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Spline driven: high accuracy projectors for
tomographic reconstruction from few projections
Fabien Momey∗, Loı̈c Denis, Catherine Burnier, Éric Thiébaut, Jean-Marie Becker, and Laurent Desbat

Abstract—Tomographic iterative reconstruction methods need
a very thorough modeling of data. This point becomes critical
when the number of available projections is limited. At the core of
this issue is the projector design, i.e. the numerical model relating
the representation of the object of interest to the projections on
the detector.

Voxel driven and ray driven projection models are widely used
for their short execution time in spite of their coarse approxima-
tions. Distance driven model has an improved accuracy but makes
strong approximations to project voxel basis functions. Cubic
voxel basis functions are anisotropic, accurately modeling their
projection is therefore computationally expensive. Smoother and
more isotropic basis functions both better represent continuous
functions and provide simpler projectors. These considerations
have led to the development of spherically symmetric volume
elements, called blobs. Set apart their isotropy, blobs are often
considered too computationally expensive in practice.

In this paper, we consider using separable B-splines as basis
functions to represent the object and we propose to approximate
the projection of these basis functions by a 2D separable model.
When the degree of the B-splines increases, their isotropy
improves and projections can be computed regardless of their
orientation. The degree and the sampling of the B-splines can be
chosen according to a trade-off between approximation quality
and computational complexity.

We quantitatively measure the good accuracy of our model
and compare it with other projectors like distance-driven and the
model proposed by Long et al. [1]. From numerical experiments,
we demonstrate that our projector with an improved accuracy
better preserves the quality of the reconstruction as the number
of projections decreases. Our projector with cubic B-splines
requires about twice as many operations as a model based on
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le Traitement en Imagerie du Vivant), funded by the French ANR (N◦ ANR-
09-EMER-008).

Fabien Momey∗ was with the Université de Lyon, F-42023, Saint-Etienne,
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de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France (e-mail:
loic.denis,catherine.burnier,jean-marie.becker@univ-st-etienne.fr).

Laurent Desbat is with the Université Grenoble Alpes, TIMC-IMAG, F-
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voxel basis functions. Higher accuracy projectors can be used
to improve the resolution of existing systems, or to reduce the
number of projections required to reach a given resolution,
potentially reducing the dose absorbed by the patient.

Index Terms—Tomography, Reconstruction, Inverse Problems,
Signal processing, B-splines.

EDICS: COI-TOM - Tomographic Imaging.

I. INTRODUCTION

ITERATIVE reconstruction methods for tomography have
long proven their ability to enhance reconstruction qual-

ity, compared to the filtered backprojection (FBP) [2]. In
PET/SPECT imaging where the signal-to-noise ratio is very
poor, iterative methods are largely preferred. Iterative methods
produce better reconstructions both because they consider a
more realistic model of the underlying physics of positron an-
nihilations and counting statistic, and because they can include
powerful edge-preserving regularizations. Several works in the
area of compressive sensing [3], [4] have shown that good
quality reconstructions could be obtained even from a reduced
set of projections thanks to regularization terms such as total
variation. The drawback of iterative methods is however their
computational time and FBP [5] is still the method of choice in
X-ray computed tomography. Nevertheless ongoing researches
on algorithms and continued increase of computational power,
with multi-core processor units or GPU-based implementation
facilities, call for a re-evaluation of the potential of iterative
methods in this domain.

Iterative methods require a numerical model of the data
acquisition process: the so-called projector. The projector is
used for the reprojection of the current estimate of the object
being reconstructed. These projections are then compared with
the actual measurements at each iteration. A backprojection
operator is also needed, which implements the adjoint of
the projector. These operators naturally need to have fast
implementations in order to obtain efficient reconstruction
algorithms. To make the most out of the data, the projector
must model accurately the physical process of data acquisition
(the X-ray transform). When considering tomographic recon-
struction from a limited number of projections, as in dynamic
tomography, the accuracy of the projector and the choice of
an adequate regularization become crucial.

We recently proposed in a conference paper an accurate
projector based on separable B-splines [6]. These prelimi-
nary results showed that the proposed projector, called spline
driven, could outperform the popular distance driven model
in reconstruction quality, with a reasonable computational



overhead. The present paper extends this preliminary study
in the following ways:
• we provide a more detailed analysis of B-spline basis

functions, especially their ability to approximate isotropic
features (Sec. III and Fig. 1 to 3);

• we compare our projector to the improved method (com-
pared to distance driven) of Long et al. [1] both by ana-
lyzing the errors of the footprint approximations of basis
functions (Fig. 6 and 7) and by comparing reconstruction
quality in fan beam geometry (Fig. 10);

• we show that the reconstruction quality can be maintained
even when the number of projections is reduced thanks
to the joint use of an accurate projector and an edge-
preserving regularization (Fig. 9).

