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Spline driven: high accuracy projectors for 3D

tomographic reconstruction from few projections

Fabien Momey∗, Éric Thiébaut, Catherine Burnier, Loı̈c Denis, Jean-Marie Becker, and Laurent Desbat

Abstract—Tomographic iterative reconstruction methods need
a very thorough modeling of data. The core of this issue is the
projectors’s design, i.e. the numerical model of projection, is
mostly influenced by the representation of the object of interest,
decomposed on a basis of functions, and on the approximations
made for the projection on the detector.

Voxel driven and ray driven projection models, widely appre-
ciated for their short execution time, are too coarse. Distance
driven model has a better accuracy but also relies on strong
approximations to project voxel basis functions. Cubic voxel
basis functions are anisotropic, modeling accurately their pro-
jection is therefore computationally expensive. Smoother and
more isotropic basis functions both better represent continuous
functions and provide simpler projectors. This consideration
has lead to the development of spherically symmetric volume
elements, called blobs. Set apart their isotropy, blobs are often
considered too computationally expensive in practice.

We propose to use 3D B-splines, which are smooth piecewise
polynomials, as basis functions. When the degree of these
polynomials increases, their isotropy improves and projections
can be computed regardless of their orientation. Thanks to their
separability, very efficient algorithms can be used to decompose
an image on B-spline basis functions. We approximate the
projection of B-spline basis functions with a 2D separable model.
The degree and the sampling of the B-splines can be chosen
according to a tradeoff between approximation quality and
computational complexity.

We show on numerical experiments that with our accurate
projector, the number of projections can be reduced while
preserving a similar reconstruction quality. Used with cubic B-
splines, our projector requires just twice as many operations as a
model involving voxel basis functions. High accuracy projectors
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can enhance the resolution of existing systems, or can reduce
the number of projections required to reach a given resolution,
potentially reducing the dose absorbed by the patient.

Index Terms—Tomography, Reconstruction, Inverse Problems,
Signal processing, B-splines.

EDICS: COI-TOM - Tomographic Imaging.

I. INTRODUCTION

ITERATIVE reconstruction methods for tomography have

long proven their ability to enhance reconstruction qual-

ity, compared to the filtered backprojection (FBP) [2]. The

drawback of iterative methods is their expensive computation

time. Due to very low signal-to-noise ratio in PET/SPECT

imaging, iterative methods are preferred because they yield

better results as they can use a more realistic model of the

underlying physics and counting statistic of positron annihi-

lations. However FBP [7] is still the method of choice in X-

ray computed tomography. Nevertheless ongoing researches on

algorithms and recent enhancements in computational power,

such as multi-core processor units or GPU-based implemen-

tation facilities, call for a re-evaluation of the potential of

iterative reconstruction in this domain.

Such methods require a numerical model of the data

acquisition process: the so-called projector. It is used for

the reprojection of the current estimate of the object to be

reconstructed. These projections are then compared with the

actual data at each iteration step. A backprojection operator is

also needed, which is the adjoint of the projector. In order to

fully exploit the data, the projector has to accurately model the

physical process of data acquisition (X-ray transform) while

being as fast as possible.

II. TOMOGRAPHIC PROJECTORS FOR ITERATIVE

RECONSTRUCTION

A. The direct model

The object of interest is the starting point of the projector

used in iterative reconstruction. Let f : x 7→ f(x) be the 3D

function modeling the volume to be reconstructed and defined

for all space coordinates x = (x, y, z) ∈ R
3. The function

f(x) is directly related to the attenuation of the X-rays by the

object of interest (SI units: m−1) and the observed intensity

I(u) follows from the physical principle of the Beer-Lambert

law:

I(u) = I0 exp
(

−

∫

x∈L(u)

f(x) dx
)

(1)

with I0 the intensity of the X-ray source and L(u) the straight

line from the X-ray source S to the position u on the detector.



