ B be a

structural pair. Then the pre-strategy fL○σ ∶ T → B is weakly

equivalent to the strategy f ⊙ σ ∶ S(f)⊙ T → B.

From this lemma it follows easily that lifting is functorial.

We also need to examine the composition of a strategy with the

dual of one lifted from a structural pair. A right map fR ∶ B →
A of a structural pair does not necessarily preserve symmetry,

but it does preserve a sub-symmetry, in the sense that the set

of isomorphisms x
θ
≅B y, such that fRx

fRθ
≅A fRy, forms an

isomorphism family. Then B can be restricted to make fR a

total map preserving symmetry. Write (B ↾ fR) for the event

structure with events those on which fR is defined and with

isomorphism family that part preserved by fR. Obviously, fR ∶
(B ↾ fR) → A is a total map preserving symmetry.

Lemma 16. Let σ ∶ T → B be a strategy and f ∶ A → B a

structural pair. Then fR ○ σ preserves a sub-symmetry, and

fR ○ σ ∶ (T ↾ fR ○ σ) → A is a strategy equivalent to the

strategy (f)⊥ ⊙ σ ∶ S(f)⊙ T → A.

B. AJM games

We have not assumed that games are polarized, i.e. that

initial moves share the same polarity, a condition imposed in

most presentations of games. Non-polarized games are useful

because they permit an account of negation as just polarity-

reversal, and hence model directly the involutive negation

of Classical Linear Logic. In contrast, polarized games lose

involutive negation and are restricted to modelling “polarized”

logics, such as Intuitionistic Linear Logic (ILL). Through

concurrent games we can give a concurrent version of the

construction in [12] of a non-polarized adaptation of AJM

games [9] to model CLL.

A categorical model of Multiplicative Exponential Linear

Logic (MELL) is a ∗-autonomous category (C,⊗) (such as

Strat/≃) with a linear exponential comonad, i.e. a monoidal

comonad (!, ǫ, δ,m) with monoidal natural transformations

eA ∶ !A → 1 and dA ∶ !A → !A ⊗ !A such that each

(!A, eA, dA) is a commutative comonoid, eA and dA are coal-

gebra maps and any coalgebra map between free coalgebras

is also a comonoid morphism. We aim to build this structure

on Strat/≃. There is one proviso however. Just as in [12], the

absence of polarization means that the naturality of weakening

eA ∶!A + // I will be missing, so we model CLL in the sense of

[12] and not quite MELL. If we restrict to negatively polarized

games the naturality of eA is recovered at the cost of self-

duality, yielding a model of ILL.

From a game A, we form the game !A comprising ω similar

copies of A. Its events are pairs (i, a) where a ∈ A and i ∈ ω,

with causal dependency

(i1, a1) ≤ (i2, a2) ⇔ i1 = i2 & a1 ≤A a2

and consistency relation

Con!A = ⋃
i∈I

{i} ×Xi ,

where I is a finite subset of ω, and for each i ∈ I , Xi ∈ ConA.

Polarity is inherited from A. We describe its symmetry as

an isomorphism family. If x, y ∈ C(!A), we have x
θ
≅!A y if,

writing x = ⋃i∈I{i}×xi and y = ⋃j∈J{j}×yj with each xi and

yj nonempty, there is a bijection π ∶ I ≅ J so xi

θi
≅A yπ(i) for

each i ∈ I , where θ((i, a)) = (π(i), θi(a)) for all (i, a) ∈ x.

The construction extends to a functor on EPS: if f ∶ A→ B

then !f ∶ !A→ !B sends (i, a) to (i, f(a)). It is convenient to

investigate the monad/monoid structure of ! in EPS first, their

duals will be eventually deduced by duality in Strat. In EPS ,

we have:

ηA ∶ A→ !A eA ∶ 1→ !A

µA ∶ !!A→ !A mA ∶ !A ∥ !A→ !A

qA,B ∶ !(A ∥ B) → !A ∥ !B

where ηA sends any event a to (0, a); µA tracks an arbitrary

bijection between ω×ω and ω; qA,B is the obvious distribution

map; eA is the empty map; and mA tracks an arbitrary

bijection between ω + ω and ω. All these maps are natural

in their parameters in the category EPS . In particular, (!, η, µ)
forms a monad on EPS .

The functors ∥ and ! on EPS extend to functors on strategies

written ∥S and !S for disambiguation: given strategies σ1 ∶
S1 → A⊥

1
∥ B1 and σ2 ∶ S2 → A⊥

2
∥ B2, we have σ1 ∥

S σ2 ∶
S1 ∥ S2 → (A1 ∥ A2)

⊥ ∥ (B1 ∥ B2) given by the obvious map

of EPS . To define !Sσ, the obvious choice is the composition

qA⊥
1
,B1
○ !σ ∶ !S → !A⊥

1
∥ !B1, which we must then compose

with copycat to obtain a strategy. These yield a bifunctor ∥S

and a functor !S on strategies, using the fact that ! and ∥
preserve pseudo-pullbacks.