The paper is organized as follows. Section II introduces the
reconstruction method and the role of the projector. Section III
describes the proposed spline driven projector and compares
it to other approaches. Reconstruction results are given in
Section IV, where the influence of the number of projections
is illustrated and reconstruction quality is compared to the
state-of-the-art projector by Long et al. [1].

II. TOMOGRAPHIC PROJECTORS FOR ITERATIVE
RECONSTRUCTION

A. The direct model

The object of interest is the starting point of the projector
used in iterative reconstruction. Let f : x 7→ f(x) be the 3D
function modeling the volume to be reconstructed and defined
for all space coordinates x = (x, y, z) ∈ R3. The function
f(x) is directly related to the attenuation of the X-rays by the
object of interest (SI units: m−1) and the observed intensity
I(u) follows from the physical principle of the Beer-Lambert
law:

I(u) = I0 exp
(
−
∫
x∈L(u)

f(x) dx
)

(1)

with I0 the intensity of the X-ray source and L(u) the straight
line from the X-ray source S to the position u on the detector.

A convenient parametric model of the object of interest
consists in approximating f(x) by a decomposition on a shift-
invariant basis of functions ϕk(x) = ϕ(x− xk):

f(x) ≈ f̃(x) =
∑
k

ck ϕ(x− xk) (2)

where ϕ(x) is the kernel function of the basis and the 3D
positions xk = (xk, yk, zk)T ∈ R3 define a regularly spaced
grid of N samples. The approximation f̃(x) of f(x) in (2) is
a 3D function characterized by the N -dimensional vector of
coefficients:

c = (c1, c2, . . . , cN )T ∈ RN . (3)

The sampled object fk = f̃(xk) (required for display and
analysis) can be computed from the coefficients:

f = Φ · c (4)

where Φk,k′ = ϕ(xk −xk′) showing that the interpolation by
Φ is essentially a discrete convolution.

The projection of the object f for a given orientation of the
tomographic system (positions of the source and the detector
relative to the volume of interest), denoted by θ, is given by:

ỹθ(u) =

∫
x∈Lθ(u)

f(x) dx =
∑
k

ckF
θ
k (u) , (5)

where
F θk (u) =

∫
x∈Lθ(u)

ϕ(x− xk) dx , (6)

is the so-called footprint of the k-th basis function. As a result
the projector can be written as:

ỹθ = Rθ · c with Rθqk = F θk (uq) , (7)

where ỹθ gathers the data model values ỹθq = ỹθ(uq) at the
position uq of the q-th detector pixel.

B. Regularized reconstruction

The reconstruction amounts to seeking the coefficients c
which minimize a criterion with the general form [7], [2]:

c+ = arg min
c

{∑
θ

J θdata(ỹ
θ | yθ) + µJprior(f)

}
= arg min

c

{∑
θ

J θdata(Rθ · c | yθ) + µJprior(Φ · c)
}
.

(8)

In this criterion, J θdata is a data-fidelity term which ensures
consistency of the model ỹθ with the data yθ. The term Jprior
accounts for prior information and is needed to regularize the
inverse problem and avoid noise and artifacts amplifications.
The hyperparameter µ controls the tradeoff between data
fitting and regularity. Having a fast projector is critical because
the minimization is performed by iterative methods.

C. State-of-the-art in tomographic projection

The choice of the basis function ϕ(x) and the approxima-
tions made to compute its footprints F θk (u) are essential for
an accurate and fast modeling of the projections. A list of
desirable properties of basis functions are:

i. Accurate modeling of the object f(x) that preserves im-
portant object features such as sharp edges.

ii. Compact support for ϕ(x) to ensure the sparsity of the
resulting projector.

iii. Separability along spatial dimensions to reduce the com-
putational burden by factorizing computations.

iv. Robustness to geometric transformations of the object
(translation, rotation, magnification).

v. Spherical symmetry for isotropic projection.

Standard models such as voxel driven or ray driven [8] are
based on raw samples which are linearly interpolated (either
in the object space or in the data space) for the purpose of the
projection. The coarse approximations made by such models
give rise to strong artifacts in the reconstructed object unless a
great deal of projections are used (typically several hundreds)
to smooth out the consequences of the approximations.



Most existing models use cubic voxels as their basis func-
tions. These functions are advantageous for being easy to
manipulate and very compact as a given voxel does not spread
over its neighbors. The distance driven projector [9] is based
on such basis functions. This model projects the voxel’s central
section that is mostly parallel to the detector plane. Then the
obtained quadrilateral footprint is approximated with a rect-
angle covering at best the delimited region. The overlapping
areas on the impinged detector pixels are used to weight the
voxel value, and thus calculate the contribution of the voxel
to each pixel. Long et al. [1] proposed a much more accurate
projection of a cubic voxel given by a separable footprint
composed of trapezoidal functions. Their model is exact in
parallel beam geometry.