A convenient parametric model of the object of interest

consists in approximating f(x) by a decomposition on a shift-

invariant basis of functions ϕk(x) = ϕ(x− xk):

f(x) ≈ f̃(x) =
∑

k

ck ϕ(x− xk) (2)

where ϕ(x) is the kernel function of the basis and the 3D

positions xk = (xk, yk, zk)
T ∈ R

3 define a regularly spaced

grid of N samples. The approximation f̃(x) of f(x) in (2) is

a 3D function characterized by the N -dimensional vector of

coefficients:

c = (c1, c2, . . . , cN )T ∈ R
N . (3)

The sampled object fk = f̃(xk) (required for display and

analysis) can be computed from the coefficients:

f = Φ · c (4)

where Φk,k′ = ϕ(xk −xk′) showing that the interpolation by

Φ is essentially a discrete convolution.

The projection of the object f for a given orientation of the

tomographic system (positions of the source and the detector

relative to the volume of interest), denoted by θ, is given by:

ỹθ(u) =

∫

x∈Lθ(u)

f(x) dx =
∑

k

ckF
θ
k (u) , (5)

where

F θ
k (u) =

∫

x∈Lθ(u)

ϕ(x− xk) dx , (6)

is the so-called footprint of the k-th basis function. As a result

the projector can be written as:

ỹθ = R
θ · c with Rθ

qk = F θ
k (uq) , (7)

where ỹθ gathers the data model values ỹθq = ỹθ(uq) at the

position uq of the q-th detector pixel.

B. Regularized reconstruction

The reconstruction amounts to seeking the coefficients c

which minimize a criterion with the general form [19], [2]:

c+ = argmin
c

∑

θ

J θ
data(ỹ

θ | yθ) + µJprior(f)

= argmin
c

∑

θ

J θ
data(R

θ · c | yθ) + µJprior(Φ · c) . (8)

In this criterion, J θ
data is a data-fidelity term which ensures

consistency of the model ỹθ with the data yθ. The term Jprior

accounts for prior information and is needed to regularize the

inverse problem and avoid noise and artifacts amplifications.

The hyperparameter µ controls the tradeoff between data

fitting and regularity. Having a fast projector is critical because

the minimization is performed with iterative methods.

C. State-of-the-art in tomographic projection

The choice of the basis function ϕ(x) and the approxima-

tions made to compute its footprints F θ
k (u) are essential for

an accurate and fast modeling of the projections. A list of

desirable properties of basis functions are:

i. Accurate modeling of the object f(x) that preserves im-

portant object features such as sharp edges.

ii. Compact support for ϕ(x) to ensure the sparsity of the

resulting projector.

iii. Separability along spatial dimensions to reduce the com-

putational burden by factorizing computations.

iv. Robustness to geometric transformations of the object

(translation, rotation, magnification).

v. Spherical symmetry for isotropic projection.

Standard models such as voxel driven or ray driven [5] are

based on raw samples which are linearly interpolated (either

in the object space or in the data space) for the purpose of the

projection. The coarse approximations made by such models

give rise to strong artifacts in the reconstructed object unless a

great deal of projections are used (typically several hundreds)

to smooth out the consequences of the approximations.

Most existing models use cubic voxels as their basis func-

tions. These functions are advantageous for being easy to

manipulate and very compact as a given voxel does not spread

over its neighbors. The distance driven projector [1] is based

on such basis functions. This model projects the voxel’s central

section that is mostly parallel to the detector plane. Then the

obtained quadrilateral footprint is approximated with a rect-

angle covering at best the delimited region. The overlapping

areas on the impinged detector pixels are used to weight the

voxel value, and thus calculate the contribution of the voxel

to each pixel. Long et al. [3] proposed a much more accurate

projection of a cubic voxel given by a separable footprint

composed of trapezoidal functions. Their model is exact in

parallel beam geometry.

The anisotropic behavior of cubic voxels contrasts with

the isotropic nature of tomographic projection. The choice of

isotropic basis functions has led to so-called “blobs” [8], [9],

[10], [11], [12], improving the accuracy of the models of the

object and its projections. In tomography, the Kaiser-Bessel

function is a main representative of this class of functions.

Ziegler et al. [25] developed a blob-based projector by pre-

computing the 2D footprint once for all.