The natural tranformations above all have adjoints together

with which they form structural pairs. By the techniques of

Section IV-A, lifting maps to strategies, they become (apart

from eA) natural as families of strategies:



Lemma 17. The strategies ǫA, δA, dA and qA,B are natural

in A,B in the category Strat/≃.

Proof. Each of these maps f has an adjoint f● making (f, f●)
a structural pair. By Lemmas 15 and 16 the compositions

involved in the naturality squares can be computed by simple

composition of maps, and the equivalences then amount to

elementary verifications.

The monoid and monad laws follow from those in EPS
by functoriality of lifting. The fact that algebra morphisms

between free algebras (!A,µA) satisfy the laws needed to be

morphisms of monoids follows from a simple diagram chase,

using that µA is an invertible monoid morphism and that this

property remains true of µA.

We have established that the natural transformations above

define the dual of a linear exponential comonad, short of the

naturality of eA. By self-duality of Strat/≃, we have:

Theorem 18. The category Strat/≃ with ! is a model of CLL

in the sense of [12].

C. HO games and HO-innocence

Finally, we sketch an application of our setting to construct

a notion of concurrent games with pointers, obtaining a

concurrent generalization of HO games. An e.p.s. A is negative

when all its minimal events have negative polarity.

1) Concurrent games with pointers: An arena is a count-

able forest (A,≤A,polA) with polarities (but without conflict

or symmetry), which is also negative, and alternating in the

sense that if a1 _ a2 then polA(a1) ≠ polA(a2).
From an arena A, we now define a game !?A understood

as “A with pointers”. Its definition requires the notion of an

exponential slice: a slice for an event a is a function α ∶ [a]→
ω, giving a copy index to each event on which a depends. For

two slices α ∶ [a] → ω and α′ ∶ [a′] → ω, we write α ⊑ α′

when a ≤ a′ and α(b) = α′(b) for all b ≤ a. The game !?A has:

● events, pairs (α, a) where α ∶ [a]→ ω,

● causal dependency, (α, a) ≤ (α′, a′) iff α ⊑ α′,
● consistency, all finite subsets of !?A,

● polarity, inherited from A, and

● isomorphism family, order-isos θ ∶ x ≅ y such that for all

(α, a) ∈ x there is α′ ∶ [a]→ ω with θ(α, a) = (α′, a).

To convey the similarity with the plays with pointers of HO

games, we could say that (α, a) “points to” (α′, a′) when α′ ⊑
α and a′ _ a. However !?A leaves duplicated events causally

unrelated whereas they would appear in some chronological

order in a play with pointers. Configurations of !?A are more

closely related to the thick subtrees of Boudes [19].

Games of the form !?A are comonoids in Strat/≃. Indeed,

we have maps of event structures mA ∶ !?A
⊥ ∥ !?A⊥ → !?A⊥ and

eA ∶ 1 → !?A⊥ satisfying monoid laws up to symmetry, and

the lifting operation yields strategies mA
⊥ ∶ !?A + // !?A ∥ !?A

and eA
⊥ ∶ !?A + // 1 in Strat/ ≃, satisfying comonoid laws. We

will now describe a subcategory of Strat/≃ whose morphisms

preserve this comonoid structure.

2) A cartesian closed category: A strategy σ ∶ S → !?A⊥ ∥
!?B is single-threaded iff (1) for all s ∈ S, [s] has exactly

one minimal event, which is negative, and (2) there is a map

⟨−,−⟩ ∶ S ∥ S → S such that σ ○ ⟨−,−⟩ = (m⊥A ∥mB) ○ (σ ∥
S

σ), and such that for all x1, x2 ∈ C(S) disjoint and compatible,

the composite bijection x1 ∪ x2 ≅ x1 ∥ x2 ≅ ⟨x1, x2⟩ is in the

isomorphism family of S. Single-threaded strategies are stable

under composition, and lifting yields single-threaded strategies

(so copycat is single-threaded).

Condition (1) expresses that causality is local to threads (i.e.

configurations with a unique minimal event), it will be used

to decompose configurations of S into threads. On the other

hand, condition (2) allows us to merge a set of threads back

into a configuration; (1) and (2) together allow us to prove the

following key lemma.

Lemma 19. Single-threaded strategies are comonoid mor-

phisms for the comonoids (!?A,mA
⊥, eA

⊥) in Strat/≃.

Since we want a category of comonoids and comonoid

morphisms, we will now restrict our attention to single-

threaded strategies between games of the form !?A. An HO-

strategy from arena A to arena B is a single-threaded strategy

σ ∶ S → !?A⊥ ∥ !?B. There is a category HOStrat having

arenas as objects, and HO-strategies as morphisms.

Arenas are closed under ∥, and there are obvious isomor-

phisms !?(A ∥ B) ≅ !?A ∥ !?B and !?1 ≅ 1. Using these,

HOStrat inherits from Strat/≃ its symmetric monoidal

structure and terminal object. Moreover, arenas also inherit a

comonoid structure that HO-strategies preserve by Lemma 19,

hence (see e.g. Corollary 17 in [17]) HOStrat is cartesian.