The anisotropic behavior of cubic voxels contrasts with
the isotropic nature of tomographic projection. The choice of
isotropic basis functions has led to so-called “blobs” [10], [11],
[12], [13], [14], improving the accuracy of the models of the
object and its projections. In tomography, the Kaiser-Bessel
function is a main representative of this class of functions.
Ziegler et al. [15] developed a blob-based projector by pre-
computing the 2D footprint once for all.

III. THE SPLINE DRIVEN PROJECTOR

A. Modeling the object

1) Approximation error: Given the basis of functions, the
best coefficients ck should minimize some measure ‖f− f̃‖ of
the approximation error. In sampling theory [16], ‖f − f̃‖ is
usually the L2 norm and the optimal f̃ is thus the orthogonal
projection of f on the subspace spanned by the basis functions
ϕk. The least approximation error εf only depends on the
kernel function ϕ, on the sampling step ∆ and, of course, on
the object f(x). In 1D, an expression of the least error for
regular signals is [17], [18]:

εf = min
c
‖f − f̃‖2 ≈

[∫ +∞

−∞
Eϕ(ω∆) |f̂(ω)|2 dω

2π

]1/2

(9)

where the hat denotes the Fourier transform and Eϕ is the
error kernel defined by:

Eϕ(ω) = 1− |ϕ̂(ω)|2∑
k∈Z |ϕ̂(ω + 2 k π)|2

. (10)

For a given sampling step, a good basis function should have
a low least approximation error εf .

2) B-splines as basis functions: Splines of degree d are
piecewise polynomial functions with degree at most d and
continuously differentiable up to order d − 1. Splines on a
regular grid of samples can be written as a unique linear
combination of a regularly shifted kernel. Such a kernel is
itself piecewise polynomial and is called a B-spline [18].

Let βd denote a B-spline of degree d. The B-spline of degree
0 is the rectangular pulse:

β0(x) =

 1 if |x| < 1/2;
1/2 if |x| = 1/2;
0 otherwise;

(11)

and the B-spline of higher degree are constructed by multiple
convolutions of β0:

βd(x) = β0 ∗ · · · ∗ β0︸ ︷︷ ︸
d+1 terms

(x) . (12)

With this notation and considering evenly spaced samples with
a step ∆, a 1D spline of degree d writes:

s(x) =
∑
k∈Z

ck β
d((x− xk)/∆) . (13)

For such 1D splines, the modeling error εf is O(∆d+1) [16],
[18], [19]. Hence using B-splines of higher degree decreases
this error, or let one uses a coarser sampling rate for a given
tolerance.

Going back to the formulation of the object representation
in (2), we propose to use 3D separable B-splines of degree d
as our basis functions:

ϕ(x, y, z) = βd(x/∆)βd(y/∆)βd(z/∆) , (14)

with ∆ the sampling step of the grid. Taking B-splines of
degree 0 yields nothing else than the cubic voxels which
are the most compact B-splines. According to the central
limit theorem and B-splines being d-fold convolutions of a
rectangular pulse, they become closer to a Gaussian function as
their degree d increases. Thus 3D separable B-splines tend to
spherically symmetric functions, while preserving a compact
support of size (d + 1)3. As a result, increasing the degree
d not only yields an improved approximation error but also
provides quasi-isotropic basis functions. These advantages are
at the expense of an enlargement of the support of the basis
functions and thus of an increase of the computational burden.
However, as we will show, this additional cost is mitigated
by the use of separable functions. The good properties of B-
splines are related to the fact that they are the shortest and
smoothest scaling functions for a given order of approximation
[16]. More specifically, the cubic (degree 3) B-splines are
members of the family of MOMS functions (Maximum Order
Minimum Support), giving them a form of optimality in this
context.

3) Comparison with the state-of-the-art basis functions:
Fig. 1 shows the error kernels (10), in 1D, for B-splines from
degree d = 0 to 3, and for the ideal blob as defined by Matej
& Lewitt [14]. The higher the degree of the B-spline, the
faster the approximation error decreases below the Nyquist
frequency when ω × ∆ → 0, and tends to the optimality.
Blobs also improve the quality of object modeling. We notice
that the error kernel of the blob is very close to that of the
quadratic B-spline (degree 2), although with a larger support.