III. THE SPLINE DRIVEN PROJECTOR

A. Modeling the object

1) Approximation error: Given the basis of functions, the

best coefficients ck should minimize some measure ‖f− f̃‖ of

the approximation error. In sampling theory [23], ‖f − f̃‖ is

usually the L2 norm and the optimal f̃ is thus the orthogonal

projection of f on the subspace spanned by the basis functions

ϕk. The least approximation error ǫf only depends on the

kernel function ϕ, on the sampling step ∆ and, of course, on

the object f(x). In 1D, an expression of the least error is [22]:

ǫf = min
c

‖f − f̃‖2 ≈

[∫ +∞

−∞

Eϕ(ω∆) |f̂(ω)|2
dω

2π

]1/2

(9)



where the hat denotes the Fourier transform and Eϕ is the

error kernel defined by:

Eϕ(ω) = 1−
|ϕ̂(ω)|2

∑

k∈Z
|ϕ̂(ω + 2 k π)|2

. (10)

For a given sampling step, a good basis function should have

a low least approximation error ǫf .

2) B-splines as basis functions: Splines of degree d are

piecewise polynomial functions with degree at most d and

continuously differentiable up to order d − 1. Splines on a

regular grid of samples can be written as a unique linear

combination of a regularly shifted kernel. Such a kernel is

itself piecewise polynomial and is called a B-spline [22].

Let βd denotes a B-spline of degree d. The B-spline of

degree 0 is:

β0(x) =







1 if |x| < 1/2;
1/2 if |x| = 1/2;

0 otherwise;

(11)

which is the rectangular pulse and the B-spline of higher

degree are constructed by multiple convolutions of β0:

βd(x) = β0 ∗ · · · ∗ β0

︸ ︷︷ ︸

d+1 terms

(x) . (12)

With this notation and considering evenly spaced samples with

a step ∆, a 1D spline of degree d writes:

s(x) =
∑

k∈Z

ck βd((x− xk)/∆) . (13)

For such 1D splines, the modeling error ǫf is O(∆d+1) [22]

[23] [18]. Hence using B-splines of higher degree decreases

this error, or let one uses a coarser sampling rate for a given

tolerance.

Going back to the formulation of the object representation

in (2), we propose to use 3D separable B-splines of degree d
as our basis functions:

ϕ(x, y, z) = βd(x/∆)βd(y/∆)βd(z/∆) , (14)

with ∆ the sampling step of the grid. Taking B-splines of

degree 0 yields nothing else than the cubic voxels which

are the most compact B-splines. According to the central

limit theorem and B-splines being d-fold convolutions of a

rectangular pulse, they become closer to a Gaussian function as

their degree d increases. Thus 3D separable B-splines tend to

spherically symmetric functions, while preserving a compact

support of size (d + 1)3. As a result, increasing the degree

d not only yields an improved approximation error but also

provides quasi-isotropic basis functions. These benefits are at

the expense of an enlargement of the support of the basis

functions and thus of an increase of the computational burden.

However, as we will show, this additional cost is mitigated

by the use of separable functions. The good properties of B-

splines are related to the fact that they are the shortest and

smoothest scaling functions for a given order of approximation

[23]. More specifically, the cubic (degree 3) B-splines are

members of the family of MOMS functions (Maximum Order

Minimum Support), giving them a form of optimality in this

context.

B−spline d=0

B−spline d=1

B−spline d=2

B−spline d=3

blob Kaiser−Bessel

0.0

0.2

0.4

Fig. 1. Error kernels, as a function of the reduced frequency, of B-splines of
different degrees d. For comparison, the error kernel of a Kaiser-Bessel blob
with ideal parameters m = 2 ; a = 2 ; α = 10.4 is plotted.

Fig. 2. Localization of the sharp edges found on thresholded approximations
of a ring on a discrete 2D grid (crosses). The black frontier corresponds to
the cubic voxels’ representation; the green frontier with points corresponds to
the blobs’ representation; the red frontier corresponds to the cubic B-splines’
representation. (On this figure, the green and red contours are indiscernible.
See Fig. 3 to discriminate them.)

3) Comparison with the state-of-the-art basis functions:

Fig. 1 shows the error kernels (10), in 1D, for B-splines from

degree d = 0 to 3, and for the ideal blob as defined by Matej

& Lewitt [12]. The higher the degree of the B-spline, the

faster the approximation error decreases below the Nyquist

frequency when ω × ∆ → 0, and tends to the optimality.