We also need HOStrat to be monoidal closed. For that

we introduce the usual arrow arena construction [13], that

(following [20]) we denote by A−−⊞B:

● events, (∥b∈min(B) A) ∥ B where min(B) denotes the

set of minimal events of B, and

● causality, that of ∥b∈min(B) A⊥ ∥ B enriched with

{((2, b), (1, (b, a))) ∣ a ∈ A & b ∈min(B)}.
● polarity, inherited in B and reversed in A.

HO-strategies from A to B can be represented as HO-

strategies on A−−⊞B through the following proposition.

Proposition 20. For any arenas A,B,C there is a bijection

(up to equivalence) ΦA,B,C between single-threaded σ ∶
!?C + // !?A⊥ ∥ !?B and single-threaded σ′ ∶ !?C + // !?(A−−⊞B).
Moreover Φ preserves composition, in the sense that for all

τ ∶ !?D + // !?C we have Φ(σ ⊙ τ) = Φ(σ)⊙ τ .

Using this, the category HOStrat inherits the closed struc-

ture of Strat/≃. Since its monoidal product is actually carte-

sian, it is cartesian closed, hence a model of the simply-typed

λ-calculus. It has in fact much more structure and we hope to

be able to recast and generalize within it various games models

of programming languages. In this paper though, we will only

show that it contains (a nondeterministic generalization of) the

usual HO category of innocent strategies.

3) Sequential HO-innocence: An HO-strategy σ ∶ S → !?A

is sequential HO-innocent (or an HOIS-strategy) if for any



s ∈ S, (1) the prime [s] is a total order, and (2) if [s] extends

by distinct positive events s1, s2, then [s] ∪ {s1, s2} /∈ ConS .

Intuitively, a prime [s] corresponds to a P-view: just like

a P-view, a prime configuration of an HOIS-strategy cannot

contain two negative events s1, s2 whose mapping to !?A

“point” to the same event (α, a): by innocence s1 and s2
would have to be concurrent in [s], which is impossible by

condition (1). So similarly to standard HO innocence the

condition (1) expresses that the strategy σ is blind to Opponent

reopenings: every Player event contains in its causal history at

most one Opponent event pointing to a specific Player event.

Proposition 21. Arenas and sequential HO-innocent strategies

form a subCCC, HOISStrat of HOStrat.

Note in passing that condition (1) is stable under composi-

tion on its own, but is too restrictive to be a satisfactory notion

of concurrent HO-innocence as it forbids natural concurrent

strategies such as that for the parallel or. We leave for future

work the design and study of a more satisfactory notion

of concurrent HO-innocence. We now go on and isolate a

deterministic subcategory of HOISStrat, isomorphic to the

usual category of arenas and innocent strategies [13].

An HOIS-strategy σ ∶ S → !?A is deterministic iff whenever

x
ϕ
≅S y and x

+
−Ð⊂x′ and y−Ð⊂y′, then x′ ⊆ x′′ and y′ ⊆ y′′ for

some x′′, y′′ ∈ C(S) with ϕ′ ∶ x′′ ≅S y′′ such that ϕ ⊆ ϕ′—this

is a generalization of the notion of deterministic concurrent

strategies [21] in the presence of symmetry.

Theorem 22. The subcategory of HOISStrat having arenas

as objects and deterministic sequential HO-innocent strategies

as morphisms is isomorphic to the usual category of arenas

and innocent strategies.

Sketch. Let σ ∶ S → !?A be a deterministic HOIS-strategy. For

s ∈ S positive, the prime configuration [s] needs to be a chain

s−0 _ s+1 _ s−2 _ . . . _ s+ ,

by condition (1) of HOIS-strategies along with innocence

and the alternation and negativity conditions of arenas. This

induces a sequence of moves of A:

π2σ(s0)π2σ(s1) . . . π2σ(s)

In turn, immediate dependency in A equips this sequence with

pointers such that (by innocence) Opponent always points to

the previous move. In other words, this is a P-view.

Applying this to all primes in S we get a set of P-views

that is O-branching by receptivity, condition (2) of HOIS-

strategies, the extension operation on S̃ and determinism; so

a deterministic innocent strategy in the sense of HO games.

This operation has an inverse up to equivalence of strate-

gies and preserves composition, yielding an isomorphism of

categories with standard innocent strategies.

V. CONCLUSION

Concurrent games with symmetry have proved versatile

enough to accommodate and extend in a single framework two

radically different fundamental games models: the saturated

AJM games model of CLL and the HO innocent games

model of the simply-typed λ-calculus, with a generalization

to nondeterminism—in the past, providing a notion of non-

deterministic HO innocence has proved challenging [22]. The

framework is grounded in the mathematically-versatile setting

of event structures with symmetry, with potentially fruitful

connections to homotopy.

In future, we intend to exploit the framework introduced

here to develop concurrent-games models for various program-

ming languages. Its versatility and its proximity to traditional

game semantics suggests that it is adequate to give precise

partial-order semantics to complex concurrent programming

language, including such features as higher-order procedures

and shared memory—features which, to our knowledge, have

only been modelled through interleaving.
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