Fig. 1 reveals that B-splines are much better basis functions
for representing band-limited signals. Modeling sharp edges,
i.e. not band-limited signals, is also one of the desired prop-
erties stated in section II-C. A typical anatomical feature of
a human body in tomography is composed of tissues having
different absorption levels; the object f(x) to be reconstructed
is therefore expected to have sharp transitions between areas
with specific absorbing properties.

To estimate how B-splines of high degree compare to cubic
voxels and blobs, we have represented the attenuation map
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Fig. 1. Error kernels, as a function of the reduced frequency, of B-splines of
different degrees d. For comparison, the error kernel of a Kaiser-Bessel blob
with ideal parameters m = 2 ; a = 2 ; α = 10.4 is plotted.

Fig. 2. Localization of the sharp edges found on thresholded approximations
of a ring on a discrete 2D grid (crosses). The black curve corresponds to
the cubic voxels’ representation; the green curve with points corresponds to
the blobs’ representation; the red curve corresponds to the cubic B-splines’
representation. (On this figure, the green and red contours are indiscernible.
See Fig. 3 to discriminate them.)

of an absorbing ring with sharp edges on a regularly spaced
2D grid of basis functions’ positions with a low resolution.
The best representation, i.e. the model with coefficients c
that minimize the approximation error ‖f − f̃‖, has been
computed for three different kernel functions: cubic voxel,
cubic B-spline (d = 3) and blobs. Then each model has been
interpolated on a grid much finer than the sampling grid to
draw the mid-height level curve. This contour is shown in
Fig. 2 for each approximation. The more accurate localization
of the sharp edges by both the cubic B-spline-based and
the blob-based representations is unequivocal compared with
the cubic voxel-based representation which shows a staircase
boundary. This behavior evidences the critical lack of isotropy
of cubic voxels. Conversely, for cubic B-splines and blobs, the
boundaries are precisely localized whatever the orientation.
We have also calculated the root mean squared error (RMS)

Fig. 3. 1D profile across the median horizontal line of the graph of Fig. 2. The
black curve corresponds to the cubic voxels’ representation; the green curve
with points corresponds to the blobs’ representation; the red curve corresponds
to the cubic B-splines’ representation.

and the edge localization error for every approximation. These
errors for cubic voxels are respectively 16.8% and 6.4%.
Blobs are 1.8 times better in RMS and 6.8 times better in
localization error than cubic voxels, while cubic B-splines are
the most accurate being 1.9 times better in RMS and 8.4
times better in localization error than cubic voxels. However,
as shown by Fig. 3, Gibbs oscillations appear when modeling
sharp edges with basis functions having a high approximation
order. Such oscillations are visible for the cubic B-spline-
based and the blob-based representations. Nevertheless, these
side effects are low compared with the gain of isotropy and
accuracy. Moreover, a suitable choice of regularization could
help flattening the oscillations.

To model the kind of object we want to reconstruct, cubic
voxels are thus not as suitable as more isotropic basis functions
such as separable B-splines of higher degrees or blobs. In
principle, lowering the approximation error of cubic voxels
is possible by reducing significantly the sampling step but
this increases the computational burden and the size of the
reconstruction problem. Compared to separable B-splines,
blobs are perfectly isotropic but are much more complex to
handle and require more numerical operations. For instance,
the computation of the sampled object f at every iteration of
a regularized approach, see (4) and (8), can be computed very
quickly for a B-spline based model by means of fast digital
filtering operations [18], [20], [21].

B. Modeling the data

We consider a general tridimensional system (Fig. 4) where
the object is static relatively to a 3D Cartesian frame with
coordinates x = (x, y, z) evenly sampled at positions xk. We
assume a flat detector and denote u = (u, v) the coordinates
in the 2D Cartesian frame with axis aligned with the rows and
the columns of the detector. Each projection is acquired with



impinged detector pixels

Fig. 4. Cone beam projection scheme of a basis function ϕ(x − xk) on the detector. θ denotes the orientation of the detector, rotating around the center
O. The direction of the ray, starting from the source S(θ), orthogonal to the detector plane is identified by the vector ~w(θ). The direction of the ray passing
through the central position xk = (x, y, z) of the k-th voxel is identified by the vector ~r. The footprint of ϕ(x− xk) is denoted F θk .

a given orientation denoted θ. The unit vector ~w defines the
direction perpendicular to the detector and oriented from the
source S to the detector.