Blobs also improve the quality of object modeling. We notice

that the error kernel of the blob is very close to that of the

quadratic B-spline (degree 2), although with a larger support.

Fig. 1 reveals that B-splines are much better basis func-

tions for representing band-limited signals. However, modeling

sharp edges, i.e. not band-limited signals, is one of the desired

properties stated in section II-C. Indeed a typical anatomical

feature of a human body in tomography is to be composed

of various tissues having specific absorption levels; the object

f(x) to be reconstructed is therefore expected to have sharp



Fig. 3. 1D profile across the median horizontal line of the graph of Fig. 2.
The black frontier corresponds to the cubic voxels’ representation; the green
frontier with points corresponds to the blobs’ representation; the red frontier
corresponds to the cubic B-splines’ representation.

transitions between areas with different absorbing properties.

To estimate how B-splines of high degree compare to cubic

voxels and blobs, we have represented the attenuation map

of an absorbing ring with sharp edges on a regularly spaced

2D grid of basis functions’ positions with a low resolution.

The best representation, i.e. the model with coefficients c

that minimize the approximation error ‖f − f̃‖, has been

computed for three different kernel functions: cubic voxel,

cubic B-spline (d = 3) and blobs. Then each model has been

interpolated on a grid much finer than the sampling grid to

draw the mid-height level curve. This contour is shown by

Fig. 2 for each approximation. The more accurate localization

of the sharp edges by both the cubic B-spline-based and

the blob-based representations is unequivocal compared with

the cubic voxel-based representation which shows a staircase

frontier. This behavior evidences the critical lack of isotropy

of cubic voxels. Conversely, for cubic B-splines and blobs,

the frontiers are precisely localized whatever the orientation.

We have also calculated the root mean squared error (RMS)

and the edge localization error for every approximation. These

errors for cubic voxels are respectively 16.8% and 6.4%.

Blobs are 1.8 times better in RMS and 6.8 times better in

localization error than cubic voxels, while cubic B-splines

win the contest being 1.9 times better in RMS and 8.4 times

better in localization error than cubic voxels. However, as

shown by Fig. 3, Gibbs oscillations appear when modeling

sharp edges with basis functions having a high approximation

order. Such oscillations are visible for the cubic B-spline-

based and the blob-based representations. Nevertheless, these

side effects are low compared with the gain of isotropy and

accuracy. Moreover, a suitable choice of regularization could

help flattening the oscillations.

To model the kind of objects we want to reconstruct, cubic

voxels are thus not as suitable as more isotropic basis functions

such as separable B-splines of higher degrees or blobs. In

principle, lowering the approximation errors of cubic voxel

is possible by reducing significantly the sampling step but

this would increase the computational burden and the number

of parameters to manage. Compared to separable B-splines,

blobs are exactly isotropic but are much more complex to

handle and require more numerical operations. For instance,

the computation of the sampled object f at every iteration of

a regularized approach, see (4) and (8), can be computed very

quickly for a B-spline based model by means of fast digital

filtering operations [20], [21], [22].

B. Modeling the data

We consider a general tridimensional system (Fig. 4) where

the object is static relatively to a 3D Cartesian frame with

coordinates x = (x, y, z) evenly sampled at positions xk. We

assume a flat detector and denote u = (u, v) the coordinates

in the 2D Cartesian frame with axis aligned with the rows and

the columns of the detector. Each projection is acquired with

a given orientation denoted θ. The unit vector ~w defines the

direction perpendicular to the detector and oriented from the

source S to the detector.

To improve the data model, stated in (5) and (7), we take

into account detector pixel integration by defining the model

for the q-th pixel at orientation θ as:

ỹθq =

∫∫

ỹθ(u)Pq(u)d
2u

=
∑

k∈Ωθ
q

(∫∫

F θ
k (u)Pq(u)d

2u

)

︸ ︷︷ ︸

Rqk

ck , (15)

where Pq : u 7→ Pq(u) is the response of the pixel and

Ωθ
q is the set of voxels k impinging this pixel. The above

approximation of true physical process dictated by the Beer-

Lambert law — integration of the X-ray transform instead

of the photon flux (see 1) — yields a linear model. The

approximation is valid in the case of low X-ray absorption.

We assume that Pq(u) is a 2D square pulse of dimensions

∆pix × ∆pix centered at the position uq of the pixel. The

pixel response is thus a separable shift-invariant function:

Pq(u) = β0((u− uq)/∆pix)β
0((v − vq)/∆pix) with β0 given

by (11).

1) Footprint in parallel beam geometry: In parallel beam

geometry, all integration lines are aligned with ~w(θ). We

approximate the footprint of a voxel βd
k by a 2D B-spline

of same degree d separable along the detector axis:

F θ
k (u) = βd((u− uθ

k)/∆)βd((v − vθk)/∆) (16)

where (uθ
k, v

θ
k) = uθ

k is the projection on the detector along

the rays of the position xk of the k-th voxel for orientation θ.

Expression (16) is exact when the direction ~w(θ) of the parallel

beam projection is aligned with one of the axis ~x, ~y, or ~z; it

is only an approximation for other orientations. However the

higher the degree d the better this approximation.

Thanks to the quasi-isotropy property of B-splines of suf-

ficient degree, the footprint in our spline driven model (cf.

section III-A2) has approximately the same shape whatever

the orientation θ.



impinged detector pixels

Fig. 4. Cone beam projection scheme of a basis function ϕ(x − xk) on the detector. θ denotes the orientation of the detector, rotating around the center
O. The direction of the ray, starting from the source S(θ), orthogonal to the detector plane is identified by the vector ~w(θ). The direction of the ray passing
through the central position xk = (x, y, z) of the k-th voxel is identified by the vector ~r. The footprint of ϕ(x− xk) is denoted F θ

k
.

Fig. 5. Scaling parameters in cone beam geometry. ℓfoc is the focal length of
the system (distance between the source point S and its orthogonal projection
S⊥ on the detector). M(xk) is the center of the basis function βd

k
. Its

cone beam projection on the detector is the point M ′(uθ

k
). M⊥(wθ

k
) is the

orthogonal projection of M on the straight line {S, ~w}. Its position wk is
used to determine the magnification factor Γθ

k
. αk and γk are the cone beam

deviation angles related respectively to directions ~u and ~v.

2) Footprint in cone beam geometry: In the case of cone

beam geometry, the magnification and the distortion, both

depending on the position of the voxel in the field of view,

has to be taken into account (see Fig. 5). In order to keep

the separability property of the footprint on the detector, we

approximate these effects by scaling factors applied to the

footprint in (16), such that:

F θ
k (u) = βd((ηθk u− uθ

k)/∆)βd((ρθk v − vθk)/∆) (17)

with (see Fig. 5):

ηθk =
cosαk

Γθ
k

, ρθk =
cos γk
Γθ
k

, Γθ
k =

ℓfoc
wθ

k

, (18)

ηθk and ρθk are distortion factors, Γθ
k is the magnification.

3) Approximation errors of the models: We quantified

errors caused by our approximations for the footprints of our

spline driven and compared them with the distance driven and

Long et al. projectors. For a given basis function and a given

model, we calculated its exact and approximated footprints.

(a) distance driven (b) Long et al.
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(c) B-spline d = 0 (d) B-spline d = 3

Fig. 6. Approximation errors in parallel beam geometry for footprints
convolved by the pixel detector response. The projectors are: (a) spline driven,
(b) the model of Long et al., (c) and (d) our spline driven model. Models (a–c)
are with cubic voxels, that is B-splines of degree d = 0; while model (d) is
with B-splines of degree d = 3. The error maps show the absolute difference
between the exact and the model-approximated footprints (assuming the same
voxel shape). The detector rotates around the ~z-axis. The worst case is
considered here with the detector tilted by 45◦ with respect to the horizontal
plane. Numerical values of the errors are: (a) EMAX ≃ 12.3% (maximum
error) and RMS ≃ 2.4% (root mean square error); (b) EMAX ≃ 0% and
RMS ≃ 0%; (c) EMAX ≃ 7% and RMS ≃ 1.3%; (d) EMAX ≃ 1.3%
and RMS ≃ 0.2%.