To improve the data model, stated in (5) and (7), we also
take into account pixel integration on the detector by defining
the model for the q-th pixel at orientation θ as:

ỹθq =

∫∫
ỹθ(u)Pq(u)d2u

=
∑
k∈Ωθq

(∫∫
F θk (u)Pq(u)d2u

)
︸ ︷︷ ︸

Rqk

ck , (15)

where Pq : u 7→ Pq(u) is the response of the pixel and Ωθq
is the set of voxels k impinging this pixel. Equation (15)
is a linearization of the Beer-Lambert law — integration of
the X-ray transform instead of the photon flux (see 1). This
approximation is valid in the case of low X-ray absorption.
We assume that Pq(u) is a 2D square pulse of dimensions
∆pix × ∆pix centered at the position uq of the pixel. The
pixel response is thus a separable shift-invariant function:
Pq(u) = β0((u− uq)/∆pix)β

0((v − vq)/∆pix) with β0 given
by (11).

1) Footprint in parallel beam geometry: In parallel beam
geometry, all integration lines are aligned with ~w(θ). We
approximate the footprint of a voxel βdk by a 2D B-spline
of same degree d separable along the detector axis:

F θk (u) = βd((u− uθk)/∆)βd((v − vθk)/∆) (16)

where (uθk, v
θ
k) = uθk is the projection on the detector along

the rays of the position xk of the k-th voxel for orientation θ.
Expression (16) is exact when the direction ~w(θ) of the parallel
beam projection is aligned with one of the axis ~x, ~y, or ~z; it
is only an approximation for other orientations. However the
higher the degree d the better this approximation.

Thanks to the quasi-isotropy property of B-splines of suf-
ficient degree, the footprint in our spline driven model (cf.

section III-A2) has approximately the same shape whatever
the orientation θ.

Fig. 5. Scaling parameters in cone beam geometry. `foc is the focal length of
the system (distance between the source point S and its orthogonal projection
S⊥ on the detector). M(xk) is the center of the basis function βdk . Its
cone beam projection on the detector is the point M ′(uθk). M⊥(wθk) is the
orthogonal projection of M on the straight line {S, ~w}. Its position wk is
used to determine the magnification factor Γθk . αk and γk are angles with
respect to directions ~u and ~v.

2) Footprint in cone beam geometry: In the case of cone
beam geometry, the magnification and the distortion, both
depending on the position of the voxel in the field of view,
has to be taken into account (see Fig. 5). In order to keep
the separability property of the footprint on the detector, we
approximate these effects by scaling factors applied to the
footprint in (16), such that:

F θk (u) = βd((ηθk u− uθk)/∆)βd((ρθk v − vθk)/∆) (17)

with (see Fig. 5):

ηθk =
cosαk

Γθk
, ρθk =

cos γk
Γθk

, Γθk =
`foc
wθk

, (18)

ηθk and ρθk are distortion factors, Γθk is the magnification.
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Fig. 6. Approximation errors in parallel beam geometry for footprints
convolved by the pixel detector response. The projectors are: (a) spline
driven, (b) the model of Long et al. SF-TT-A1, (c) and (d) our spline
driven model. Models (a–c) are with cubic voxels, that is B-splines of degree
d = 0; while model (d) is with B-splines of degree d = 3. The error maps
show the absolute difference between the exact and the model-approximated
footprints (assuming the same voxel shape). The detector rotates around the
~z-axis. The worst case is considered here with the detector tilted by 45◦
with respect to the horizontal plane. Numerical values of the errors are:
(a) EMAX ' 12.3% (maximum error) and RMS ' 2.4% (root mean
square error); (b) EMAX ' 0% and RMS ' 0%; (c) EMAX ' 7%
and RMS ' 1.3%; (d) EMAX ' 1.3% and RMS ' 0.2%.

3) Approximation errors of the models: We quantified
errors caused by our approximations for the footprints of
spline driven and compared them with the distance driven
and Long et al. projectors. For a given basis function and
a given model, we calculated its exact and approximated
footprints. We considered a tomographic system with a focal
length `foc of 949mm, a source to rotation center distance of
514mm, and a flat detector with a pixel size of 1 × 1mm2.
This is the same configuration as in the article of Long et
al. [1] in the study of their own approximated footprint’s
errors. For the Long et al. projector, we have implemented
the particular SF-TT-A1 method as proposed in [1]. For the
determination of the exact footprint at a given orientation of
the detector, we used a Monte Carlo method consisting in
calculating about 5 × 106 random lines of response (LOR)
passing through the basis function. Each exact LOR was
calculated by Romberg numerical integration [22]. The LORs
approximated by each considered model were computed using
their analytical expressions. Finally, we numerically computed
the convolution of the footprints by the detector pixel response
by summing the LOR included in the support of the pixel
centered at each position of a 100× 100 regular grid.