We considered a tomographic system with a focal length ℓfoc
of 949mm, a source to rotation center distance of 514mm,

and a flat detector with a pixel size of 1 × 1mm2. It is the

same configuration as in the article of Long et al. [3] in the

study of their own approximated footprint’s errors. For the

determination of the exact footprint at a given orientation of

the detector, we used a Monte Carlo method consisting in

calculating about 5 × 106 random lines of response (LOR)

passing through the basis function. Each exact LOR was



(a) distance driven (b) Long et al.
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Fig. 7. Approximation errors in cone beam geometry for footprints convolved
by the pixel detector response. The models are as in Fig. 6 but adapted to
the cone beam geometry. The worst case is considered here: the detector is
tilted by 0◦ with respect to the horizontal plane but the projected voxel is very
off-centered (100mm, -150mm, 100mm). Numerical values of the errors are:
(a) EMAX ≃ 14.5% and RMS ≃ 2.7%; (b) EMAX ≃ 3.5% and RMS ≃
1.1%; (c) EMAX ≃ 13.5% and RMS ≃ 2.7%; (d) EMAX ≃ 2.8% and
RMS ≃ 0.6%.

calculated by Romberg numerical integration [16]. The LORs

approximated by each considered model were computed using

their analytic expressions. Finally, we numerically computed

the convolution of the footprints by the detector pixel response

by summing the LOR included in the support of the pixel

centered at each position of a 100× 100 regular grid.

Fig. 6 displays the worst case errors caused by our ap-

proximations using B-splines with degree d = 0 and d = 3,

compared with the distance driven and Long et al. approx-

imated footprints’ errors, in parallel beam geometry. Our

projector proves its better accuracy, regarding distance driven’s

approximations. As expected, in these conditions, the Long et

al. model’s approximation errors are only caused by numerical

rounding errors and thus negligible.

Fig. 7 shows the same kind of approximation errors as in

Fig. 6, but now in cone beam geometry. Errors are amplified

due to approximations made to cope with the geometrical ef-

fects (magnification, off-axis distortions). In this configuration,

spline driven demonstrates its better accuracy compared with

both distance driven and Long et al. models, provided that the

degree of the B-splines is sufficiently high.

Compared to blob-based projectors, our spline driven model

is only approximately isotropic but requires much less nu-

merical operations because it uses separable functions for

its voxels and their footprints. In the next section we show

that the computational burden of our spline driven model is

competitive with that of more simple approaches as distance

driven.

4) Computational burden: Spline driven increases the num-

ber of operations necessary to calculate the data values yθq (15),

due to the larger footprint of a given voxel. Cubic B-splines

provide a good tradeoff between accuracy and computational

burden. Let us give the example of a system where the voxels

and detector pixels sampling rates are approximately equal.

The width of the degree d B-spline support is s = d + 1 in

each direction. Its footprint impinges (s + 1) × (s + 1) =
(d + 2) × (d + 2) detector pixels in general. If we compare

a cubic voxel (d = 0) with a cubic B-spline (d = 3), the

number of impinged detector pixels for a given voxel, is only

multiplied by a factor between 2 and 3 in each direction. As

the footprint considered in spline driven is still separable, the

amount of operations is multiplied by the same factor, which

remains competitive. Moreover our projection scheme, as well

as the cubic voxel-based approaches, is easily parallelizable,

making the computational burden issue possible to address.

The next section will analyse the improvement brought by

spline driven, applied to the iterative reconstruction process

(8), when only a small number of projections are available.

IV. RESULTS ON 2D FAN BEAM RECONSTRUCTIONS

A. Reducing the number of projections

In section III-A2, we claimed that the increase of accuracy

due to the use of B-splines to model the object and its pro-

jections could reduce the amount of data required for a given

reconstruction quality. Figure 8 displays reconstructions of a

2D Shepp-Logan phantom with our spline driven model and

for a variable number of fan beam projections. We considered

a circular source trajectory around the object with a fixed

relative position of the detector with respect to the source.

The object of interest has a size of 256× 256 pixels and the

projections are acquired by a detector with 512 pixels. The

sampling step is the same for the object and for the detector.

Note that, to avoid the so-called inverse crime [6], [24], an

exact direct model (i.e. with no approximation except rounding

errors) was used to compute the projections for simulating the

data.