Fig. 6 displays the worst case errors caused by our approx-
imations using B-splines with degree d = 0 and d = 3, com-
pared with the distance driven and Long et al. approximated
footprints’ errors, in parallel beam geometry. Our projector is
much more accurate than distance driven. In this geometry, the
Long et al. model’s approximation errors can only be caused
by numerical rounding errors and are thus negligible.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fig. 7. Approximation errors in cone beam geometry for footprints convolved
by the pixel detector response. The models are as in Fig. 6 but adapted to
the cone beam geometry. The worst case is considered here: the detector is
tilted by 0◦ with respect to the horizontal plane but the projected voxel is very
off-centered (100mm, -150mm, 100mm). Numerical values of the errors are:
(a) EMAX ' 14.5% and RMS ' 2.7%; (b) EMAX ' 3.5% and RMS '
1.1%; (c) EMAX ' 13.5% and RMS ' 2.7%; (d) EMAX ' 2.8% and
RMS ' 0.6%.

In this comparison, we did not consider B-splines of degree
higher than 3 because we have shown in [6] that using higher
degree basis functions does not reduce the error by more than
a factor of 2 while significantly increasing the computational
burden (cf. section III-B4). B-splines of degree 3 appear to be
a good trade-off between accuracy and computation time.

Fig. 7 shows the approximation errors in cone beam geome-
try. Compared to Fig. 6, errors are amplified due to approxima-
tions made to cope with the geometrical effects (magnification,
off-axis distortions). In this configuration, spline driven is
more accurate than both distance driven and Long et al.
models, provided that the degree of the B-splines is sufficiently
high.

Similarly to Fig. 3 in the paper [1], Fig. 8 compares the
maximum approximation error for a centered voxel and an
off-centered voxel as a function of the angles of projection,
for several projectors: distance driven, Long et al. SF-TT-A1
and spline driven with d = 3. It can be observed that Long
et al. model is the most accurate for a voxel at the center
of the tomographic system. In the case (b) of a voxel farther
from the system center, approximation errors are lower at all
angles with the proposed spline driven projector. The worse
error is about 10−2 with spline driven, 10−1 with the projector
of Long et al., and between 10−1 and 1 with distance driven.

Compared to blob-based projectors, our spline driven model
is only approximately isotropic but requires much less nu-
merical operations because it uses separable functions for its
voxels and their footprints. In the next paragraph we show
that the computational burden of our spline driven model is
competitive with that of simpler approaches such as distance
driven or Long et al..
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Fig. 8. Maximum approximation errors EMAX in cone beam geometry as a function of the angle of projection for distance driven, Long et al. SF-TT-A1
and spline driven with d = 3. (a) Voxel positioned at (0mm,0mm,0mm) from 0 to 90◦ (180 angles). (b) Voxel positioned at (100mm,-150mm,100mm)
from 0 to 360◦ (720 angles). This figure is similar to Fig. 3 found in [1].

4) Computational burden: Spline driven increases the num-
ber of operations necessary to calculate the data values yθq (15),
due to the larger footprint of a given voxel. Cubic B-splines
provide a good tradeoff between accuracy and computational
burden. Let us consider a system where the voxels and detector
pixels sampling rates are approximately equal. The width of
the degree d B-spline support is s = d+1 in each direction. Its
footprint impinges (s+1)×(s+1) = (d+2)×(d+2) detector
pixels in general. If we compare a cubic voxel (d = 0) with
a cubic B-spline (d = 3), the number of impinged detector
pixels for a given voxel is only multiplied by a factor between
2 and 3 in each direction. As the footprint considered in
spline driven is still separable, the amount of operations is
multiplied by the same factor, which remains competitive.
Moreover our projection scheme, as well as the cubic voxel-
based approaches, are easily parallelizable.

In the next section we analyze the improvements brought by
spline driven projector in the context of reconstruction from a
limited number of projections.

IV. RESULTS ON 2D FAN BEAM RECONSTRUCTIONS

A. Reducing the number of projections

In section III-A2, we claimed that the increase of accuracy
due to the use of B-splines to model the object and its pro-
jections could reduce the amount of data required for a given
reconstruction quality. Figure 9 displays reconstructions of a
2D Shepp-Logan phantom with our spline driven model and
for a variable number of fan beam projections. We consider a
circular source trajectory around the object with a fixed relative
position of the detector with respect to the source. The object
of interest has a size of 256× 256 pixels and the projections
are acquired by a detector with 512 pixels. The sampling step

is the same for the object and for the detector. Note that, to
avoid the so-called inverse crime [23], [24], an exact direct
model (i.e. with no approximations except rounding errors)
is used to compute the projections for simulating the data.
Avoiding inverse crime is critical to assess whether modeling
approximations can impair the reconstruction quality with
undesirable artifacts.

The voxel coefficients c are reconstructed from the dataset{
yθ

∣∣ θ ∈ Θ
}

, with Θ the set of projection angles, by
minimizing the criterion (8). The data-fidelity term is:

Jdata(c) =
∑
θ∈Θ

∥∥ỹθ(c)− yθ∥∥2

2
. (19)

In order to preserve sharp edges in the sampled object f =
Φ · c, we choose a relaxed total variation (TV) prior [25] for
the regularization:

Jprior(f) =
∑
k

√
‖∇k · f‖22 + ε2 . (20)

with ε > 0 a relaxation parameter and ∇k a finite difference
operator approximating the spatial gradient at position k. The
minimization of (8) is carried out by the VMLM algorithm
[27], a limited memory quasi-Newton method.

These results clearly show that the quality of the reconstruc-
tion is acceptable up to ∼ 40 projections. This is an order
of magnitude lower than the usual hundreds of projections
required by standard reconstruction algorithms, particularly
FBP. Note that, in contrast to some results presented in the
literature, we avoided committing an inverse crime by using
an accurate simulation of the projection to generate the data.
Improving the quality of reconstruction from a limited number
of projections opens the possibility to reduce the X-ray dose
delivered to the patient for data acquisition. The quality of
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Fig. 9. Reconstructions of a 256 × 256 grid of a Shepp-Logan phantom with our spline driven projector using cubic B-splines, from a decreasing number
of projections.

reconstruction observed here is also due to the TV regularizer
which is very well suited to the reconstruction of piecewise
constant objects [4]. In the following tests, we use reduced
datasets of 60 projections.

B. Comparison of spline and Long et al. models

We compare spline driven and Long et al. on simulated
projections of the two-dimensional Shepp-Logan phantom in
fan beam geometry. The system and the acquisition protocol
is the same as described in section IV-A. As we work in 2D,
the particular implementation of the Long et al. projector is
the SF-TR-A3 method as proposed in [1]. Again, to avoid
committing an inverse crime, exact projections are computed
for data simulation. From the simulated projections, we create
two different datasets adding an uniform independent Gaussian
noise approximately corresponding to a non-attenuated X-ray
flux of respectively 9×107 (N1), and 9×106 (N2) photons per
detector pixel per projection. This corresponds to variances of
noise of respectively 1.11 × 10−8 for N1 and 1.11 × 10−7

for N2. For each noise level, we simulate 5 different random
realizations of the noise. For the two considered models, the

voxel coefficients c are reconstructed from a set of 60 noisy
projections

{
yθ
∣∣ θ ∈ Θ

}
by minimizing the criterion (8).

Since the noise is independent and Gaussian, the data-fidelity
term is also given by (19). For the regularization, we still use
the relaxed TV prior in (20).

Fig. 10 displays the reconstructions of 1 realization of the
noise level N1, with two magnified regions of interest (ROI),
where we also plot horizontal and vertical line profiles. For
each projector, we use the regularization level µ which leads
to the lowest RMS error in the blue ROI, i.e. the region where
the finest details are expected (cf. Fig. 11). Selecting the best
parameter with respect to the RMS computed on the whole
image would have over-smoothed the smallest structures. The
best reconstruction with our spline driven projector (in third
column of Fig. 10) recovers most of the features without
noticeable artifacts in spite of the low number of projections
(60). Comparatively, the best reconstruction with the Long et
al. projector (in the second column of Fig. 10) recovers less
accurately the finest details, especially in the blue ROI. The
reconstruction quality would improve if the number of projec-
tions available for the reconstruction increased, and all details
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Fig. 10. Reconstructions of 1 realization of the noise level N1 of the 256 × 256 Shepp-Logan phantom, from a set of 60 fan beam projections with 512
detector pixels, with both the spline driven projector using cubic B-splines and the Long et al. SF-TR-A3 projector. The first column illustrates the true
object. The first row shows the whole objects while the second and third rows are magnified views of the two squares drawn on the first image. The blue
and red curves are line profiles along the horizontal and vertical directions. The second column shows the best achievable reconstruction with Long et al.
projector (µ2 = 9 × 10−10). The third column corresponds to the best reconstruction with the proposed spline driven projector (µ1 = 10−12). The fourth
column shows the reconstruction with Long et al. projector if the same regularisation level as for spline driven is used, resulting here in an under-regularized
reconstruction. The reconstructions with spline driven took a maximum of 3.5 times longer than with Long et al..

would correctly be recovered with several hundred projections.
The better reconstruction quality with spline driven is achieved
at a lower regularization level (µ1 = 10−12) than with Long et
al. (µ2 = 9× 10−10), which indicates a smaller modelization
noise requiring less smoothing by the regularization term.
If the same low regularization level is used with Long et
al. projector, a very noisy under-regularized reconstruction is
obtained (last column).