The voxel coefficients c were reconstructed from the set

of {yθ|θ ∈ Θ}, with Θ the set of projection angles, by

minimizing the criterion (8). The data-fidelity term was:

Jdata(c) =
∑

θ∈Θ

(
ỹθ(c)− yθ

)⊤
·
(
ỹθ(c)− yθ

)
, (19)

In order to preserve sharp edges in the sampled object f =
Φ ·c, we used a relaxed total variation (TV) prior [17] for the

regularization:

Jprior(f) =
∑

k

√

‖∇k · f‖
2
2 + ǫ2 , (20)

with ǫ > 0 a relaxation parameter and ∇k a finite difference

operator approximating the spatial gradient at position k. The

minimization of (8) was carried out by the VMLM algorithm

[15], a limited memory quasi-Newton method.

These results clearly show that the quality of the reconstruc-

tion is acceptable up to ∼ 40 projections. This is an order

of magnitude lower than the usual hundreds of projections

required by standard reconstruction algorithms, particularly

FBP. This opens the possibility to reduce of the X-ray dose

delivered to the patient for data acquisition. In the following

tests, we used small data sets of 60 projections.
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Fig. 8. Reconstructions of a 256 × 256 grid of a Shepp-Logan phantom with our spline driven projector using cubic B-splines, from a decreasing number
of projections.

B. Comparison of spline and distance driven models

We compared spline driven and distance driven on simu-

lated projections of another two-dimensional phantom (Shepp-

Logan with modified values) in fan beam geometry. The

system and the acquisition protocol were the same a de-

scribed in section IV-A. Again, to avoid inverse crime, exact

projections were computed for data simulation. We added to

the simulated projections a non-uniform independent Gaussian

noise approximately corresponding to a non-attenuated X-ray

flux of 9 × 106 photons per detector pixel per projection.

For the two considered models, the voxel coefficients c were

reconstructed from a set of 60 noisy projections {yθ|θ ∈ Θ},

with Θ the set of projection angles, by minimizing again the

criterion (8). Since the noise was independent and Gaussian,

the data-fidelity term was:

Jdata(c) =
∑

θ∈Θ

(
ỹθ(c)− yθ

)⊤
·Wθ ·

(
ỹθ(c)− yθ

)
, (21)

where W
θ is a diagonal weighting matrix. For the regulariza-

tion, we still used the relaxed TV prior in (20).

Fig. 9 displays the reconstructions, with two magnified

regions of interest (ROI) for inspection of some details. For

each projector, we use the regularization level µ which gives

the best visual quality of the reconstructed object (second and

third columns). With such a criterion, our model recovers

most of the features without noticeable artifacts in spite of

the low number of projections (60). Comparatively, distance

driven yields some artifacts, notably in the “blue” ROI. With

our model, we can consistently represent the object with a

higher resolution. The bottom panels of Fig. 9 show the good

isotropic behavior of the cubic B-spline basis function, at the

cost of some Gibbs ripples around highly contrasted edges.

This kind of artifacts could be reduced by applying the TV

regularization to the finely sampled object. The optimal value

µ1 of the hyperparameter for spline driven is lower than the

optimal value µ2 for distance driven (see Fig. 10). Hence, the

optimal solution with our method can extract more information

from the data without noticeable artifacts. Using the same

regularization weight (µ = µ1) for the distance driven method

(see last column of Fig. 9) yields a poorer reconstruction

with many artifacts (see the purple ellipses on Fig. 9). With

an optimal regularization weight, the distance driven method
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Fig. 9. Reconstructions with a 256 × 256 grid of a Shepp-Logan phantom, from a set of 60 fan beam projections with 512 detector pixels, with both the
spline driven projector using cubic B-splines and the distance driven projector. The first column illustrates the true object. The first line shows global objects.
The second and third lines respectively show a magnification on a region of interest (ROI) identified on the global true object, re-interpolated on a 8 times
finer grid. The interpolant used in each reconstruction is the respective kernel function used in the projector, i.e. B-spline d = 3 for spline driven and cubic
voxel for distance driven. The second column show the best reconstruction with distance driven. The third column corresponds to the best reconstruction with
our projector spline driven. The fourth column is the reconstruction with distance driven which has used the same regularisation level as for spline driven,
resulting in an under-regularized object.

yields a reconstruction with some distortions and a worse

resolution compared to our method.

Fig. 10 shows quantitative reconstruction results. The curves

present the evolution of the RMS error in the two ROIs (a

given color corresponds to a given ROI), as a function of the

hyperparameter µ, for the reconstructed objects. First, each

curve appears to be convex; thus the best reconstruction in

each ROI is obtained for a unique optimal value of µ. Visual

assessment (see Fig. 9) confirms that the RMS error computed

in well chosen regions of interest is an appropriate metric to

evaluate the quality of a reconstructed object, because they

match quite well the empirical values found in Fig. 9. Second,

for each ROI, the spline driven’s RMS is always lower than the

distance driven’s RMS. Thus according to this error metric,

our projector quantitatively yields the best performances.

V. CONCLUSIONS

This paper described our spline driven model for iterative

reconstruction in X-ray CT, whose preliminary results have

been previously published in a conference [13]. Our motivation

was to achieve a good compromise between the accuracy of

the tomographic projection model while keeping the com-

putational burden as low as possible. By exploiting a more

accurate direct model compared to current models such as

the distance driven one, we expected to enhance the quality

of the restored object and to reduce the minimal amount of

tomographic data required for an interpretable reconstruction.

Thus, not only the diagnosis can be improved but the dose

of radiation received by the patient can also be reduced. In

tomography, only regularized inverse methods provide optimal

reconstructions but lead to iterative algorithms. This is why we

wanted to develop a fast projection model.

Our approach uses the good properties of B-spline ba-

sis functions to model the object of interest and also to
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Fig. 10. Root mean squared error in the two ROIs (see Fig. 9) of the
reconstructed object, normalized by the maximum value in the ROI, for
various values of the hyperparameter µ (logarithmic scale). The solid curves
correspond to reconstructions with the spline driven projector, and the dashed
curves correspond to reconstructions with the distance driven projector.
Symbols pointing the empirical values of the hyperparameter µ used in the
reconstructions of Fig. 9 are plotted on the curves.

approximate its projections and, possibly, account for pixel

integration. Using separable 3D B-spline basis functions with

a sufficiently high level, our model of the object is nearly

isotropic which is a clear improvement compared to models

based on cubic voxels. We also introduce a separable 2D B-

spline based approximation to compute the projection of our

voxels on the detector for various (parallel, fan beam and cone

beam) beam geometries. Our model is not as good as blobs

which are exactly isotropic but, being separable and using

more compact basis functions, it is much faster to compute

than a blob-based model. The computational burden of our

model is similar to that of the distance driven or the Long

et al. [3] models. Compared to these models and using a

similar cubic voxel (which is not what we advocate to use

with our approach), our projection model is more accurate

than the distance driven one whatever the type of projection.

With cubic voxels, the Long et al. [3] model remains the most

accurate in non-parallel beam geometry (the Long et al. model

is exact in parallel beam geometry). This is not true anymore

if we use B-splines of higher degree, for which our spline

driven model becomes the best model. In our opinion, a good

compromise between accuracy and speed is to use cubic B-

splines.

We also studied the benefit of an improved model like

ours when it is implemented in an iterative regularized re-

construction method. By varying the number of available

measurements, we have shown that it is possible to obtain

reliable reconstructions with only 50-60 projections which is

much fewer than the ∼ 500 projections needed by analytic

methods such as FBP. Note that, to avoid inverse crime, we

used an exact numerical projection to simulate the data (i.e.

not the direct model used for the reconstruction). On a limited

number of 60 projections, using our model yields substantial

gain in object quality compared with reconstructions using the

distance driven projector. Qualitatively, there are less artifacts

and more reliable features are visible; quantitatively, the RMS

error is lower. Moreover, to achieve the best reconstructions

(for a given projection model), the relative weight of the priors

is lower with our model which means that reconstruction

methods with coarser models must regularize more and thus

do not thoroughly exploit the information in the data.

The tests presented here were based on simulated projec-

tions. In a companion paper currently under peer reviewing

[14], we exploit our model to produce 3D and 3D+t (spatio-

temporal) reconstructions on both simulated and empirical

data. In the 3D+t case, the ability to achieve acceptable

reconstructions from a much reduced number of projections is

a strong requirement. Indeed, in practice, the object of interest

is approximately the same only for a very limited number of

observations.
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