These qualitative results illustrate that using an accurate
projector model is essential when dealing with a limited
number of projections. The accuracy of the model has a
direct impact on the quality of the restored object but also
on the minimal amount of measurements needed to achieve
satisfying reconstructions. The effect of using a coarser model
can be mitigated if many projections are available and the
regularization weight is increased, at the expense of a decrease
of spatial resolution, to limit reconstruction artifacts.

In terms of computation time, these reconstructions took
a maximum of 3.5 times longer than with Long et al.. So
it is a bit more than the estimated computational burden (cf.
section III-B4).

The curves in Fig. 11 indicate the RMS error in the two
ROIs (identified by their colors in Fig. 11) as a function of the
regularization level µ, for the mean reconstructed objects over
the 5 realizations, and for the 2 noise levels N1 (a) and N2 (b).
Whatever the ROI and the projector, the RMS curve appears
to be convex; thus the best reconstruction is obtained for a
unique optimal value of µ. Visual assessment (see Fig. 10)
confirms that the RMS error computed in well chosen regions
of interest is an appropriate metric to evaluate the quality of
a reconstructed object. Besides, in any ROI, the optimal RMS
error is always lower with our spline driven projector than with
the Long et al. one up to a factor 1.2 (20% lower). This is a
quantitative assessment of the improved reconstruction quality
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Fig. 11. Root mean squared error in the two ROIs (see Fig. 10) of the reconstructed object, normalized by the maximum value in the ROI, for various values
of the hyperparameter µ (logarithmic scale). The RMS error is calculated from the mean reconstructed objects over the 5 realizations, respectively for the
2 noise levels N1 (variance 1.11 × 10−8) (a) and N2 (variance 1.11 × 10−7) (b). The solid curves correspond to reconstructions with the spline driven
projector, and the dashed curves correspond to reconstructions with the Long et al. projector.

with our projector.

V. CONCLUSIONS

This paper describes the spline driven projector for iterative
reconstruction. This projector achieves a good trade-off be-
tween accuracy and computational complexity. By exploiting
a more accurate direct model compared to current models
such as Long et al., the quality of the restored object is
enhanced and the number of projections necessary to achieve
a given reconstruction quality is reduced. Thus, diagnoses can
potentially be more easily established and the dose of radiation
received by the patient be reduced.

Our approach exploits the good properties of B-spline basis
functions to model the object of interest, to approximate
its projections, and to account for pixel integration. Using
separable 3D B-spline of degree 3, our basis functions are
close to isotropic which is a clear improvement compared to
cubic voxels. To achieve a fast projector, we also introduce a
separable 2D approximation of the footprint for various beam
geometries (parallel, fan beam and cone beam). Our model is
less isotropic than blobs, but is separable and more compact,
and is thus much faster to compute. The computational com-
plexity of our model is only 2 to 3 times that of distance driven
or Long et al. [1] models. While Long et al. [1] projector
appears as the method of choice in parallel beam geometry, in
cone-beam or fan-beam geometry the factor two computational
overhead introduced by spline driven (with cubic B-splines) is
compensated by the gain in accuracy. This improved accuracy
becomes crucial when the number of projections is limited.

On the basis of numerical simulations, we have shown that
by using a more accurate projection model we can achieve
better reconstructions, even from a very limited number of

projections (typically 5 to 10 times less than the number of
projections typically used with filtered back-projections). This
opens the possibility to reduce the X-ray dose delivered to the
patient during data acquisition.

In a companion paper which has just been submitted, we
exploit our spline driven model to produce spatio-temporal
reconstructions on both simulated and empirical data. In this
3D+t context, the ability to achieve acceptable reconstructions
from a much reduced number of projections is a strong re-
quirement. Indeed, due to motion, only a very limited number
of projections can be used to reconstruct the object at a given
time.
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Université Grenoble Alpes, Grenoble, France. His
main research topics are inverse problems, image
reconstruction and calibration for tomography.


	Introduction
	Tomographic projectors for iterative reconstruction
	The direct model
	Regularized reconstruction
	State-of-the-art in tomographic projection

	The spline driven projector
	Modeling the object
	Approximation error
	B-splines as basis functions
	Comparison with the state-of-the-art basis functions

	Modeling the data
	Footprint in parallel beam geometry
	Footprint in cone beam geometry
	Approximation errors of the models
	Computational burden


	Results on 2D fan beam reconstructions
	Reducing the number of projections
	Comparison of spline and Long et al. models

	Conclusions
	References
	Biographies
	Fabien Momey
	Loïc Denis
	Catherine Burnier
	Éric Thiébaut
	Jean-Marie Becker
	Laurent Desbat


